# Logic-Based Argumentation with N-ary Graphs Présentation Journée GraphIK 2018

### Bruno YUN<sup>1</sup> Srdjan VESIC<sup>2</sup> Madalina CROITORU<sup>1</sup>

- 1. Univ. Montpellier, LIRMM
- 2. CNRS, CRIL, Lens

What is argumentation? The language Why n-ary argumentation?

# What is argumentation? (Part 1)

• Argumentation is a way of reasoning that is based on arguments and attacks between them.

(日) (四) (日) (日) (日) (日)

What is argumentation? The language Why n-ary argumentation?

# What is argumentation? (Part 1)

- Argumentation is a way of reasoning that is based on arguments and attacks between them.
- It is usually modelled using the *Dung's framework* and represented as a directed graph.

#### Example

$$\textcircled{a} \longrightarrow \textcircled{b} \longleftarrow \textcircled{c}$$

# What is argumentation? (Part 1)

- Argumentation is a way of reasoning that is based on arguments and attacks between them.
- It is usually modelled using the *Dung's framework* and represented as a directed graph.

 Other generalisations exist and implement supports relation, weights on attacks, preferences on arguments, different kind of attacks and arguments, etc.

イロト イポト イヨト イヨト ニヨー

What is argumentation ? The language Why n-ary argumentation ?

# What is argumentation? (Part 2)

• We use *argumentation semantics* (preferred, stable semantics) to extract meaningful consistent subsets of the set of arguments.

Example  

$$a \rightarrow b \leftarrow c$$
  
The set  $\{a, c\}$  is a preferred extension (maximal conflict-free and defend itself).

イロト イポト イヨト イヨト 三日

## Inconsistent knowledge base in $Datalog^{\pm}$

We consider inconsistent  $Datalog^{\pm}$ knowledge bases.

#### Example (Knowledge Base)

•  $\mathcal{F} =$ 

{contains(m, saltC), contains(m, sugar), contains(m, yogurt), notSoup(m), edible(m)}

- $\mathcal{R} = \{ \forall x (contains(x, saltC) \land contains(x, yogurt) \rightarrow tzaziki(x)) \}$
- $\mathcal{N} = \{ \forall x (contains(x, saltC) \land contains(x, sugar) \land contains(x, yogurt) \rightarrow \bot), \forall x (tzaziki(x) \land notSoup(x) \rightarrow \bot) \}$

4/9

What is argumentation? The language Why n-ary argumentation?

## Why n-ary argumentation?

Let  $\mathcal{K}$  be a KB,  $\mathcal{AS}_{\mathcal{K}} = (\mathcal{A}, \mathcal{C})$  where  $\mathcal{A}$  is a set of arguments and  $\mathcal{C}$  a set of attacks defined as follows.

### Definition (Old arguments)

An *argument* is a tuple (H, C) with H a non-empty  $\mathcal{R}$ -consistent subset of  $\mathcal{F}$  and C a set of facts such that :

- $H \subseteq \mathcal{F}$  and H is  $\mathcal{R}$ -consistent (consistency);
- $C \subseteq C\ell_{\mathcal{R}}(H)$  (entailment);
- $\nexists H' \subset H$  s.t.  $C \subseteq C\ell_{\mathcal{R}}(H')$  (minimality).

#### Example

An argument is :

 $a_1 = (\{contains(m, saltC), contains(m, yogurt)\}, \{tzaziki(m)\})$ 

What is argumentation ? The language Why n-ary argumentation ?

## Why n-ary argumentation?

Let  $\mathcal{K}$  be a KB,  $\mathcal{AS}_{\mathcal{K}} = (\mathcal{A}, \mathcal{C})$  where  $\mathcal{A}$  is a set of arguments and  $\mathcal{C}$  a set of attacks defined as follows.

#### Definition (Old attacks)

We say that a = (H, C) attacks b = (H', C') denoted by  $(a, b) \in C$  iff there exists  $\phi \in H'$  such that  $C \cup \{\phi\}$  is  $\mathcal{R}$ -inconsistent.

#### Example

 $a_1 = (\{contains(m, saltC), contains(m, yogurt)\}, \{tzaziki(m)\})$ attacks  $a_2 = (\{notSoup(m)\}, \{notSoup(m)\}).$ 

What is argumentation ? The language Why n-ary argumentation ?

## Why n-ary argumentation?

• Problem : we have too many arguments (and attacks). Here, we have 33 arguments and 360 attacks for a knowledge base with 5 facts, 1 rule and 2 negative constraints.

イロト イポト イヨト イヨト

-

What is argumentation? The language Why n-ary argumentation?

## Why n-ary argumentation?

- Problem : we have too many arguments (and attacks). Here, we have 33 arguments and 360 attacks for a knowledge base with 5 facts, 1 rule and 2 negative constraints.
- We need a way for arguments to **jointly** attack other arguments.

#### Example

- a : "Martin is on the tandem bicycle"
- b : "Madalina is on the tandem bicycle"
- c : "Pierre is on the tandem bicycle"

We need attacks of the form  $(\{a, b\}, c)$ 

イロト イポト イヨト イヨト

э

### The new framework

Let us consider the KB  $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ .  $\mathcal{AS} = (\mathcal{A}, \mathcal{C})$  with  $\mathcal{C} \subseteq 2^{\mathcal{A}} \times \mathcal{A}$  is such that :

#### Definition (Argument)

An argument  $a \in \mathcal{A}$  is :

- f, where  $f \in \mathcal{F}$ . Conc(a) = f and  $Prem(a) = \{f\}$
- $a_1, \ldots, a_n \to f'$  if  $a_1, \ldots, a_n$  are arguments such that there exists a tuple  $(r, \pi)$  where  $r \in \mathcal{R}, \pi$  is a homomorphism from the body of r to  $\{Conc(a_1), \ldots, Conc(a_n)\}$  and f' is the resulting atom from the rule application. Conc(a) = f' and  $Prem(a) = Prem(a_1) \cup \cdots \cup Prem(a_n)$

where Prem(a) is  $\mathcal{R}$ -consistent.

### The new framework

Let us consider the KB  $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ .  $\mathcal{AS} = (\mathcal{A}, \mathcal{C})$  with  $\mathcal{C} \subseteq 2^{\mathcal{A}} \times \mathcal{A}$  is such that :

#### Definition (Attack)

An attack is a pair (X, a) where  $X \subseteq A$  and  $a \in A$  such that X is minimal for set inclusion such that  $\bigcup_{x \in X} Prem(x)$  is  $\mathcal{R}$ -consistent and there exists  $\varphi \in Prem(a)$  such that  $(\bigcup_{x \in X} Conc(x)) \cup \{\varphi\}$  is  $\mathcal{R}$ -inconsistent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ シッペ

## The new framework

#### Example

Let  ${\cal K}$  be the previous knowledge base about the choice of an appetiser, the resulting argumentation graph is composed of six arguments and 11 attacks :

- $a_1 = contains(m, sugar)$
- $a_2 = contains(m, saltC)$
- $a_3 = contains(m, yogurt)$
- $a_4 = notSoup(m)$
- $a_5 = edible(m)$
- $a_6 = a_2, a_3 \rightarrow tzaziki(m)$

An example attack of C is  $(\{a_1, a_2\}, a_3)$ .

## Properties

• We have the one-to-one correspondence between preferred/stable extensions and maximal consistent subset of facts.

### Example

## Properties

• We have an upper-bound on the number of attacks with respect to the number of arguments and we have an upper-bound on the number of arguments if there are no rules.

#### Example (Attack upper-bound)

Let  $\mathcal{K}$  be a knowledge base and  $\mathcal{AS}_{\mathcal{K}} = (\mathcal{A}, \mathcal{C})$  be the corresponding argumentation framework. If  $|\mathcal{A}| = n$  then  $|\mathcal{C}| \leq \sum_{i=1}^{n-1} {n \choose i} (n-i).$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 めんの

## Properties

• We satisfy the basic rationality postulates (closure, indirect and direct consistency)

#### Example (Indirect consistency)

Let  $\mathcal{K} = (\mathcal{F}, \mathcal{R}, \mathcal{N})$  be a knowledge base,  $\mathcal{AS}_{\mathcal{K}}$  the corresponding argumentation framework and  $x \in \{s, p, g\}$ . Then :

- for every  $E \in Ext_x(\mathcal{AS}_{\mathcal{K}})$ , Concs(E) is a  $\mathcal{R}$ -consistent.
- $Output_{x}(\mathcal{AS}_{\mathcal{K}})$  is  $\mathcal{R}$ -consistent.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Properties

• Presence of structural properties (cycle, etc.)

### Example (Self-attacking Arguments)

Let  $\mathcal{K}$  be a knowledge base and  $\mathcal{AS}_{\mathcal{K}} = (\mathcal{A}, \mathcal{C})$  be the corresponding argumentation framework. There is no  $(S, t) \in \mathcal{C}$  such that  $t \in S$ .

#### Example (Defense)

Let  $\mathcal{K}$  be a knowledge base and  $\mathcal{AS}_{\mathcal{K}} = (\mathcal{A}, \mathcal{C})$  be the corresponding argumentation framework. If there is  $(S, t) \in \mathcal{C}$  then there exists  $(S', s) \in \mathcal{C}$  such that  $s \in S$ .

Introduction Contributions to logic-based n-ary argumentation The new framework Comparison benchmark Tool

## Experimentation & Results

• We generated this n-ary argumentation graph on a set of 134 existing knowledge bases.

### Experimentation & Results

- We generated this n-ary argumentation graph on a set of 134 existing knowledge bases.
  - A set of A composed of 108 knowledge bases. This dataset is further split into three smaller set of knowledge bases :
    - A set of A<sub>1</sub> of 31 knowledge bases without rules, two to seven facts, and one to three negative constraints.
    - A set A<sub>2</sub> of 51 knowledge bases generated by fixing the size of the set of facts and successively adding negative constraints until saturation.
    - A set A<sub>3</sub> of 26 knowledge bases with only ternary negative constraints, three to four facts and one to three rules.
  - A set *B* of 26 knowledge bases with eight facts, six rules and one or two negative constraints. This set contains more free-facts than the knowledge bases in set *A*.

## Experimentation & Results

- We generated this n-ary argumentation graph on a set of 134 existing knowledge bases.
- We compared the number of argument and attacks with the existing argumentation framework.

## Experimentation & Results

- We generated this n-ary argumentation graph on a set of 134 existing knowledge bases.
- We compared the number of argument and attacks with the existing argumentation framework.

|                       | Old Framework |          |                |  |  |  |  |
|-----------------------|---------------|----------|----------------|--|--|--|--|
| $\mathcal{K}$         | # Arg.        | # Att.   | Gen. Time (ms) |  |  |  |  |
| $A_1$                 | 22            | 128      | 160            |  |  |  |  |
| $A_2$                 | 25            | 283      | 133            |  |  |  |  |
| <i>A</i> <sub>3</sub> | 85            | 1472     | 399,5          |  |  |  |  |
| В                     | 5967          | 11542272 | 533089         |  |  |  |  |

э.

## Experimentation & Results

- We generated this n-ary argumentation graph on a set of 134 existing knowledge bases.
- We compared the number of argument and attacks with the existing argumentation framework.

|                       | New Framework |         |        |         |         |          |  |
|-----------------------|---------------|---------|--------|---------|---------|----------|--|
| $\mathcal{K}$         | # Arg.        | % Arg.↓ | # Att. | % Att.↓ | G. Time | % Time ‡ |  |
| $A_1$                 | 5             | 77,27   | 6      | 93,75   | 276,00  | -81,48   |  |
| $A_2$                 | 7             | 72,00   | 8      | 92,93   | 342,00  | -183,57  |  |
| <i>A</i> <sub>3</sub> | 7             | 91,76   | 9      | 99,26   | 369,50  | 1,66     |  |
| В                     | 14            | 99.77   | 20.5   | 99.99   | 7814.5  | 98.08    |  |

Introduction Contributions to logic-based n-ary argumentation The new framework Comparison benchmark Tool

Naked : N-ary Argumentation graphs from Knowledge bases Expressed in  $Datalog^{\pm}$ 

We developed the Naked tool for visualising and generating n-ary graphs from  $Datalog^{\pm}$ knowledge bases.



Bruno YUN & al. N-ary Graphs in Argumentation