Bell Theorem and its generalizations

Marc-Olivier Renou Junior Professor Chair INRIA Paris Saclay Computer Science Laboratory / Center for Theoretical Physics Ecole Polytechnique

Overview

Single state quantum correlations

Overview

Causal network quantum correlations

Overview

Single state quantum correlations

Bell theorem

the Bell theorem is not about quantum theory

Bell's theorem 1964

Bell theorem:

Quantum theory predictions incompatible with 'a natural notion of locality'

Main ingredient:

'classical physics correlations ≠ quantum correlations

Experimentalist (e.g., Aspect)

Experimentalist (e.g., Aspect)

• Master Quantum theory

Detective (e.g., Einstein)

• Believes in some 'classical principles':

Experimentalist (e.g., Aspect)

• Master Quantum theory

Detective (e.g., Einstein)

Believes in some 'classical principles':
 ➢ One can apply the logical "<u>or</u>" on unknown information

Experimentalist (e.g., Aspect)

• Master Quantum theory

- Believes in some 'classical principles':
 ➢ One can apply the logical "<u>or</u>" on unknown information
 - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light

Experimentalist (e.g., Aspect)

Master Quantum theory

Construct a concrete experiement

- Believes in some 'classical principles': > One can apply the logical "or" on unknown information

 - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light

Experimentalist (e.g., Aspect)

Master Quantum theory

Construct a concrete experiement

 Obtains concrete experiemental results P(a, b|x, y) such that CHSH = $2\sqrt{2}$ i.e. $p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

- Believes in some 'classical principles': > One can apply the logical "or" on unknown information
 - - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light

Experimentalist (e.g., Aspect)

• Master Quantum theory

Construct a concrete experiement

• Obtains concrete experiemental results P(a, b | x, y) such that CHSH = $2\sqrt{2}$ i. e. $p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

- Believes in some 'classical principles':
 > One can apply the logical "or" on unknown information
 - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.

Experimentalist (e.g., Aspect)

• Master Quantum theory

Construct a concrete experiement

• Obtains concrete experiemental results P(a, b | x, y) such that CHSH = $2\sqrt{2}$ i. e. $p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

Detective (e.g., Einstein)

- Believes in some 'classical principles':
 > One can apply the logical "or" on unknown information
 - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.

Fails: is restricted to CHSH ≤ 2 i. e. $p(a \oplus b = x \cdot y) \leq 0.75$

Experimentalist (e.g., Aspect)

• Master Quantum theory

Construct a concrete experiement

• Obtains concrete experiemental results P(a, b | x, y) such that CHSH = $2\sqrt{2}$ i. e. $p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

Detective (e.g., Einstein)

- Believes in some 'classical principles':
 > One can apply the logical "<u>or</u>" on unknown information
 - If a box contains unkown information, this information « takes the value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$ »
 - Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.

Fails: is restricted to CHSH ≤ 2 i. e. $p(a \oplus b = x \cdot y) \leq 0.75$

Bell Theorem [1964, 1969]: Proof of the failure of the detective

The CHSH experiment

as observed by the detective

can select a measurement 0 or 1 at random and obtain a result 0 or 1

The CHSH experiment

as observed by the detective

Alice, in Bordeaux

Bob, in Saclay

They do it many time, to accumulate statistics

CHSH game

Game

- Many test N >> 1 of the device, in different rounds
 i = 1, ..., N, with uniformly random inputs x⁽ⁱ⁾, y⁽ⁱ⁾, outputs a⁽ⁱ⁾, b⁽ⁱ⁾
- Accumulation of statistics

i	x ⁽ⁱ⁾	a ⁽ⁱ⁾	y ^(<i>i</i>)	b ⁽ⁱ⁾	
1	1	0	0	0	
2	0	1	0	1	
3	0	0	0	0	
4	1	0	1	1	
5	0	1	1	0	
6	1	1	0	1	
7	1	1	1	1	
8	1	0	0	0	

CHSH game

i	$x^{(i)}$	a ⁽ⁱ⁾	y ^(<i>i</i>)	b ⁽ⁱ⁾	S ⁽ⁱ⁾
1	1	0	0	0	1
2	0	1	0	1	1
3	0	0	0	0	1
4	1	0	1	1	1
5	0	1	1	0	0
6	1	1	0	1	1
7	1	1	1	1	0
8	1	0	0	0	1

Game

- Many test N >> 1 of the device, in different rounds *i* = 1, ..., N, with uniformly random inputs x⁽ⁱ⁾, y⁽ⁱ⁾, outputs a⁽ⁱ⁾, b⁽ⁱ⁾
- Accumulation of statistics
- Score at round *i*:

o If a ⊕ b = x · y : S⁽ⁱ⁾ = 1
o If a ⊕ b ≠ x · y : S⁽ⁱ⁾ = 0

CHSH game

i	x ^(<i>i</i>)	a ⁽ⁱ⁾	y ^(<i>i</i>)	b ⁽ⁱ⁾	S ⁽ⁱ⁾
1	1	0	0	0	1
2	0	1	0	1	1
3	0	0	0	0	1
4	1	0	1	1	1
5	0	1	1	0	0
6	1	1	0	1	1
7	1	1	1	1	0
8	1	0	0	0	1

Game

- Many test N >> 1 of the device, in different rounds *i* = 1, ..., N, with uniformly random inputs x⁽ⁱ⁾, y⁽ⁱ⁾, outputs a⁽ⁱ⁾, b⁽ⁱ⁾
- Accumulation of statistics
- Score at round *i*:

o If a ⊕ b = x · y : S⁽ⁱ⁾ = 1
o If a ⊕ b ≠ x · y : S⁽ⁱ⁾ = 0

• Mean score:

$$\langle S \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i} S^{(i)} = p(a \oplus b = x \cdot y)$$

CHSH game

i	x ^(<i>i</i>)	a ⁽ⁱ⁾	y ^(<i>i</i>)	b ⁽ⁱ⁾	S ⁽ⁱ⁾
1	1	0	0	0	1
2	0	1	0	1	1
3	0	0	0	0	1
4	1	0	1	1	1
5	0	1	1	0	0
6	1	1	0	1	1
7	1	1	1	1	0
8	1	0	0	0	1

Game

- Many test N >> 1 of the device, in different rounds *i* = 1, ..., N, with uniformly random inputs x⁽ⁱ⁾, y⁽ⁱ⁾, outputs a⁽ⁱ⁾, b⁽ⁱ⁾
- Accumulation of statistics
- Score at round *i*:

o If a ⊕ b = x · y : S⁽ⁱ⁾ = 1
o If a ⊕ b ≠ x · y : S⁽ⁱ⁾ = 0

• Mean score:

$$\langle S \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i} S^{(i)} = p(a \oplus b = x \cdot y)$$

The detective sees $p(a \oplus b = x \cdot y) \approx 0.85$

CHSH game

i	x ^(<i>i</i>)	a ⁽ⁱ⁾	y ^(<i>i</i>)	b ⁽ⁱ⁾	S ⁽ⁱ⁾
1	1	0	0	0	1
2	0	1	0	1	1
3	0	0	0	0	1
4	1	0	1	1	1
5	0	1	1	0	0
6	1	1	0	1	1
7	1	1	1	1	0
8	1	0	0	0	1

Game

- Many test N >> 1 of the device, in different rounds *i* = 1, ..., N, with uniformly random inputs x⁽ⁱ⁾, y⁽ⁱ⁾, outputs a⁽ⁱ⁾, b⁽ⁱ⁾
- Accumulation of statistics
- Score at round *i*:

o If a ⊕ b = x · y : S⁽ⁱ⁾ = 1
o If a ⊕ b ≠ x · y : S⁽ⁱ⁾ = 0

- Mean score: $\langle S \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i} S^{(i)} = p(a \oplus b = x \cdot y)$
- The detective sees $p(a \oplus b = x \cdot y) \approx 0.85$ $\Leftrightarrow \text{CHSH} \equiv \langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle$ $= 2\sqrt{2}$

The CHSH experiment

as observed by the detective

Alice, in Bordeaux

Bob, in Saclay

Correlated behavior: o If x = y = 1: $p(a = b) < p(a \neq b)$ o If not: $p(a = b) > p(a \neq b)$

$$p(a \oplus b = x \cdot y) \approx 0.85$$

The CHSH experiment

as observed by the detective

Alice, in Bordeaux

Bob, in Saclay

Correlated behavior:
 \circ If x = y = 1:
 $p(a = b) < p(a \neq b)$ $p(a \oplus b = x \cdot y) \approx 0.85$ \circ If not:
 $p(a = b) > p(a \neq b)$ $p(a \oplus b = x \cdot y) \approx 0.85$

> **Detective's question**: Where does it come from?

Only two possibilities:

Only two possibilities:

Only two possibilities:

Influence

Common cause

Only two possibilities:

Common cause

Space-like separation = Distance + Synchronization + no faster than light communications = **No-Signalling Hypothesis**

Only two possibilities:

Common cause

The experimentalist **agrees** with deduction: for him, it is $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$

Space-like separation = Distance + Synchronisation = No-Signalling Hypothesis

Only two possibilities:

Space-like separation = Distance + Synchronisation = No-Signalling Hypothesis

Common cause

- The experimentalist **agrees** with deduction: for him, it is $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$
- For the detective, the detectors might not use the photons.

Only two possibilities:

Space-like separation = Distance + Synchronisation = No-Signalling Hypothesis

Common cause

- The experimentalist **agrees** with deduction: for him, it is $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$
- For the detective, the detectors might not use the photons.
 - Could be seismic vibrations, cosmic rays, ... Whatever it is, this is the « Common Cause ».

The CHSH experiment

as observed by the detective

Local strategies $x \in \{0,1\}$ $A \circ + \circ B$ $a \in \{0,1\}$ $b \in \{0,1\}$ $b \in \{0,1\}$

Local Hidden Variable model

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

• Two carriers of information **travel contiguously** from source to parties

Local Hidden Variable model

- Two carriers of information **travel contiguously** from source to parties
- Each party measures one of the two

The experimentalist **does not agree** with this second detective deduction In $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

- Two carriers of information **travel contiguously** from source to parties
- Each party measures one of the two
 - > λ : carried information. It takes value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$: shared randomness distributed as $d\lambda$

The experimentalist **does not agree** with this second detective deduction In $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

- Two carriers of information **travel contiguously** from source to parties
- Each party measures one of the two
 - > λ : carried information. It takes value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$: shared randomness distributed as $d\lambda$
 - $\succ a$ is a function of x, λ
 - \succ **b** is a function of **y**, λ

CHSH inequality The detective model: LHV model

The experimentalist **does not agree** with this second detective deduction In $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information **travel contiguously** from source to parties
- Each party measures one of the two
 - > λ : carried information. It takes value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$: shared randomness distributed as $d\lambda$
 - $\succ a$ is a function of x, λ
 - $\succ b$ is a function of y, λ
 - $\succ p(ab|xy) = \int d\lambda p(a|x\lambda)p(b|y\lambda)$

CHSH inequality The detective model: LHV model

The experimentalist **does not agree** with this second detective deduction In $|\psi^+\rangle = (|0\rangle_A |1\rangle_B + |1\rangle_A |0\rangle_B)/\sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information **travel contiguously** from source to parties
- Each party measures one of the two
 - > λ : carried information. It takes value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$: shared randomness distributed as $d\lambda$
 - $\succ a$ is a function of x, λ
 - $\succ b$ is a function of y, λ
 - $\succ p(ab|xy) = \int d\lambda p(a|x\lambda)p(b|y\lambda)$

Bell Theorem [CHSH]:

1. For any LHV model λ :

$$S = p(a \oplus b = x \cdot y) \leq \frac{3}{4} = 0.75$$

CHSH inequality The detective model: LHV model

PROOF (1.):

- p(ab|xy) is a linear superposition of deterministic strategies
- Deterministic strategies have $S \leq \frac{3}{4}$
- $S = p(a \oplus b = x \cdot y)$ is a linear score

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

• Two carriers of information **travel contiguously** from source to parties

• Each party measures one of the two

- > λ : carried information. It takes value $\lambda_1 \text{ or } \lambda_2 \text{ or } \dots$: shared randomness distributed as $d\lambda$
- $\succ a$ is a function of x, λ
- $\succ b$ is a function of y, λ
- $\succ p(ab|xy) = \int d\lambda p(a|x\lambda)p(b|y\lambda)$

Bell Theorem [CHSH]:

1. For any LHV model λ :

$$S = p(a \oplus b = x \cdot y) \leq \frac{3}{4} = 0.75$$

Quantum strategy

Quantum strategy

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}$, $B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Quantum strategy

Quantum strategy

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}$, $B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Bell Theorem [CHSH, 1964, 1969]:

. For any LHV model
$$\lambda$$
:
 $S = p(a \oplus b = x \cdot y) \le \frac{3}{4} = 0.75$

2. For some quantum strategy:

$$S = p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

Quantum strategy

PROOF (2.):

- $|\phi\rangle = |\psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$
- Alice measures σ_Z, σ_X
- Bob measures $\frac{\sigma_X \pm \sigma_Z}{\sqrt{2}}$

Quantum strategy

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}, B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Bell Theorem [CHSH, 1964, 1969]:

- 1. For any LHV model λ : $S = p(a \oplus b = x \cdot y) \le \frac{3}{4} = 0.75$
- 2. <u>For some quantum strategy:</u>

$$S = p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

PROOF (2.) [for the detective]:

Look at the experiment, **no need to understand quantum theory!**

Bell theorem is 'not about' quantum theory

Quantum strategy

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}$, $B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Bell Theorem [CHSH, 1964, 1969]:

For any LHV model
$$\lambda$$
:
 $S = p(a \oplus b = x \cdot y) \le \frac{3}{4} = 0.75$

2. For some quantum strategy:

$$S = p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

PROOF (2.) [for the detective] :

Look at the experiment, no need to understand quantum theory!

- Bell theorem is 'not about' quantum theory
- > Bell theorem is about any theory of physics explaining operational observations

Quantum strategy

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}, B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Bell Theorem [CHSH, 1964, 1969]:

- 1. For any LHV model λ : $S = p(a \oplus b = x \cdot y) \le \frac{3}{4} = 0.75$
- 2. For some quantum strategy:

$$S = p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

PROOF (2.) [for the detective] :

Look at the experiment, **no need to understand quantum theory!**

- Bell theorem is 'not about' quantum theory
- > Bell theorem **is about** any theory of physics explaining **operational observations**
- Such theory must be *more crazy* than any crazy explanation compatible with the classical principles

Quantum strategy

1.

- The parties share a quantum state $| oldsymbol{\phi}
 angle$
- They have measurement operators $A_{a|x}$, $B_{b|y}$
- The observation probabilities are: $p(ab|xy) = \langle \phi | A_{a|x} \otimes B_{b|y} | \phi \rangle$

Bell Theorem [CHSH, 1964, 1969]:

- **For any LHV model \lambda:** $S = p(a \oplus b = x \cdot y) \le \frac{3}{4} = 0.75$
- 2. For some quantum strategy:

$$S = p(a \oplus b = x \cdot y) = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$$

Overview

Single state quantum correlations

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021 Any theory of physics explaining operational observations:

- Is Nonlocal
- Is Contextual
- Does not allow cloning of information
- Is non determinist

Aspect experiment 1981

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021

Commercial Quantum Random Number Generator

Any theory of physics explaining operational observations:

- Is Nonlocal
- Is Contextual
- Does not allow cloning of information
- Is non determinist

Applications :

Can be certified *Device Independently*, from the observed correlations only, <u>even if an adversary controls the</u> <u>devices</u>

Nonlocality

DI certification of quantum devices (2003)

• No cloning

DI quantum key distribution (2007)

- Non determinist
 - DI quantum random number generation (2010)

Aspect experiment 1981

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021

Commercial Quantum Random Number Generator

Any theory of physics explaining operational observations:

- Is Nonlocal
- Is Contextual
- Does not allow cloning of information
- Is non determinist

Applications :

Can be certified *Device Independently*, from the observed correlations only, <u>even if an adversary controls the</u> <u>devices</u>

• Nonlocality

DI certification of quantum devices (2003)

• No cloning

DI quantum key distribution (2007)

- Non determinist
 - DI quantum random number generation (2010)

Aspect experiment 1981

What is a cloner?

• Causal process with an information carrier traveling

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
 - Process duplicated after the cloner

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
 - Process duplicated after the cloner
 - if one is ignored, we are back to the initial situation

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
 - Process duplicated after the cloner
 - if one is ignored, we are back to the initial situation

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
 - Process duplicated after the cloner
 - if one is ignored, we are back to the initial situation

According to Quantum Theory

Does not exist

$|\phi\rangle_A \circ \rightarrow U \xrightarrow{\rightarrow \circ} \rho_{A_1A_2}$

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
 - Process duplicated after the cloner
 - if one is ignored, we are back to the initial situation

According to Quantum Theory

Does not exist

According to an other 'reasonable theory'

- Cannot exist!
- Consequence of Bell theorem

 $P(a \oplus b = x \cdot y) \approx 0.85$

Proof by contradiction

• Start from the CHSH game

 $P(a \oplus b = x \cdot y) \approx 0.85$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning

 $P(a \oplus b = x \cdot y) \approx 0.85$

Proof by contradiction

- Start from the CHSH game
- Assume **some 'reasonable' theory of physics** explains it and **allows for cloning**
- Insert the cloner:
 - obtain $P(a, b_1, b_2 | x, y_1, y_2)$
 - such that $P(a \oplus b_1 = x \cdot y_1) \approx 0.85$, $P(a \oplus b_2 = x \cdot y_2) \approx 0.85$

 $x \in \{0,1\}$ $A \longrightarrow E$ $a \in \{0,1\}$ $y_1 \in \{0,1\}$ $b_1 \in \{0,1\}$ $y_2 \in \{0,1\}$ $b_2 \in \{0,1\}$

 $P(a \oplus b = x \cdot y) = \mathbf{1}$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
 - obtain $P(a, b_1, b_2 | x, y_1, y_2)$
 - such that $P(a \oplus b_1 = x \cdot y_1) = \mathbf{1}$, $P(a \oplus b_2 = x \cdot y_2) = \mathbf{1}$

Simplification of the proof $0.\,85 \rightarrow 1$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
 - obtain $P(a, b_1, b_2 | x, y_1, y_2)$
 - such that $P(a \oplus b_1 = x \cdot y_1) = \mathbf{1}$, $P(a \oplus b_2 = x \cdot y_2) = \mathbf{1}$

Simplification of the proof $0.\,85 \rightarrow 1$

• Place B_1, B_2 in a same location:

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
 - obtain $P(a, b_1, b_2 | x, y_1, y_2)$
 - such that $P(a \oplus b_1 = x \cdot y_1) = \mathbf{1}$, $P(a \oplus b_2 = x \cdot y_2) = \mathbf{1}$

Simplification of the proof $0.\,85 \rightarrow 1$

- Place B_1, B_2 in a same location:
 - take $y_1 = 0, y_2 = 1$

We have: $a \oplus b_1 = x \cdot y_1 = x \cdot 0 = 0$

- Assume some 'reasonable' theory of physics explains it and
 - such that $P(a \oplus b_1 = x \cdot y_1) = \mathbf{1}$, $P(a \oplus b_2 = x \cdot y_2) = \mathbf{1}$

• take $y_1 = 0, y_2 = 1$, output $\beta := b_1 \oplus b_2$

We have:

 $a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0; b_1 = a$ $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x; b_1 = a \bigoplus x$

We have:

 $a \oplus b_1 = x \cdot y_1 = x \cdot 0 = 0$: $b_1 = a$ $a \oplus b_2 = x \cdot y_2 = x \cdot 1 = x$: $b_1 = a \oplus x$ Hence $\beta = b_1 \oplus b_2 = a \oplus a \oplus x = x$

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and
 - obtain $P(a, b_1, b_2 | x, y_1, y_2)$
 - such that $P(a \oplus b_1 = x \cdot y_1) = \mathbf{1}$, $P(a \oplus b_2 = x \cdot y_2) = \mathbf{1}$

- Place B_1, B_2 in a same location:
 - take $y_1 = 0, y_2 = 1$, output $\beta := b_1 \oplus b_2$

We have:

 $a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0$: $b_1 = a$ $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x$: $b_1 = a \bigoplus x$ Hence $\beta = b_1 \bigoplus b_2 = a \bigoplus a \bigoplus x = x$

We have:

 $a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0$: $b_1 = a$ $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x$: $b_1 = a \bigoplus x$ Hence $\beta = b_1 \bigoplus b_2 = a \bigoplus a \bigoplus x = x$

We have:

 $a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0$: $b_1 = a$ $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x$: $b_1 = a \bigoplus x$ Hence $\beta = b_1 \bigoplus b_2 = a \bigoplus a \bigoplus x = x$

We have:

$$a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0$$
: $b_1 = a$
 $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x$: $b_1 = a \bigoplus x$
Hence $\beta = b_1 \bigoplus b_2 = a \bigoplus a \bigoplus x = x$

\succ ' ϵ signalling' is already not reasonable as can be amplified

We have:

 $a \bigoplus b_1 = x \cdot y_1 = x \cdot 0 = 0; b_1 = a$ $a \bigoplus b_2 = x \cdot y_2 = x \cdot 1 = x; b_1 = a \bigoplus x$ Hence $\beta = b_1 \bigoplus b_2 = a \bigoplus a \bigoplus x = x$

As soon as CHSH > 2, the proof holds: no 'reasonable' theory of physics with cloning can explain any CHSH violation

'\u03c6 signalling' is already not reasonable as can be amplified

Device independence General idea

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...
Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices: Quantum Randomness / Quantum Cryptography / ...

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices: Quantum Randomness / Quantum Cryptography / ...

Proofs valid under very weak hypothesis:

- X Trusted sources / measurements
- X Trusted Quantum Theory

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices: Quantum Randomness / Quantum Cryptography / ...

Proofs valid under very weak hypothesis:

- X Trusted sources / measurements
- X Trusted Quantum Theory (except some applications)

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices: Quantum Randomness / Quantum Cryptography / ...

Proofs valid under very weak hypothesis:

- X Trusted sources / measurements
- X Trusted Quantum Theory (except some applications)
- ✓ No Signalling
- ✓ No super-determinism

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game
- ➢Corollaries of Bell theorem : No!

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game
- ➢Corollaries of Bell theorem : No!

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game
- ➢Corollaries of Bell theorem : No!

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game
- ➤Corollaries of Bell theorem : No!

- Quantum theory has many 'not intuitive', 'nonclassical' properties
 - Entanglement
 - Intrinsic randomness
 - No cloning of information
 - ...
- Can we imagine a future theory which:
 - Does not have these 'unpleasant' properties
 - Is consistent with the CHSH game
- ➤Corollaries of Bell theorem : No!

- Quantum Key Distribution (QKD)
 - BB84 protocol

- Quantum Key Distribution (QKD)
 - BB84 protocol
 - > A, B agree on a key, proven to be private

- Quantum Key Distribution (QKD)
 - BB84 protocol
 - > A, B agree on a key, proven to be private
 - > Assumptions:
 - perfect single photon sources
 - Perfect polarization measurements

- BB84 protocol
 - ➤ A, B agree on a key, proven to be private
 - > Assumptions:
 - perfect single photon sources
 - Perfect polarization measurements
- Bell theorem : DI QKD

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
 - BB84 protocol
 - > A, B agree on a key, proven to be private
 - > Assumptions:
 - perfect single photon sources
 - Perfect polarization measurements
- Bell theorem : DI QKD
 - Assuming quantum theory

<u>Theorem</u>: If for $x, y \in \{0, 1\}$, $P(a \oplus b = x \cdot y) \approx 0.85$, then for x = 0, y = 2: a = 1 - b shared, secret.

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
 - BB84 protocol
 - > A, B agree on a key, proven to be private
 - > Assumptions:
 - perfect single photon sources
 - Perfect polarization measurements
- Bell theorem : DI QKD
 - Assuming quantum theory

<u>Theorem</u>: If for $x, y \in \{0, 1\}$, $P(a \oplus b = x \cdot y) \approx 0.85$, then for x = 0, y = 2: a = 1 - b shared, secret.

'Device Independent' certification of quantum key distribution

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
 - BB84 protocol
 - ➤ A, B agree on a key, proven to be private
 - > Assumptions:
 - perfect single photon sources
 - Perfect polarization measurements
- Bell theorem : DI QKD
 - Assuming quantum theory

<u>Theorem</u>: If for $x, y \in \{0, 1\}$, $P(a \oplus b = x \cdot y) \approx 0.85$, then for x = 0, y = 2: a = 1 - b shared, secret.

• 2022: First two experimental realisation 1st expt: 95628 key bits in 8 hours, 2m distance 2nd expt: Only valid in 'infinit running time', 700m

Overview

Causal network quantum correlations

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network

Can they win a concrete game, e.g.

 $p(a \oplus b \oplus c = x \cdot y \cdot z) > 0.7$, with classical/quantum theory?

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network

Can they win a concrete game, e.g. $p(a \oplus b \oplus c = x \cdot y \cdot z) > 0.7$, with classical/quantum theory?

(Quantum) distributed computing structure:

Several processors exchange information (e.g., synchronisation, limited number of communications steps). Can they find a proper coloring, that is $a \neq b, ..., e \neq a$, with 1 synchronised communication step and classical/quantum theory?

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network

Can they win a concrete game, e.g. $p(a \oplus b \oplus c = x \cdot y \cdot z) > 0.7$, with classical/quantum theory?

(Quantum) distributed computing structure:

Several processors exchange information (e.g., synchronisation, limited number of communications steps). Can they find a proper coloring, that is $a \neq b, ..., e \neq a$, with 1 synchronised communication step and classical/quantum theory?

(Quantum) causal structure:

Causal structure involving hidden sources and non-hidden causes

Genuine triangle nonlocality

measurements ≻ Give *P* Genuine nonlocality in the triangle network (2019)

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022)
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022)
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements \triangleright Give **P** Genuine nonlocality in the triangle network (2019)

- Goal:
- Find quantum experiment with statistics P

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022)
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022)
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements \triangleright Give **P**

 $\forall \lambda, \mu, \nu$ and processing

Cannot give **P**

Genuine nonlocality in the triangle network (2019)

• Goal:

- Find quantum experiment with statistics P
- Such that a classical detective cannot explain it

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022)
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022)
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

 \geq

Genuine triangle nonlocality

Concrete ρ , σ , τ and measurements \triangleright Give **P**

 $\forall \lambda, \mu, \nu \text{ and processing}$ \succ Cannot give **P**

Genuine nonlocality in the triangle network (2019)

• Goal:

- Find quantum experiment with statistics P
- Such that a classical detective cannot explain it
- Generalisation to other networks

Method fundamentally different from standard Bell arguments

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022)
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022)
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements \triangleright Give **P**

 $\forall \lambda, \mu, \nu$ and processing > Cannot give **P**

Genuine nonlocality in the triangle network (2019)

• Goal:

- Find quantum experiment with statistics P
- Such that a classical detective cannot explain it
- Generalisation to other networks

> Method fundamentally different from standard Bell arguments

This allows new applications: « certify randomness without inputs »

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022)
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022)
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)
P. Sekatski, S. Boreiri, N. Brunner, arXiv:2209.09921 (2022)

 \mathbb{R} -QT can be experimentally ruled out

Experimentalist

Detective

• Master standard Quantum Theory

• Believes in **ℝ**-**QT**

 \mathbb{R} -QT can be experimentally ruled out

Experimentalist

• Master standard Quantum Theory

1 Particle *S*

 $(i)_{\mathbb{C}}$ <u>State</u>: operator $ho_{S} \geqslant 0$ of \mathbb{C} -Hilbert Space \mathcal{H}_{S} with $\mathrm{Tr}(
ho_{S}) = 1$

(*ii*) <u>Measurement</u>: operators $M = \{M_r\} \in \mathcal{H}_S, M_r \ge 0, M_r^2 = M_r, \sum_r M_r = \text{Id}$

(*iii*) <u>Born rule</u>: result r has probability $P(r) = \text{Tr}(\rho_S \cdot M_r)$

2 Particles {S, T}

(*iv*) <u>Hilbert space</u>: $\mathcal{H}_{ST} = \mathcal{H}_S \otimes \mathcal{H}_T$. Independent preparations of ρ_S , σ_T : State $\rho_{ST} = \rho_S \otimes \sigma_T$

Detective

• Believes in **R-QT**

1 Particle S

 $(i)_{\mathbb{R}}$ <u>State</u>: operator $\rho_{S} \ge 0$ of \mathbb{R} -Hilbert Space \mathcal{H}_{S} with $\operatorname{Tr}(\rho_{S}) = 1$

(*ii*) <u>Measurement</u>: operators $M = \{M_r\} \in \mathcal{H}_S, M_r \ge 0, M_r^2 = M_r, \sum_r M_r = \text{Id}$

(*iii*) <u>Born rule</u>: result r has probability $P(r) = \text{Tr}(\rho_s \cdot M_r)$

2 Particles {S, T}

(iv) <u>Hilbert space</u>: $\mathcal{H}_{ST} = \mathcal{H}_S \otimes \mathcal{H}_T$.

Independent preparations of ρ_S , σ_T : State $\rho_{ST} = \rho_S \otimes \sigma_T$

 \mathbb{R} -QT can be experimentally ruled out

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiment

• Obtains experimental results (statistics)

 $P(abc|xz): \quad \begin{cases} CHSH^{b}(1,2;1,2) = 2\sqrt{2} \\ CHSH^{b}(2,3;3,4) = 2\sqrt{2} \\ CHSH^{b}(3,1;5,6) = 2\sqrt{2} \end{cases}$

Detective

Believes in ℝ-QT

 \mathbb{R} -QT can be experimentally ruled out

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiment

• Obtains experimental results (statistics)

 $P(abc|xz): \quad \begin{cases} CHSH^{b}(1,2;1,2) = 2\sqrt{2} \\ CHSH^{b}(2,3;3,4) = 2\sqrt{2} \\ CHSH^{b}(3,1;5,6) = 2\sqrt{2} \end{cases}$

Detective

- Believes in **R-QT**
- Tries to explain these experimental results results. Any 'crazy' explanation compatible with ℝ-QT is possible.

Applications

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

Detective

 Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 Accepts bipartite « crazy » sources and shared
 - Accepts bipartite « crazy » sources and shared randomness

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

 $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Involves tripartite (and n-partite) entangled sources

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 - Accepts bipartite « crazy » sources and shared randomness

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

 $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Involves tripartite (and n-partite) entangled sources

Detective

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 - Accepts bipartite « crazy » sources and shared randomness

• However, would like to keep this craziness of low degree:

Rejects tripartite (or more) « crazy » sources

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

 $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Involves tripartite (and n-partite) entangled sources

Detective

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 - Accepts bipartite « crazy » sources and shared randomness

However, would like to keep this craziness of low degree:

Rejects tripartite (or more) « crazy » sources

> The foundations of QT: is tripartite entanglement really needed?

Important question for:

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

 $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Involves tripartite (and n-partite) entangled sources

Detective

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 - Accepts bipartite « crazy » sources and shared randomness

However, would like to keep this craziness of low degree:

Rejects tripartite (or more) « crazy » sources

The foundations of QT: is tripartite entanglement really needed?
 Important question for: > Applications of QT: Can I do more with tripartite entanglement, what?

Bipartite exotic sources are not enough

Experimentalist

• Master standard Quantum Theory

Involves bipartite entangled sources

 $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Involves tripartite (and n-partite) entangled sources

Detective

- Accept<u>ed</u> that only "<u>more crazy theory</u> than any crazy explanation compatible with classical physics"
 - Accepts bipartite « crazy » sources and shared randomness

• However, would like to keep this craziness of low degree:

Rejects tripartite (or more) « crazy » sources

► The foundations of QT: is tripartite entanglement really needed?
 ► Applications of QT: Can I do more with tripartite entanglement, what?
 ► Benchmark Q systems: How to prove « I can produce tripartite entanglement »? 117

Bipartite exotic sources are not enough

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

• Obtains experimental results (statistics)

$$\begin{split} \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle &= 2, \\ \langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} - \langle A_1 B_1 \rangle^{|C_1=1} &= 2\sqrt{2} \end{split}$$

Bipartite exotic sources are not enough

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
- $$\begin{split} \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle &= 2, \\ \langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} \langle A_1 B_1 \rangle^{|C_1=1} &= 2\sqrt{2} \end{split}$$

Detective

Bipartite exotic sources are not enough

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
- $\langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle = 2,$ $\langle A_0 B_0 \rangle^{|C_1 = 1} + \langle A_0 B_1 \rangle^{|C_1 = 1} + \langle A_1 B_0 \rangle^{|C_1 = 1} - \langle A_1 B_1 \rangle^{|C_1 = 1} = 2\sqrt{2}$

Detective

- If the crazy sources satisfy causality and can be duplicated in independent copies:
 - Detective explanation must fails

State certification: "self-testing"

• Observation: CHSH = $2\sqrt{2}$

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

State certification: "self-testing"

• Observation: CHSH = $2\sqrt{2}$

> This certifies that the quantum state $|\psi^+\rangle = \frac{|0\rangle|1\rangle+|1\rangle|0\rangle}{\sqrt{2}}$ was produced

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

State certification: "self-testing"

- Observation: CHSH = $2\sqrt{2}$
- > This certifies that the quantum state $|\psi^+\rangle = \frac{|0\rangle|1\rangle + |1\rangle|0\rangle}{\sqrt{2}}$ was produced

Open question: is there an operational way to test all pure states?

State certification: "self-testing"

- Observation: CHSH = $2\sqrt{2}$
- > This certifies that the quantum state $|\psi^+\rangle = \frac{|0\rangle|1\rangle+|1\rangle|0\rangle}{\sqrt{2}}$ was produced

Open question: is there an operational way to test all pure states?

> Answer: yes, considering network correlations

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

• Obtains experimental results (statistics)

$$\begin{split} \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle &= 2, \\ \langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} - \langle A_1 B_1 \rangle^{|C_1=1} &= 2\sqrt{2} \end{split}$$

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
- $$\begin{split} \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle &= 2, \\ \langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} \langle A_1 B_1 \rangle^{|C_1=1} &= 2\sqrt{2} \end{split}$$

Detective

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
- $\langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle = 2,$ $\langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} - \langle A_1 B_1 \rangle^{|C_1=1} = 2\sqrt{2}$

Detective

- If the crazy sources satisfy causality and can be duplicated in independent copies:
 - Do Inflation

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
- $$\begin{split} \langle A_0 B_2 \rangle + \langle B_2 C_0 \rangle &= 2, \\ \langle A_0 B_0 \rangle^{|C_1=1} + \langle A_0 B_1 \rangle^{|C_1=1} + \langle A_1 B_0 \rangle^{|C_1=1} \langle A_1 B_1 \rangle^{|C_1=1} &= 2\sqrt{2} \end{split}$$

Detective

- If the crazy sources satisfy causality and can be duplicated in independent copies:
 - Do Inflation
 - Detective explaination must fails

Causal network quantum correlations

Foundations: ongoing and future goals

 $(Y+Z)/\sqrt{2}$

Reconstruct QIT from its correlations?

- Bell theorem excludes LHV models
- \mathbb{R} quantum theory excluded
- Generalised bipartite entanglement excluded

Foundations: ongoing and future goals

Classical physics

 \mathbb{R} – quantum theory

Generalised bipartite entanglement

...

Reconstruct QIT from its correlations?

- Bell theorem excludes LHV models
- \mathbb{R} quantum theory excluded
- Generalised bipartite entanglement excluded
- Exclude more ?
- Characterise Quantum Information Theory from its correlations?

More?