
Cryptographic Smooth Neighbors

Bruno Sterner, joint work with Giacomo Bruno, Maria Corte-Real Santos,
Craig Costello, Jonathan Komada Eriksen, Michael Meyer & Michael Naehrig

Surrey Centre for Cyber Security, University of Surrey, UK

Talk for the GRACE seminar at École Polytechnique

1

Meet-in-the-Middle

2

Meet-in-the-Middle

2

Meat-in-the-Middle

3

Motivation

Cryptographic sized primes p such that p ± 1 are smooth1 or contain a
large smooth cofactor

�����XXXXXB-SIDH ϕ : E → E ′ SQISign

The current state-of-the-art in SQISign uses the following prime

254-bit prime p = 0x348757EADF5C9530B7311A63633F03DB535805FA6
E9E48B1FFFFFFFFFFFFFFFF:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521
· 3923 · 62731 · 96362257 · 3924006112952623, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599
· 607 · 619 · 743 · 827 · 941 · 2357 · 10069

1A number n is B-smooth if all the prime factors of n are at most B

4

Motivation

Cryptographic sized primes p such that p ± 1 are smooth1 or contain a
large smooth cofactor

�����XXXXXB-SIDH ϕ : E → E ′ SQISign

The current state-of-the-art in SQISign uses the following prime

254-bit prime p = 0x348757EADF5C9530B7311A63633F03DB535805FA6
E9E48B1FFFFFFFFFFFFFFFF:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521
· 3923 · 62731 · 96362257 · 3924006112952623, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599
· 607 · 619 · 743 · 827 · 941 · 2357 · 10069

1A number n is B-smooth if all the prime factors of n are at most B

4

Motivation

Cryptographic sized primes p such that p ± 1 are smooth1 or contain a
large smooth cofactor

�����XXXXXB-SIDH ϕ : E → E ′ SQISign

The current state-of-the-art in SQISign uses the following prime

254-bit prime p = 0x348757EADF5C9530B7311A63633F03DB535805FA6
E9E48B1FFFFFFFFFFFFFFFF:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521
· 3923 · 62731 · 96362257 · 3924006112952623, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599
· 607 · 619 · 743 · 827 · 941 · 2357 · 10069

1A number n is B-smooth if all the prime factors of n are at most B

4

Motivation

Cryptographic sized primes p such that p ± 1 are smooth1 or contain a
large smooth cofactor

�����XXXXXB-SIDH ϕ : E → E ′ SQISign

The current state-of-the-art in SQISign uses the following prime

254-bit prime p = 0x348757EADF5C9530B7311A63633F03DB535805FA6
E9E48B1FFFFFFFFFFFFFFFF:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521
· 3923 · 62731 · 96362257 · 3924006112952623, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599
· 607 · 619 · 743 · 827 · 941 · 2357 · 10069

1A number n is B-smooth if all the prime factors of n are at most B

4

Contributions

We report SQISign friendly parameters at the higher security levels

The idea utilises an algorithm for finding almost all twin-smooth integers

5

Contributions

We report SQISign friendly parameters at the higher security levels

The idea utilises an algorithm for finding almost all twin-smooth integers

5

Contributions

We report SQISign friendly parameters at the higher security levels

The idea utilises an algorithm for finding almost all twin-smooth integers

5

Contributions

We report SQISign friendly parameters at the higher security levels

The idea utilises an algorithm for finding almost all twin-smooth integers

5

Outline

Finding Twin-Smooth Integers

CHM Algorithm

Parameter Setup for SQISign

Our Method

Practical SQISign Results

Smooth Twins from XGCD over Polynomial Rings

6

Finding Twin-Smooth Integers

Twin-smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1),
are B-smooth twins if their product r(r + 1) is B-smooth.

For instance, the following consecutive integers are both 7-smooth:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

Remark: For such a smooth twin (r , r + 1), if p = 2r + 1 is a prime then
we recover the case that is of interest to isogenies

Surprisingly, for a fixed B there are finitely many B-smooth twins

7

Twin-smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1),
are B-smooth twins if their product r(r + 1) is B-smooth.

For instance, the following consecutive integers are both 7-smooth:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

Remark: For such a smooth twin (r , r + 1), if p = 2r + 1 is a prime then
we recover the case that is of interest to isogenies

Surprisingly, for a fixed B there are finitely many B-smooth twins

7

Twin-smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1),
are B-smooth twins if their product r(r + 1) is B-smooth.

For instance, the following consecutive integers are both 7-smooth:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

Remark: For such a smooth twin (r , r + 1), if p = 2r + 1 is a prime then
we recover the case that is of interest to isogenies

Surprisingly, for a fixed B there are finitely many B-smooth twins

7

Twin-smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1),
are B-smooth twins if their product r(r + 1) is B-smooth.

For instance, the following consecutive integers are both 7-smooth:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

Remark: For such a smooth twin (r , r + 1), if p = 2r + 1 is a prime then
we recover the case that is of interest to isogenies

Surprisingly, for a fixed B there are finitely many B-smooth twins

7

Twin-smooth integers

Definition
For an integer B, we say that a pair of consecutive integers, (r , r + 1),
are B-smooth twins if their product r(r + 1) is B-smooth.

For instance, the following consecutive integers are both 7-smooth:

r = 4374 = 2 · 37, and r + 1 = 4375 = 54 · 7

Remark: For such a smooth twin (r , r + 1), if p = 2r + 1 is a prime then
we recover the case that is of interest to isogenies

Surprisingly, for a fixed B there are finitely many B-smooth twins

7

Current landscape for finding smooth twins

8

Current landscape for finding smooth twins

Pell equation
CHM

Constructive Methods

Näıve method
XGCD/CRT

pn(x) = 2xn − 1
Ideal PTE solutions

Probabalistic methods

8

Current landscape for finding smooth twins

Pell equation
CHM

Constructive Methods
Näıve method
XGCD/CRT

pn(x) = 2xn − 1
Ideal PTE solutions

Probabalistic methods

8

Solutions to the Pell equation

The following is a complete characterisation of B-smooth twins

It was first proved by Størmer (1897) and later improved algorithmically
by Lehmer (1964)

For a B-smooth twin (r , r + 1), let x = 2r + 1 so that x2 − 1 is
B-smooth and write x2 − 1 = Dy2 where D, y are B-smooth and D is
squarefree. Then we can see that (x , y) is a solution to the Pell conic

X 2 − DY 2 = 1

Solving all 2π(B) Pell equations (one for each squarefree and B-smooth
choice of D) will find the complete and finite set of B-smooth twins

Lehmer ran this algorithm for B = 41, Luca and Najman (2011) ran it
with B = 100 and most recently Costello (2019) ran it with B = 113

9

Solutions to the Pell equation

The following is a complete characterisation of B-smooth twins

It was first proved by Størmer (1897) and later improved algorithmically
by Lehmer (1964)

For a B-smooth twin (r , r + 1), let x = 2r + 1 so that x2 − 1 is
B-smooth and write x2 − 1 = Dy2 where D, y are B-smooth and D is
squarefree. Then we can see that (x , y) is a solution to the Pell conic

X 2 − DY 2 = 1

Solving all 2π(B) Pell equations (one for each squarefree and B-smooth
choice of D) will find the complete and finite set of B-smooth twins

Lehmer ran this algorithm for B = 41, Luca and Najman (2011) ran it
with B = 100 and most recently Costello (2019) ran it with B = 113

9

Solutions to the Pell equation

The following is a complete characterisation of B-smooth twins

It was first proved by Størmer (1897) and later improved algorithmically
by Lehmer (1964)

For a B-smooth twin (r , r + 1), let x = 2r + 1 so that x2 − 1 is
B-smooth and write x2 − 1 = Dy2 where D, y are B-smooth and D is
squarefree. Then we can see that (x , y) is a solution to the Pell conic

X 2 − DY 2 = 1

Solving all 2π(B) Pell equations (one for each squarefree and B-smooth
choice of D) will find the complete and finite set of B-smooth twins

Lehmer ran this algorithm for B = 41, Luca and Najman (2011) ran it
with B = 100 and most recently Costello (2019) ran it with B = 113

9

Solutions to the Pell equation

The following is a complete characterisation of B-smooth twins

It was first proved by Størmer (1897) and later improved algorithmically
by Lehmer (1964)

For a B-smooth twin (r , r + 1), let x = 2r + 1 so that x2 − 1 is
B-smooth and write x2 − 1 = Dy2 where D, y are B-smooth and D is
squarefree. Then we can see that (x , y) is a solution to the Pell conic

X 2 − DY 2 = 1

Solving all 2π(B) Pell equations (one for each squarefree and B-smooth
choice of D) will find the complete and finite set of B-smooth twins

Lehmer ran this algorithm for B = 41, Luca and Najman (2011) ran it
with B = 100 and most recently Costello (2019) ran it with B = 113

9

Solutions to the Pell equation

The following is a complete characterisation of B-smooth twins

It was first proved by Størmer (1897) and later improved algorithmically
by Lehmer (1964)

For a B-smooth twin (r , r + 1), let x = 2r + 1 so that x2 − 1 is
B-smooth and write x2 − 1 = Dy2 where D, y are B-smooth and D is
squarefree. Then we can see that (x , y) is a solution to the Pell conic

X 2 − DY 2 = 1

Solving all 2π(B) Pell equations (one for each squarefree and B-smooth
choice of D) will find the complete and finite set of B-smooth twins

Lehmer ran this algorithm for B = 41, Luca and Najman (2011) ran it
with B = 100 and most recently Costello (2019) ran it with B = 113

9

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Integer world

The most näıve approach is to choose a smooth integer r and hope the
r + 1 is also smooth

A much better approach is to force smooth factors s | r and t | r + 1 of
size s · t ≈ r

This means that instead of hoping that an integer of size r is smooth,
you hope that two integers of size ≈

√
r are smooth

Algorithmically, this can be achieved with either

• Extended Euclidean algorithm (XGCD) by Costello (2019)

• Chinese remainder theorem (CRT) by De Feo et al. (2020)

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 223

10

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

In Costello’s computations with the Pell equations, he noticed that a lot
of twins were of the form (x2 − 1, x2)

To obtain cryptographic sized twins, he generalised this idea to find twins
of the form

(xn − 1, xn) for even n

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 219

We use the notation pn(x) := 2xn − 1 to be the result of summing these
twins

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

11

Probabilistic methods: Polynomial world

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

(F (x), G(x))

where F , G are polynomials in Q[x] that split completely into linear
factors

The decomposition of these polynomials into linear factors increases the
smoothness probablity

One can find polynomials of this type from solutions to the ideal
Prouhet-Tarry-Escott (PTE) problem

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 215

12

Probabilistic methods: Polynomial world

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

(F (x), G(x))

where F , G are polynomials in Q[x] that split completely into linear
factors

The decomposition of these polynomials into linear factors increases the
smoothness probablity

One can find polynomials of this type from solutions to the ideal
Prouhet-Tarry-Escott (PTE) problem

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 215

12

Probabilistic methods: Polynomial world

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

(F (x), G(x))

where F , G are polynomials in Q[x] that split completely into linear
factors

The decomposition of these polynomials into linear factors increases the
smoothness probablity

One can find polynomials of this type from solutions to the ideal
Prouhet-Tarry-Escott (PTE) problem

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 215

12

Probabilistic methods: Polynomial world

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

(F (x), G(x))

where F , G are polynomials in Q[x] that split completely into linear
factors

The decomposition of these polynomials into linear factors increases the
smoothness probablity

One can find polynomials of this type from solutions to the ideal
Prouhet-Tarry-Escott (PTE) problem

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 215

12

Probabilistic methods: Polynomial world

More recently, Costello, Meyer and Naehrig (2021) improved this
technique by computing twins of the form

(F (x), G(x))

where F , G are polynomials in Q[x] that split completely into linear
factors

The decomposition of these polynomials into linear factors increases the
smoothness probablity

One can find polynomials of this type from solutions to the ideal
Prouhet-Tarry-Escott (PTE) problem

The smallest smoothness bound of a ≈ 256-bit twin for which their sum
is a prime is B = 215

12

CHM Algorithm

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM algorithm

An algorithm devised by Conrey, Holmstrom and McLaughlin (2012) that
finds almost all B-smooth twins

Start with the initial set of integers S(0) = {1, 2, · · · , B − 1} –
representing the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B)

For each r , s ∈ S(0) with r < s one computes the following

t
t ′ = r

r + 1 · s + 1
s

writing t/t ′ in lowest order terms

S(1) := S(0) ∪ {new solutions t : t ′ = t + 1}

Repeat the above but for S(1) instead of S(0). Eventually we must have
S(d+1) = S(d) for some d and the algorithm terminates when this happens

13

CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the
computation yields a new twin smooth pair (t, t + 1)

1
1 + 1 · 2 + 1

2 = 3
4 ,

1
1 + 1 · 3 + 1

3 = 2
3 ,

1
1 + 1 · 4 + 1

4 = 5
8 ,

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16
Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

14

CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the
computation yields a new twin smooth pair (t, t + 1)

1
1 + 1 · 2 + 1

2 = 3
4 ,

1
1 + 1 · 3 + 1

3 = 2
3 ,

1
1 + 1 · 4 + 1

4 = 5
8 ,

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16
Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

14

CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the
computation yields a new twin smooth pair (t, t + 1)

1
1 + 1 · 2 + 1

2 = 3
4 ,

1
1 + 1 · 3 + 1

3 = 2
3 ,

1
1 + 1 · 4 + 1

4 = 5
8 ,

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16
Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

14

CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the
computation yields a new twin smooth pair (t, t + 1)

1
1 + 1 · 2 + 1

2 = 3
4 ,

1
1 + 1 · 3 + 1

3 = 2
3 ,

1
1 + 1 · 4 + 1

4 = 5
8 ,

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

14

CHM in action

We illustrate the algorithm for B = 5. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs r , s ∈ S(0) with r < s, we see when the
computation yields a new twin smooth pair (t, t + 1)

1
1 + 1 · 2 + 1

2 = 3
4 ,

1
1 + 1 · 3 + 1

3 = 2
3 ,

1
1 + 1 · 4 + 1

4 = 5
8 ,

2
2 + 1 · 3 + 1

3 = 8
9 ,

2
2 + 1 · 4 + 1

4 = 5
6 , and 3

3 + 1 · 4 + 1
4 = 15

16
Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

14

CHM in action

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

In the second iteration, only two new twins are found

3
3 + 1 · 5 + 1

5 = 9
10 , and 4

4 + 1 · 5 + 1
5 = 24

25
Hence, we add 9 and 24 to get the next set as

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}

In the third CHM iterations we add 80 and get

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

15

CHM in action

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

In the second iteration, only two new twins are found

3
3 + 1 · 5 + 1

5 = 9
10 , and 4

4 + 1 · 5 + 1
5 = 24

25

Hence, we add 9 and 24 to get the next set as

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}

In the third CHM iterations we add 80 and get

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

15

CHM in action

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

In the second iteration, only two new twins are found

3
3 + 1 · 5 + 1

5 = 9
10 , and 4

4 + 1 · 5 + 1
5 = 24

25
Hence, we add 9 and 24 to get the next set as

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}

In the third CHM iterations we add 80 and get

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

15

CHM in action

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}

In the second iteration, only two new twins are found

3
3 + 1 · 5 + 1

5 = 9
10 , and 4

4 + 1 · 5 + 1
5 = 24

25
Hence, we add 9 and 24 to get the next set as

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}

In the third CHM iterations we add 80 and get

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

15

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

In the third CHM iterations we add 80

S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

The fourth iteration does not produce any new numbers, i.e. we have
S(4) = S(3)

Doing the corresponding computations with the Pell equations verifies
that this is indeed the full set of 5-smooth twins

In general this method does not guarantee to produce all B-smooth twins

Applying the CHM algorithm with B = 7, we get S(5) = S(4)

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

16

CHM in action

Applying the CHM algorithm with B = 7, we get S(5) = S(4) where

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

This is not the full set of 7-smooth twins and you miss the largest
7-smooth twin: (4374, 4375)

However, running this with B = 11 will find this missing twin

When 11 ≤ B < 41 the algorithm finds all B-smooth twins but with
B ≥ 41 the algorithm will (at least conjecturally) find almost all twins

The original authors ran CHM with B = 100 and found all 100-smooth
twins with the exception of 37 solutions. They subsequently ran it with
B = 200 which took 2 weeks for them to compute

17

CHM in action

Applying the CHM algorithm with B = 7, we get S(5) = S(4) where

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

This is not the full set of 7-smooth twins and you miss the largest
7-smooth twin: (4374, 4375)

However, running this with B = 11 will find this missing twin

When 11 ≤ B < 41 the algorithm finds all B-smooth twins but with
B ≥ 41 the algorithm will (at least conjecturally) find almost all twins

The original authors ran CHM with B = 100 and found all 100-smooth
twins with the exception of 37 solutions. They subsequently ran it with
B = 200 which took 2 weeks for them to compute

17

CHM in action

Applying the CHM algorithm with B = 7, we get S(5) = S(4) where

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

This is not the full set of 7-smooth twins and you miss the largest
7-smooth twin: (4374, 4375)

However, running this with B = 11 will find this missing twin

When 11 ≤ B < 41 the algorithm finds all B-smooth twins but with
B ≥ 41 the algorithm will (at least conjecturally) find almost all twins

The original authors ran CHM with B = 100 and found all 100-smooth
twins with the exception of 37 solutions. They subsequently ran it with
B = 200 which took 2 weeks for them to compute

17

CHM in action

Applying the CHM algorithm with B = 7, we get S(5) = S(4) where

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

This is not the full set of 7-smooth twins and you miss the largest
7-smooth twin: (4374, 4375)

However, running this with B = 11 will find this missing twin

When 11 ≤ B < 41 the algorithm finds all B-smooth twins but with
B ≥ 41 the algorithm will (at least conjecturally) find almost all twins

The original authors ran CHM with B = 100 and found all 100-smooth
twins with the exception of 37 solutions. They subsequently ran it with
B = 200 which took 2 weeks for them to compute

17

CHM in action

Applying the CHM algorithm with B = 7, we get S(5) = S(4) where

S(4) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80,

125, 224, 2400}

This is not the full set of 7-smooth twins and you miss the largest
7-smooth twin: (4374, 4375)

However, running this with B = 11 will find this missing twin

When 11 ≤ B < 41 the algorithm finds all B-smooth twins but with
B ≥ 41 the algorithm will (at least conjecturally) find almost all twins

The original authors ran CHM with B = 100 and found all 100-smooth
twins with the exception of 37 solutions. They subsequently ran it with
B = 200 which took 2 weeks for them to compute

17

Our experiments

We heavily optimised the CHM algorithm and are able to run it with
B = 200 much faster2!

Subsequently we ran it fully for B = 547 – the largest twin found was the
following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412

· 271 · 283 · 499 · 509, and
r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

An additional 2,649 twins were found that are 200-smooth through this
computation

We also introduced some other optimisations that made it possible for us
to run larger values of B

2The computation only took us a mere 7 minutes to run on a laptop

18

Our experiments

We heavily optimised the CHM algorithm and are able to run it with
B = 200 much faster2!

Subsequently we ran it fully for B = 547 – the largest twin found was the
following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412

· 271 · 283 · 499 · 509, and
r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

An additional 2,649 twins were found that are 200-smooth through this
computation

We also introduced some other optimisations that made it possible for us
to run larger values of B

2The computation only took us a mere 7 minutes to run on a laptop

18

Our experiments

We heavily optimised the CHM algorithm and are able to run it with
B = 200 much faster2!

Subsequently we ran it fully for B = 547 – the largest twin found was the
following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412

· 271 · 283 · 499 · 509, and
r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

An additional 2,649 twins were found that are 200-smooth through this
computation

We also introduced some other optimisations that made it possible for us
to run larger values of B

2The computation only took us a mere 7 minutes to run on a laptop

18

Our experiments

We heavily optimised the CHM algorithm and are able to run it with
B = 200 much faster2!

Subsequently we ran it fully for B = 547 – the largest twin found was the
following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412

· 271 · 283 · 499 · 509, and
r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

An additional 2,649 twins were found that are 200-smooth through this
computation

We also introduced some other optimisations that made it possible for us
to run larger values of B

2The computation only took us a mere 7 minutes to run on a laptop

18

Our experiments

We heavily optimised the CHM algorithm and are able to run it with
B = 200 much faster2!

Subsequently we ran it fully for B = 547 – the largest twin found was the
following 122-bit twin

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412

· 271 · 283 · 499 · 509, and
r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

An additional 2,649 twins were found that are 200-smooth through this
computation

We also introduced some other optimisations that made it possible for us
to run larger values of B

2The computation only took us a mere 7 minutes to run on a laptop

18

Optimisations

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance results for different variants of our CHM implementation for smoothness
bound B = 300. Speedup factors refer to the full CHM variant.

global-k: Fix some 1 < k ≤ 2 and only check (r , s) with r < s < k · r
constant-range: Fix a range R and only check (r , s) for the R successors s
of r in each iteration

19

Optimisations

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance results for different variants of our CHM implementation for smoothness
bound B = 300. Speedup factors refer to the full CHM variant.

global-k: Fix some 1 < k ≤ 2 and only check (r , s) with r < s < k · r
constant-range: Fix a range R and only check (r , s) for the R successors s
of r in each iteration

19

Optimisations

Variant Parameter Runtime Speedup #twins #twins from largest 100
Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86
global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65
R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87
R = 1000 16s 294 2074530 75

Table 1: Performance results for different variants of our CHM implementation for smoothness
bound B = 300. Speedup factors refer to the full CHM variant.

global-k: Fix some 1 < k ≤ 2 and only check (r , s) with r < s < k · r
constant-range: Fix a range R and only check (r , s) for the R successors s
of r in each iteration

19

Our experiments

We ran these optimisations for larger B

CHM was run with B = 1300 using the constant-range optimisation
with a range R = 5000, specifically targeting twins (r , r + 1) with
r > 2115 - the largest twin found was the following 145-bit twins

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251
· 283 · 307 · 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Other experiments were done with B = 211

Unfortunately, choosing B large enough and running this to give you
cryptographic sized twins is infeasible due to time and memory limitations

20

Our experiments

We ran these optimisations for larger B

CHM was run with B = 1300 using the constant-range optimisation
with a range R = 5000, specifically targeting twins (r , r + 1) with
r > 2115 - the largest twin found was the following 145-bit twins

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251
· 283 · 307 · 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Other experiments were done with B = 211

Unfortunately, choosing B large enough and running this to give you
cryptographic sized twins is infeasible due to time and memory limitations

20

Our experiments

We ran these optimisations for larger B

CHM was run with B = 1300 using the constant-range optimisation
with a range R = 5000, specifically targeting twins (r , r + 1) with
r > 2115 - the largest twin found was the following 145-bit twins

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251
· 283 · 307 · 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Other experiments were done with B = 211

Unfortunately, choosing B large enough and running this to give you
cryptographic sized twins is infeasible due to time and memory limitations

20

Our experiments

We ran these optimisations for larger B

CHM was run with B = 1300 using the constant-range optimisation
with a range R = 5000, specifically targeting twins (r , r + 1) with
r > 2115 - the largest twin found was the following 145-bit twins

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251
· 283 · 307 · 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Other experiments were done with B = 211

Unfortunately, choosing B large enough and running this to give you
cryptographic sized twins is infeasible due to time and memory limitations

20

Our experiments

We ran these optimisations for larger B

CHM was run with B = 1300 using the constant-range optimisation
with a range R = 5000, specifically targeting twins (r , r + 1) with
r > 2115 - the largest twin found was the following 145-bit twins

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251
· 283 · 307 · 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Other experiments were done with B = 211

Unfortunately, choosing B large enough and running this to give you
cryptographic sized twins is infeasible due to time and memory limitations

20

Parameter Setup for SQISign

SQISign requirements

Setup
Cryptographic prime p (of ≈ 256, 384, 512-bits), such that

p2 − 1 = 2f · T · R,

where f is a “relatively” large exponent, T is an odd smooth cofactor
of size ≈ p5/4+ϵ and R can have rough factors

Remark: The necessity of the power of two can in theory be replaced by
a powersmooth integer L

If B is the smoothness bound of T , the quantity
√

B/f is a rough cost
metric for the signing algorithm in SQISign

21

SQISign requirements

Setup
Cryptographic prime p (of ≈ 256, 384, 512-bits), such that

p2 − 1 = 2f · T · R,

where f is a “relatively” large exponent, T is an odd smooth cofactor
of size ≈ p5/4+ϵ and R can have rough factors

Remark: The necessity of the power of two can in theory be replaced by
a powersmooth integer L

If B is the smoothness bound of T , the quantity
√

B/f is a rough cost
metric for the signing algorithm in SQISign

21

SQISign requirements

Setup
Cryptographic prime p (of ≈ 256, 384, 512-bits), such that

p2 − 1 = 2f · T · R,

where f is a “relatively” large exponent, T is an odd smooth cofactor
of size ≈ p5/4+ϵ and R can have rough factors

Remark: The necessity of the power of two can in theory be replaced by
a powersmooth integer L

If B is the smoothness bound of T , the quantity
√

B/f is a rough cost
metric for the signing algorithm in SQISign

21

SQISign requirements

Setup
Cryptographic prime p (of ≈ 256, 384, 512-bits), such that

p2 − 1 = 2f · T · R,

where f is a “relatively” large exponent, T is an odd smooth cofactor
of size ≈ p5/4+ϵ and R can have rough factors

Remark: The necessity of the power of two can in theory be replaced by
a powersmooth integer L

If B is the smoothness bound of T , the quantity
√

B/f is a rough cost
metric for the signing algorithm in SQISign

21

XGCD/CRT method for finding SQISign parameters

De Feo2, Kohel, Leroux2, Petit and Wesolowski2 (2020,2022) explored
the XGCD/CRT method to find SQISign friendly parameters

They forced

p ± 1 = 0 mod 2α,

p ∓ 1 = 0 mod 3β ,

p ± 1 = 0 mod q for small primes q,

p ∓ 1 = 0 mod q′ for other small primes q′

and used CRT to find p

With this technique, they found SQISign friendly primes whose smooth
cofactor T is 212-smooth

22

XGCD/CRT method for finding SQISign parameters

De Feo2, Kohel, Leroux2, Petit and Wesolowski2 (2020,2022) explored
the XGCD/CRT method to find SQISign friendly parameters

They forced

p ± 1 = 0 mod 2α,

p ∓ 1 = 0 mod 3β ,

p ± 1 = 0 mod q for small primes q,

p ∓ 1 = 0 mod q′ for other small primes q′

and used CRT to find p

With this technique, they found SQISign friendly primes whose smooth
cofactor T is 212-smooth

22

XGCD/CRT method for finding SQISign parameters

De Feo2, Kohel, Leroux2, Petit and Wesolowski2 (2020,2022) explored
the XGCD/CRT method to find SQISign friendly parameters

They forced

p ± 1 = 0 mod 2α,

p ∓ 1 = 0 mod 3β ,

p ± 1 = 0 mod q for small primes q,

p ∓ 1 = 0 mod q′ for other small primes q′

and used CRT to find p

With this technique, they found SQISign friendly primes whose smooth
cofactor T is 212-smooth

22

XGCD/CRT method for finding SQISign parameters

De Feo2, Kohel, Leroux2, Petit and Wesolowski2 (2020,2022) explored
the XGCD/CRT method to find SQISign friendly parameters

They forced

p ± 1 = 0 mod 2α,

p ∓ 1 = 0 mod 3β ,

p ± 1 = 0 mod q for small primes q,

p ∓ 1 = 0 mod q′ for other small primes q′

and used CRT to find p

With this technique, they found SQISign friendly primes whose smooth
cofactor T is 212-smooth

22

Exhaustive search using p4(x)

De Feo, Leroux and Wesolowski used the polynomial p4(x) = 2x4 − 1 to
attempt to find SQISign friendly primes. Note that in this setting we have

p4(x) − 1 = 2(x − 1)(x + 1)(x2 + 1)

Their idea is the following:

1. Replace3 x 7→ 215 · x in the polynomial p4

2. Sieve the interval x ∈ [247, 249] to identify 211-smooth integers
3. Compute the 211-smooth odd cofactor, T , of

x4(215x − 1)(215x + 1)(230x2 + 1)

4. Record it if T > p5/4+ϵ and the evaluation p is prime

They found 15 primes of this type
3This guarantees at least a factor of 261 in p + 1 after evaluation

23

Exhaustive search using p4(x)

De Feo, Leroux and Wesolowski used the polynomial p4(x) = 2x4 − 1 to
attempt to find SQISign friendly primes.

Note that in this setting we have

p4(x) − 1 = 2(x − 1)(x + 1)(x2 + 1)

Their idea is the following:

1. Replace3 x 7→ 215 · x in the polynomial p4

2. Sieve the interval x ∈ [247, 249] to identify 211-smooth integers
3. Compute the 211-smooth odd cofactor, T , of

x4(215x − 1)(215x + 1)(230x2 + 1)

4. Record it if T > p5/4+ϵ and the evaluation p is prime

They found 15 primes of this type
3This guarantees at least a factor of 261 in p + 1 after evaluation

23

Exhaustive search using p4(x)

De Feo, Leroux and Wesolowski used the polynomial p4(x) = 2x4 − 1 to
attempt to find SQISign friendly primes. Note that in this setting we have

p4(x) − 1 = 2(x − 1)(x + 1)(x2 + 1)

Their idea is the following:

1. Replace3 x 7→ 215 · x in the polynomial p4

2. Sieve the interval x ∈ [247, 249] to identify 211-smooth integers
3. Compute the 211-smooth odd cofactor, T , of

x4(215x − 1)(215x + 1)(230x2 + 1)

4. Record it if T > p5/4+ϵ and the evaluation p is prime

They found 15 primes of this type
3This guarantees at least a factor of 261 in p + 1 after evaluation

23

Exhaustive search using p4(x)

De Feo, Leroux and Wesolowski used the polynomial p4(x) = 2x4 − 1 to
attempt to find SQISign friendly primes. Note that in this setting we have

p4(x) − 1 = 2(x − 1)(x + 1)(x2 + 1)

Their idea is the following:

1. Replace3 x 7→ 215 · x in the polynomial p4

2. Sieve the interval x ∈ [247, 249] to identify 211-smooth integers
3. Compute the 211-smooth odd cofactor, T , of

x4(215x − 1)(215x + 1)(230x2 + 1)

4. Record it if T > p5/4+ϵ and the evaluation p is prime

They found 15 primes of this type

3This guarantees at least a factor of 261 in p + 1 after evaluation

23

Exhaustive search using p4(x)

De Feo, Leroux and Wesolowski used the polynomial p4(x) = 2x4 − 1 to
attempt to find SQISign friendly primes. Note that in this setting we have

p4(x) − 1 = 2(x − 1)(x + 1)(x2 + 1)

Their idea is the following:

1. Replace3 x 7→ 215 · x in the polynomial p4

2. Sieve the interval x ∈ [247, 249] to identify 211-smooth integers
3. Compute the 211-smooth odd cofactor, T , of

x4(215x − 1)(215x + 1)(230x2 + 1)

4. Record it if T > p5/4+ϵ and the evaluation p is prime

They found 15 primes of this type
3This guarantees at least a factor of 261 in p + 1 after evaluation

23

Comparison of their primes

254-bit prime p:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372

· 47 · 197 · 263 · 281 · 461
· 521 · 3923 · R, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157
· 239 · 271 · 283 · 307 · 563
· 599 · 607 · 619 · 743 · 827
· 941 · 2357 · 10069

256-bit prime p = p4(r) = 2r 4 − 1
with r = 215 · 411099446409699:

p + 1 = 261 · 34 · 314 · 1274 · 3074

· 3534 · 5094 · 6314

p − 1 = 2 · 52 · 13 · 17 · 29 · 37 · 41
· 103 · 109 · 149 · 191 · 269
· 313 · 367 · 379 · 503 · 587
· 683 · 1217 · 1487 · R

In practice, the first of these performs slightly better despite having a
larger signing cost metric - owing in large part to the large power of 3 but
also the amount of small smoothness4 is also larger

4A cofactor that is, say, 100-smooth

24

Comparison of their primes

254-bit prime p:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372

· 47 · 197 · 263 · 281 · 461
· 521 · 3923 · R, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157
· 239 · 271 · 283 · 307 · 563
· 599 · 607 · 619 · 743 · 827
· 941 · 2357 · 10069

256-bit prime p = p4(r) = 2r 4 − 1
with r = 215 · 411099446409699:

p + 1 = 261 · 34 · 314 · 1274 · 3074

· 3534 · 5094 · 6314

p − 1 = 2 · 52 · 13 · 17 · 29 · 37 · 41
· 103 · 109 · 149 · 191 · 269
· 313 · 367 · 379 · 503 · 587
· 683 · 1217 · 1487 · R

In practice, the first of these performs slightly better despite having a
larger signing cost metric - owing in large part to the large power of 3 but
also the amount of small smoothness4 is also larger

4A cofactor that is, say, 100-smooth

24

Comparison of their primes

254-bit prime p:

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372

· 47 · 197 · 263 · 281 · 461
· 521 · 3923 · R, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157
· 239 · 271 · 283 · 307 · 563
· 599 · 607 · 619 · 743 · 827
· 941 · 2357 · 10069

256-bit prime p = p4(r) = 2r 4 − 1
with r = 215 · 411099446409699:

p + 1 = 261 · 34 · 314 · 1274 · 3074

· 3534 · 5094 · 6314

p − 1 = 2 · 52 · 13 · 17 · 29 · 37 · 41
· 103 · 109 · 149 · 191 · 269
· 313 · 367 · 379 · 503 · 587
· 683 · 1217 · 1487 · R

In practice, the first of these performs slightly better despite having a
larger signing cost metric - owing in large part to the large power of 3 but
also the amount of small smoothness4 is also larger

4A cofactor that is, say, 100-smooth

24

Other primes in the literature

In the context of other isogeny-based applications, larger primes have
been found for which p ± 1 is smooth

As part of the parameter search for Séta by De Feo et al. (2021), they
found the following SQISign friendly parameter

389-bit prime p = p12(r) = 2r12 − 1 with r = 5114946480:

p + 1 = 249 · 312 · 512 · 712 · 7312 · 17912 · 23312, and
p − 1 = 2 · 13 · 97 · 379 · 661 · 853 · 1693 · 2767 · 3121 · 4297 · 8623

· 8629 · 17929 · 21937 · 31327 · R

This could be used in theory but we find better more applicable primes

25

Other primes in the literature

In the context of other isogeny-based applications, larger primes have
been found for which p ± 1 is smooth

As part of the parameter search for Séta by De Feo et al. (2021), they
found the following SQISign friendly parameter

389-bit prime p = p12(r) = 2r12 − 1 with r = 5114946480:

p + 1 = 249 · 312 · 512 · 712 · 7312 · 17912 · 23312, and
p − 1 = 2 · 13 · 97 · 379 · 661 · 853 · 1693 · 2767 · 3121 · 4297 · 8623

· 8629 · 17929 · 21937 · 31327 · R

This could be used in theory but we find better more applicable primes

25

Other primes in the literature

In the context of other isogeny-based applications, larger primes have
been found for which p ± 1 is smooth

As part of the parameter search for Séta by De Feo et al. (2021), they
found the following SQISign friendly parameter

389-bit prime p = p12(r) = 2r12 − 1 with r = 5114946480:

p + 1 = 249 · 312 · 512 · 712 · 7312 · 17912 · 23312, and
p − 1 = 2 · 13 · 97 · 379 · 661 · 853 · 1693 · 2767 · 3121 · 4297 · 8623

· 8629 · 17929 · 21937 · 31327 · R

This could be used in theory but we find better more applicable primes

25

Other primes in the literature

In the context of other isogeny-based applications, larger primes have
been found for which p ± 1 is smooth

As part of the parameter search for Séta by De Feo et al. (2021), they
found the following SQISign friendly parameter

389-bit prime p = p12(r) = 2r12 − 1 with r = 5114946480:

p + 1 = 249 · 312 · 512 · 712 · 7312 · 17912 · 23312, and
p − 1 = 2 · 13 · 97 · 379 · 661 · 853 · 1693 · 2767 · 3121 · 4297 · 8623

· 8629 · 17929 · 21937 · 31327 · R

This could be used in theory but we find better more applicable primes

25

Our Method

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1
The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1
The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1

The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1
The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1
The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

General framework

For the polynomials pn(x) = 2xn − 1, we have

4xn(x − 1) | p2
n(x) − 1 for all n, and

4xn(x − 1)(x + 1) | p2
n(x) − 1 when n is even

So, for a smooth twin (r , r ± 1) found using the CHM machinery, we
compute the evaluation

p = pn(r) = 2rn − 1
The amount of guaranteed smoothness in p2 − 1 is ≈ p1+1/n

Depending on the choice of n and the power of two in p2 − 1, this might
not necessarily give us something that is suitable for SQISign

If so then compute the other smooth factors of p2 − 1 and check to see if
the combined cofactor is larger than p5/4+ϵ

26

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The smaller n is, we get more guaranteed smoothness from the twin.
This comes at a cost of finding larger twins

n = 2: For a smooth twin (r , r ± 1), let p = 2r2 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)

The amount of guaranteed smoothness from the twin alone is p3/2

If the power of two in p2 − 1 is less than ⌊log2(p1/4)⌋ then we have
enough smoothness for a SQISign parameter

27

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 3: For a smooth twin (r , r − 1), let p = 2r3 − 1. Here we have

p − 1 = 2(r − 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p4/3

If the power of two in p2 − 1 is less than ⌊log2(p1/20)⌋ then we have
enough smoothness for a SQISign parameter

Obtaining a smooth factor of size ≈ p3/2 would require that us to hope
that there is a smooth factor of size ≈ p1/6 in the factor r2 + r + 1

One can estimate the probability of this happening using a result by
Banks and Shaparlinski (2006)

28

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

n = 4: For a smooth twin (r , r ± 1), let p = 2r4 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 + 1)

The amount of guaranteed smoothness from the twin alone is p5/4

No matter what the power of two is, we have no choice but to check for
smooth factors of (r ∓ 1)(r2 + 1)

Estimating the probability of this is a little non-trivial to do since we are
given some “factoring structure”

We give a worst case probability

29

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The larger n is, the more smoothness we require from the other factor(s)

n = 6: For a smooth twin (r , r ± 1), let p = 2r6 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p7/6

Here we exploit the multiple factors, (r ∓ 1)(r2 − r + 1)(r2 + r + 1), to
give a better chance of finding enough smoothness for SQISign
parameters

30

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The larger n is, the more smoothness we require from the other factor(s)

n = 6: For a smooth twin (r , r ± 1), let p = 2r6 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p7/6

Here we exploit the multiple factors, (r ∓ 1)(r2 − r + 1)(r2 + r + 1), to
give a better chance of finding enough smoothness for SQISign
parameters

30

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The larger n is, the more smoothness we require from the other factor(s)

n = 6: For a smooth twin (r , r ± 1), let p = 2r6 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p7/6

Here we exploit the multiple factors, (r ∓ 1)(r2 − r + 1)(r2 + r + 1), to
give a better chance of finding enough smoothness for SQISign
parameters

30

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The larger n is, the more smoothness we require from the other factor(s)

n = 6: For a smooth twin (r , r ± 1), let p = 2r6 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p7/6

Here we exploit the multiple factors, (r ∓ 1)(r2 − r + 1)(r2 + r + 1), to
give a better chance of finding enough smoothness for SQISign
parameters

30

Choosing n

Let T ′ = 2f T . Current implementation of SQISign has f ≈ ⌊log2(p1/4)⌋
which translates to T ′ ≈ p3/2+ϵ

The larger n is, the more smoothness we require from the other factor(s)

n = 6: For a smooth twin (r , r ± 1), let p = 2r6 − 1. Here we have

p − 1 = 2(r − 1)(r + 1)(r2 − r + 1)(r2 + r + 1)

The amount of guaranteed smoothness from the twin alone is p7/6

Here we exploit the multiple factors, (r ∓ 1)(r2 − r + 1)(r2 + r + 1), to
give a better chance of finding enough smoothness for SQISign
parameters

30

Requirements and smoothness probabilities in each case

n log(r)
Probability of B-smooth

(r , r ± 1)

Probability of p2 − 1
log T ′-bits B-smooth given

(r , r ± 1) twin smooth

Extra Smoothness
Needed

NIST-I
B = 29

log p = 256
log T ′ = 384

2 ≈ 127.5 2−58.5 1 0
3 ≈ 85.0 2−32.1 2−12.1 42
4 ≈ 63.75 2−20.5 ≈ 2−22.4 63.25
6 ≈ 42.5 2−10.4 ≈ 2−32.2 84.5

NIST-III
B = 214

log p = 384
log T ′ = 576

2 ≈ 191.5 2−55.7 1 0
3 ≈ 127.67 2−30.5 2−11.7 63.33
4 ≈ 95.75 2−19.4 ≈ 2−15.7 95.25
6 ≈ 63.83 2−9.7 ≈ 2−19.2 127.17

NIST-V
B = 217

log p = 512
log T ′ = 768

2 ≈ 255.5 2−63.7 1 0
3 ≈ 170.33 2−35.2 2−13.5 84.67
4 ≈ 127.75 2−22.6 ≈ 2−18.2 127.25
6 ≈ 85.17 2−11.5 ≈ 2−22.5 169.83

Table 2: Assuming that (r , r ± 1) are twin smooth integers and p has log p bits, calculates the
probability of having a B-smooth divisor T ′ | p2 − 1 of size ≈ p3/2.

31

Practical SQISign Results

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

243-bit prime p = 2r2 − 1 with r=2091023014142971802357816084152713216:

p + 1 = 249 · 34 · 72 · 112 · 312 · 412 · 472 · 672 · 1512 · 1732 · 1932 · 2232

· 3072 · 3172 · 4632 · 8872, and
p − 1 = 2 · 5 · 132 · 19 · 29 · 53 · 61 · 113 · 211 · 311 · 337 · 479 · 599 · 691

· 739 · 773 · 811 · 1277 · 9910061678402709963781118882240347

255-bit prime p = 2r3 − 1 with r = 26606682403634464748953600:

p + 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and
p − 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311

· 397 · 547 · R

32

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

243-bit prime p = 2r2 − 1 with r=2091023014142971802357816084152713216:

p + 1 = 249 · 34 · 72 · 112 · 312 · 412 · 472 · 672 · 1512 · 1732 · 1932 · 2232

· 3072 · 3172 · 4632 · 8872, and
p − 1 = 2 · 5 · 132 · 19 · 29 · 53 · 61 · 113 · 211 · 311 · 337 · 479 · 599 · 691

· 739 · 773 · 811 · 1277 · 9910061678402709963781118882240347

255-bit prime p = 2r3 − 1 with r = 26606682403634464748953600:

p + 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and
p − 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311

· 397 · 547 · R

32

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

243-bit prime p = 2r2 − 1 with r=2091023014142971802357816084152713216:

p + 1 = 249 · 34 · 72 · 112 · 312 · 412 · 472 · 672 · 1512 · 1732 · 1932 · 2232

· 3072 · 3172 · 4632 · 8872, and
p − 1 = 2 · 5 · 132 · 19 · 29 · 53 · 61 · 113 · 211 · 311 · 337 · 479 · 599 · 691

· 739 · 773 · 811 · 1277 · 9910061678402709963781118882240347

255-bit prime p = 2r3 − 1 with r = 26606682403634464748953600:

p + 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and
p − 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311

· 397 · 547 · R

32

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

243-bit prime p = 2r2 − 1 with r=2091023014142971802357816084152713216:

p + 1 = 249 · 34 · 72 · 112 · 312 · 412 · 472 · 672 · 1512 · 1732 · 1932 · 2232

· 3072 · 3172 · 4632 · 8872, and
p − 1 = 2 · 5 · 132 · 19 · 29 · 53 · 61 · 113 · 211 · 311 · 337 · 479 · 599 · 691

· 739 · 773 · 811 · 1277 · 9910061678402709963781118882240347

255-bit prime p = 2r3 − 1 with r = 26606682403634464748953600:

p + 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and
p − 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311

· 397 · 547 · R

32

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

253-bit prime p = 2r4 − 1 with r = 8077251317941145600:

p + 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and
p − 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313

· 347 · 397 · 467 · 479 · R

Remarks:

• This prime is out of scope for De Feo, Leroux and Wesolowski to
find since they “maximised” the power of two in p + 1

• No conclusions should be made about how these primes compare to
the state-of-the-art without an implementation

33

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

253-bit prime p = 2r4 − 1 with r = 8077251317941145600:

p + 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and
p − 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313

· 347 · 397 · 467 · 479 · R

Remarks:

• This prime is out of scope for De Feo, Leroux and Wesolowski to
find since they “maximised” the power of two in p + 1

• No conclusions should be made about how these primes compare to
the state-of-the-art without an implementation

33

NIST-I parameters

We used n = 2, 3, 4 to find a collection of 256-bit SQISign friendly primes

253-bit prime p = 2r4 − 1 with r = 8077251317941145600:

p + 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and
p − 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313

· 347 · 397 · 467 · 479 · R

Remarks:

• This prime is out of scope for De Feo, Leroux and Wesolowski to
find since they “maximised” the power of two in p + 1

• No conclusions should be made about how these primes compare to
the state-of-the-art without an implementation

33

NIST-III parameters

We used n = 3, 4, 6 to find a collection of 384-bit SQISign friendly primes

375-bit prime p = 2r4 − 1 with r = 12326212283367463507272925184:

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914

· 13194, and
p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283

· 353 · 419 · 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · R

382-bit prime p = 2r6 − 1 with r = 11896643388662145024:

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and
p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349

· 449 · 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119
· 10243 · R

34

NIST-III parameters

We used n = 3, 4, 6 to find a collection of 384-bit SQISign friendly primes

375-bit prime p = 2r4 − 1 with r = 12326212283367463507272925184:

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914

· 13194, and
p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283

· 353 · 419 · 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · R

382-bit prime p = 2r6 − 1 with r = 11896643388662145024:

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and
p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349

· 449 · 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119
· 10243 · R

34

NIST-III parameters

We used n = 3, 4, 6 to find a collection of 384-bit SQISign friendly primes

375-bit prime p = 2r4 − 1 with r = 12326212283367463507272925184:

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914

· 13194, and
p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283

· 353 · 419 · 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · R

382-bit prime p = 2r6 − 1 with r = 11896643388662145024:

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and
p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349

· 449 · 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119
· 10243 · R

34

NIST-III parameters

We used n = 3, 4, 6 to find a collection of 384-bit SQISign friendly primes

375-bit prime p = 2r4 − 1 with r = 12326212283367463507272925184:

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914

· 13194, and
p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283

· 353 · 419 · 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · R

382-bit prime p = 2r6 − 1 with r = 11896643388662145024:

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and
p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349

· 449 · 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119
· 10243 · R

34

NIST-V parameters

We used n = 4, 6 to find a collection of 512-bit SQISign friendly primes

499-bit prime p = 2r6 − 1 with r = 9469787780580604464332800:

p + 1 = 2109 · 512 · 712 · 136 · 616 · 1796 · 2816 · 3796 · 13676 · 14276, and
p − 1 = 2 · 33 · 19 · 233 · 31 · 432 · 73 · 139 · 337 · 461 · 641 · 971 · 1069

· 1097 · 5843 · 12841 · 23671 · 39667 · 51193 · 75223 · 459317
· 703981 · R

508-bit prime p = 2r6 − 1 with r = 26697973900446483680608256:

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and
p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277

· 347 · 617 · 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139
· 143443 · 150151 · R

35

NIST-V parameters

We used n = 4, 6 to find a collection of 512-bit SQISign friendly primes

499-bit prime p = 2r6 − 1 with r = 9469787780580604464332800:

p + 1 = 2109 · 512 · 712 · 136 · 616 · 1796 · 2816 · 3796 · 13676 · 14276, and
p − 1 = 2 · 33 · 19 · 233 · 31 · 432 · 73 · 139 · 337 · 461 · 641 · 971 · 1069

· 1097 · 5843 · 12841 · 23671 · 39667 · 51193 · 75223 · 459317
· 703981 · R

508-bit prime p = 2r6 − 1 with r = 26697973900446483680608256:

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and
p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277

· 347 · 617 · 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139
· 143443 · 150151 · R

35

NIST-V parameters

We used n = 4, 6 to find a collection of 512-bit SQISign friendly primes

499-bit prime p = 2r6 − 1 with r = 9469787780580604464332800:

p + 1 = 2109 · 512 · 712 · 136 · 616 · 1796 · 2816 · 3796 · 13676 · 14276, and
p − 1 = 2 · 33 · 19 · 233 · 31 · 432 · 73 · 139 · 337 · 461 · 641 · 971 · 1069

· 1097 · 5843 · 12841 · 23671 · 39667 · 51193 · 75223 · 459317
· 703981 · R

508-bit prime p = 2r6 − 1 with r = 26697973900446483680608256:

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and
p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277

· 347 · 617 · 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139
· 143443 · 150151 · R

35

NIST-V parameters

We used n = 4, 6 to find a collection of 512-bit SQISign friendly primes

499-bit prime p = 2r6 − 1 with r = 9469787780580604464332800:

p + 1 = 2109 · 512 · 712 · 136 · 616 · 1796 · 2816 · 3796 · 13676 · 14276, and
p − 1 = 2 · 33 · 19 · 233 · 31 · 432 · 73 · 139 · 337 · 461 · 641 · 971 · 1069

· 1097 · 5843 · 12841 · 23671 · 39667 · 51193 · 75223 · 459317
· 703981 · R

508-bit prime p = 2r6 − 1 with r = 26697973900446483680608256:

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and
p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277

· 347 · 617 · 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139
· 143443 · 150151 · R

35

Table of primes

NIST security
level

n r ⌈log2(p)⌉ f B
√

B/f logp(T)

NIST-I

2 1211460311716772790566574529001291776
2091023014142971802357816084152713216

241
243

49
49

1091
887

0.67
0.61

1.28
1.28

3

3474272816789867297357824
10227318375788227199589376
21611736033260878876800000
20461449125500374748856320
26606682403634464748953600

246
251
254
254
255

43
31
31
46
40

547
383
421
523
547

0.54
0.63
0.66
0.50
0.58

1.29
1.31
1.28
1.26
1.28

4
1466873880764125184
8077251317941145600

34848218231355211776∗

243
253
261

49
49
77

701
479
2311

0.54
0.45
0.62

1.28
1.30
1.30

NIST-III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4

5139734876262390964070873088
12326212283367463507272925184
18080754980295452456023326720
27464400309146790228660255744

370
375
377
379

45
77
61
41

11789
55967
95569
13127

2.41
3.07
5.07
2.79

1.26
1.31
1.26
1.29

6
2628583629218279424
5417690118774595584
11896643388662145024

369
375
382

73
79
79

13219
58153
10243

1.58
3.05
1.28

1.27
1.27
1.30

NIST-V

4 114216781548581709439512875801279791104∗

123794274387474298912742543819242587136∗
507
508

65
41

75941
15263

4.24
3.01

1.26
1.29

6

9469787780580604464332800
12233468605740686007808000
26697973900446483680608256
31929740427944870006521856
41340248200900819056793600

499
502
508
510
512

109
73
85
91
67

703981
376963
150151
550657
224911

7.70
8.41
4.56
8.15
7.08

1.25
1.28
1.26
1.25
1.28

Table 3: A table of SQISign parameters p = pn(r) found using twin-smooth integers (r , r ± 1) at
each security level. The f is the power of two dividing (p2 − 1)/2 and B is the smoothness bound
of the odd cofactor T ≈ p5/4+ϵ. The r marked with an asterisk correspond to primes p not found
using the CHM machinery.

36

Smooth Twins from XGCD over
Polynomial Rings

Probabilistic methods for finding smooth twins

Integer world Polynomial world

?
Näıve method
XGCD/CRT

pn(x) = 2xn − 1
Ideal PTE solutions

Is there something that can bind these methods together?

37

Probabilistic methods for finding smooth twins

Integer world Polynomial world

?
Näıve method
XGCD/CRT

pn(x) = 2xn − 1
Ideal PTE solutions

Is there something that can bind these methods together?

37

Probabilistic methods for finding smooth twins

Integer world Polynomial world

?
Näıve method
XGCD/CRT

pn(x) = 2xn − 1
Ideal PTE solutions

Is there something that can bind these methods together?

37

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth
5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth

5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth

5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth

5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth

5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth

5These points are not strictly necessary but they help the smoothness probabilities

38

Smooth Twins from XGCD over Q[x]

Choose two polynomials, F , G ∈ Z[x], that split completely into linear
factors and the number of distinct roots of F · G is small5

Use the XGCD algorithm over Q[x] to find two polynomials S, T ∈ Q[x]
such that

FS + GT ≡ 1

Then the polynomials F̂ := F · S and Ĝ := −G · T differ by 1

For simplicity, assume that F̂ and Ĝ have a positive leading coefficient
and that S, T ∈ Z[x]

Sieve an interval of integers, r , such that r − a is smooth for each root,
a, in F · G

Then (F̂ (r), Ĝ(r)) generates a smooth twin if and only if S(r)T (r) is
smooth
5These points are not strictly necessary but they help the smoothness probabilities

38

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

• Computing the XGCD of F (x) = xn and G(x) = x − 1 results in the
polynomials

S(x) = 1, and T (x) = −xn−1 − · · · − x − 1

Hence we get F̂ (x) = xn and Ĝ(x) = xn − 1

• The generalisation of the method using ideal PTE solutions is technical
but is of a similar vein

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

• Computing the XGCD of F (x) = xn and G(x) = x − 1 results in the
polynomials

S(x) = 1, and T (x) = −xn−1 − · · · − x − 1

Hence we get F̂ (x) = xn and Ĝ(x) = xn − 1

• The generalisation of the method using ideal PTE solutions is technical
but is of a similar vein

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

• Computing the XGCD of F (x) = xn and G(x) = x − 1 results in the
polynomials

S(x) = 1, and T (x) = −xn−1 − · · · − x − 1

Hence we get F̂ (x) = xn and Ĝ(x) = xn − 1

• The generalisation of the method using ideal PTE solutions is technical
but is of a similar vein

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

Realising the generalisation

This naturally generalises the integer-based XGCD method but also
generalises the polynomial techniques:

• Computing the XGCD of F (x) = xn and G(x) = x − 1 results in the
polynomials

S(x) = 1, and T (x) = −xn−1 − · · · − x − 1

Hence we get F̂ (x) = xn and Ĝ(x) = xn − 1

• The generalisation of the method using ideal PTE solutions is technical
but is of a similar vein

We can reverse the latter remark - i.e. use XGCD over Q[x] as a tool to
find ideal PTE solutions

In fact, we were able to find a completely new class of ideal size 4 PTE
solutions that haven’t appeared in the literature or any known database

39

New ideal PTE solutions of size 4

a b c d e a b c d e a b c d e
17 5 35 27 32 6620 1940 13289 10985 11664 22572 6660 47545 35152 44217
86 26 221 125 216 6830 2210 53261 9261 53240 22715 6755 50759 34295 48384
171 51 391 256 375 7398 2250 20125 10648 19773 23579 7619 176039 32000 175959
243 75 775 343 768 7749 2289 16459 12000 15379 26010 8070 88501 36501 87880
524 164 2009 729 2000 8021 2561 43931 10976 43875 26672 8720 314465 35937 314432
594 174 1189 1000 1029 8987 2915 76055 12167 76032 28170 8790 103429 39304 102885
605 185 1739 864 1715 10269 3129 28459 14739 28000 29358 8610 59245 48013 52728
965 305 4331 1331 4320 11556 3756 105481 15625 105456 31160 9320 72929 46305 70304
1463 455 5135 2048 5103 12015 3855 73759 16384 73695 31437 10185 255595 42592 255507
1602 510 8245 2197 8232 12386 3806 37541 17576 37125 31841 10421 396611 42875 396576
1790 530 3869 2744 3645 13076 3836 26441 21296 23625 33561 10461 121411 46875 120736
2471 791 14351 3375 14336 14472 4440 43105 20577 42592 33885 9945 68731 54880 61731
2628 780 5785 3993 5488 14573 4745 142715 19683 142688 34047 10335 90895 49152 89167
2889 909 12019 4000 11979 15930 4710 34069 24565 31944 35684 10604 79289 54000 75449
3608 1160 23345 4913 23328 17153 5525 116675 23328 116603 37638 12330 493885 50653 493848
3735 1095 7519 6144 6655 18074 5894 189029 24389 189000 39542 12410 158045 54872 157437
3962 1190 9605 5832 9317 19214 5954 64349 27000 63869 40871 13271 359471 55296 359375
4455 1335 10591 6591 10240 20195 5915 40391 34391 34560 41445 12465 101659 60835 98784
5027 1595 24215 6912 24167 22095 7215 245791 29791 245760 44099 14459 608039 59319 608000
5049 1629 36019 6859 36000 22473 6765 55555 32928 54043

Table 4: List of all inequivalent and normalised sized 4 ideal PTE solutions of the form
[0, a, a, c] =3 [b, b, d, e] with 0 < b < a < 50000 and c, d, e > 0.

40

Strategy for finding SQISign primes

The idea is to replace the polynomials pn(x) with other polynomials
pi,j(x) such that

x i(x + 1)j | p2
i,j(x) − 1, with i , j ≥ 2, i ̸= j and deg(pi,j) < i + j

To do this, we compute the XGCD of Fi(x) = x i and Gj(x) = (x + 1)j ,
which gives us

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

41

Strategy for finding SQISign primes

The idea is to replace the polynomials pn(x) with other polynomials
pi,j(x) such that

x i(x + 1)j | p2
i,j(x) − 1, with i , j ≥ 2, i ̸= j and deg(pi,j) < i + j

To do this, we compute the XGCD of Fi(x) = x i and Gj(x) = (x + 1)j ,
which gives us

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

41

Strategy for finding SQISign primes

The idea is to replace the polynomials pn(x) with other polynomials
pi,j(x) such that

x i(x + 1)j | p2
i,j(x) − 1, with i , j ≥ 2, i ̸= j and deg(pi,j) < i + j

To do this, we compute the XGCD of Fi(x) = x i and Gj(x) = (x + 1)j ,
which gives us

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

41

Strategy for finding SQISign primes

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

Then we set

pi,j(x) := (−1)i (
x iSi,j(x) − (x + 1)jTi,j(x)

)
= (−1)i (

2x iSi,j(x) − 1
)

= (−1)i+1 (
2(x + 1)jTi,j(x) + 1

)
Note that deg(pi,j) = i + j − 1 < i + j and, by the uniqueness of XGCD,
no other polynomials exists whose degree is smaller than this one

42

Strategy for finding SQISign primes

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

Then we set

pi,j(x) := (−1)i (
x iSi,j(x) − (x + 1)jTi,j(x)

)
= (−1)i (

2x iSi,j(x) − 1
)

= (−1)i+1 (
2(x + 1)jTi,j(x) + 1

)

Note that deg(pi,j) = i + j − 1 < i + j and, by the uniqueness of XGCD,
no other polynomials exists whose degree is smaller than this one

42

Strategy for finding SQISign primes

Si,j(x) = (−1)i
j−1∑
k=0

(
i + k − 1

k

)
(x + 1)k

Ti,j(x) =
i−1∑
k=0

(−1)k
(

j + k − 1
k

)
xk

Then we set

pi,j(x) := (−1)i (
x iSi,j(x) − (x + 1)jTi,j(x)

)
= (−1)i (

2x iSi,j(x) − 1
)

= (−1)i+1 (
2(x + 1)jTi,j(x) + 1

)
Note that deg(pi,j) = i + j − 1 < i + j and, by the uniqueness of XGCD,
no other polynomials exists whose degree is smaller than this one

42

Strategy for finding SQISign primes

For instance when i , j ∈ {2, 3} with i ̸= j , we have

p2,3(x) = 6x4 + 16x3 + 12x2 − 1
p3,2(x) = 6x4 + 8x3 + 1

We can adopt the same strategy as before, namely take a smooth twin
(r , r + 1) and compute the evaluation

p = pi,j(r)

and see whether it is a suitable SQISign parameter

We limit ourselves to small i , j ≥ 2 since the polynomials Si,j , Ti,j are
irreducible6 for small i , j ≥ 2

6Moreover, we conjecture that these polynomials are irreducible for all i , j ≥ 2

43

Strategy for finding SQISign primes

For instance when i , j ∈ {2, 3} with i ̸= j , we have

p2,3(x) = 6x4 + 16x3 + 12x2 − 1
p3,2(x) = 6x4 + 8x3 + 1

We can adopt the same strategy as before, namely take a smooth twin
(r , r + 1) and compute the evaluation

p = pi,j(r)

and see whether it is a suitable SQISign parameter

We limit ourselves to small i , j ≥ 2 since the polynomials Si,j , Ti,j are
irreducible6 for small i , j ≥ 2

6Moreover, we conjecture that these polynomials are irreducible for all i , j ≥ 2

43

Strategy for finding SQISign primes

For instance when i , j ∈ {2, 3} with i ̸= j , we have

p2,3(x) = 6x4 + 16x3 + 12x2 − 1
p3,2(x) = 6x4 + 8x3 + 1

We can adopt the same strategy as before, namely take a smooth twin
(r , r + 1) and compute the evaluation

p = pi,j(r)

and see whether it is a suitable SQISign parameter

We limit ourselves to small i , j ≥ 2 since the polynomials Si,j , Ti,j are
irreducible6 for small i , j ≥ 2

6Moreover, we conjecture that these polynomials are irreducible for all i , j ≥ 2

43

Strategy for finding SQISign primes

For instance when i , j ∈ {2, 3} with i ̸= j , we have

p2,3(x) = 6x4 + 16x3 + 12x2 − 1
p3,2(x) = 6x4 + 8x3 + 1

We can adopt the same strategy as before, namely take a smooth twin
(r , r + 1) and compute the evaluation

p = pi,j(r)

and see whether it is a suitable SQISign parameter

We limit ourselves to small i , j ≥ 2 since the polynomials Si,j , Ti,j are
irreducible6 for small i , j ≥ 2

6Moreover, we conjecture that these polynomials are irreducible for all i , j ≥ 2

43

Practical Results

255-bit prime p = p3,2(r) with r = 5964933197580566528:

p + 1 = 2 · 35 · 19 · 312 · 372 · 67 · 832 · 892 · 1132 · 1574 · 1732 · 233
· 4872 · 641 · R, and

p − 1 = 248 · 113 · 292 · 473 · 533 · 79 · 1313 · 3313 · 3493 · 4393

· 691 · R ′

382-bit prime p = p3,2(r) with r = 24412952691406071260714369024:

p + 1 = 2 · 37 · 710 · 196 · 672 · 131 · 2412 · 3132 · 3792 · 641 · 8832

· 11032 · 11172 · 2689 · 11177 · R, and
p − 1 = 266 · 5 · 133 · 173 · 233 · 413 · 593 · 613 · 836 · 127 · 389 · 4913

· 7873 · 983 · 15493 · R ′

44

Concluding Remarks

Concluding Remarks

CHM Polynomials pn,pi,j−−−−−−−−−−−−−−→ SQISign
Parameters

The general strategies deployed to find these primes can be applied in
future applications

45

Concluding Remarks

We have explored novel methods
for finding these twins:

• In isogeny-based cryptography
(CHM);

• Within their own right (XGCD
over Q[x])

CHM Polynomials pn,pi,j−−−−−−−−−−−−−−→ SQISign
Parameters

The general strategies deployed to find these primes can be applied in
future applications

45

Concluding Remarks

We have explored novel methods
for finding these twins:

• In isogeny-based cryptography
(CHM);

• Within their own right (XGCD
over Q[x])

CHM Polynomials pn,pi,j−−−−−−−−−−−−−−→ SQISign
Parameters

The general strategies deployed to find these primes can be applied in
future applications

45

Concluding Remarks

We have explored novel methods
for finding these twins:

• In isogeny-based cryptography
(CHM);

• Within their own right (XGCD
over Q[x])

CHM Polynomials pn,pi,j−−−−−−−−−−−−−−→ SQISign
Parameters

The general strategies deployed to find these primes can be applied in
future applications

45

Concluding Remarks

We have explored novel methods
for finding these twins:

• In isogeny-based cryptography
(CHM);

• Within their own right (XGCD
over Q[x])

CHM Polynomials pn,pi,j−−−−−−−−−−−−−−→ SQISign
Parameters

The general strategies deployed to find these primes can be applied in
future applications

45

Merci pour votre attention
Questions?

ia.cr/2022/1439

45

https://eprint.iacr.org/2022/1439

	Finding Twin-Smooth Integers
	CHM Algorithm
	Parameter Setup for SQISign
	Our Method
	Practical SQISign Results
	Smooth Twins from XGCD over Polynomial Rings
	Concluding Remarks

