Bell Theorem and its generalizations

Grace Seminar

Overview

Single state quantum correlations

Overview

Causal network quantum correlations

Characterisation

Overview

Single state quantum correlations

Bell theorem

the Bell theorem is not about quantum theory

Bell's theorem 1964

Bell theorem:

Quantum theory predictions incompatible with 'a natural notion of locality'

Main ingredient:
'classical physics correlations \neq quantum correlations

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

Detective (e.g., Einstein)

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

- Master Quantum theory

Detective (e.g., Einstein)

- Believes in some 'classical principles':

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

- Master Quantum theory

Detective (e.g., Einstein)

- Believes in some 'classical principles': $>$ One can apply the logical "or" on unknown information

If a box contains unkown information, this information « takes the value λ_{1} or $\boldsymbol{\lambda}_{2}$ or ... »

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

- Master Quantum theory

Detective (e.g., Einstein)

- Believes in some 'classical principles': $>$ One can apply the logical "or" on unknown information

If a box contains unkown information, this information «takes the value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{2}$ or ... »
$>$ Information carriers do not travel faster than light

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

Detective (e.g., Einstein)

- Master Quantum theory
- Construct a concrete experiement

\qquad

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

Detective (e.g., Einstein)

- Master Quantum theory
- Construct a concrete experiement

- Obtains concrete experiemental results
$>\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{y})$ such that $\mathrm{CHSH}=2 \sqrt{2}$
i. e. $p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$
- Believes in some 'classical principles': > One can apply the logical "or" on unknown information

If a box contains unkown information, this information «takes the value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{2}$ or ... »
$>$ Information carriers do not travel faster than light

Bell theorem: 'with the eyes of a detective'

Experimentalist (e.g., Aspect)

Detective (e.g., Einstein)

- Master Quantum theory
- Construct a concrete experiement

- Obtains concrete experiemental results
$>\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{y})$ such that $\mathrm{CHSH}=2 \sqrt{2}$
i. e. $p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$
- Believes in some 'classical principles': $>$ One can apply the logical "or" on unknown information
\square If a box contains unkown information, this information « takes the value λ_{1} or $\boldsymbol{\lambda}_{2}$ or ... »
$>$ Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.

Bell theorem: 'with the eyes of a detective'

Detective (e.g., Einstein)

- Master Quantum theory
- Construct a concrete experiement

- Obtains concrete experiemental results
$>\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{y})$ such that $\mathrm{CHSH}=2 \sqrt{2}$
i. e. $p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$
- Believes in some 'classical principles': > One can apply the logical "or" on unknown information
\square If a box contains unkown information, this information « takes the value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{2}$ or ... »
$>$ Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.
$>$ Fails: is restricted to $\mathbf{C H S H} \leq \mathbf{2}$
i. e. $\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}) \leq \mathbf{0 . 7 5}$
$\left|\psi^{+}\right\rangle=\left(|0\rangle_{A}|1\rangle_{B}+|1\rangle_{A}|0\rangle_{B}\right) / \sqrt{2}$

Bell theorem: 'with the eyes of a detective'

Detective (e.g., Einstein)

- Master Quantum theory
- Construct a concrete experiement

- Obtains concrete experiemental results
$>P(a, b \mid x, y)$ such that CHSH $=2 \sqrt{2}$
i. e. $p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$
- Believes in some 'classical principles': > One can apply the logical "or" on unknown information
\square If a box contains unkown information, this information « takes the value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{2}$ or ... »
$>$ Information carriers do not travel faster than light
- Tries to explain these observed experimental results. 'Any far-fetched explanation' is allowed.
$>$ Fails: is restricted to $\mathbf{C H S H} \leq \mathbf{2}$
i. e. $\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}) \leq \mathbf{0 . 7 5}$

The CHSH experiment

Alice, in Bordeaux

and
Bob, in Saclay

can select a measurement 0 or 1 at random and obtain a result 0 or 1

The CHSH experiment

Alice, in Bordeaux

Bob, in Saclay

They do it many time, to accumulate statistics

CHSH inequality

CHSH game

Alice, in Bordeaux

Bob, in Saclay

Game

- Many test $\boldsymbol{N} \gg \mathbf{1}$ of the device, in different rounds $\boldsymbol{i}=\mathbf{1}, \ldots, N$, with uniformly random inputs $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, outputs $\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}$
- Accumulation of statistics

\boldsymbol{i}	$\boldsymbol{x}^{(\boldsymbol{i})}$	$\boldsymbol{a}^{(i)}$	$\boldsymbol{y}^{(\boldsymbol{i})}$	$\boldsymbol{b}^{(\boldsymbol{i})}$	
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
4	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
5	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
6	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
7	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
8	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	

CHSH inequality

CHSH game

Alice, in Bordeaux

Bob, in Saclay

Game

- Many test $\boldsymbol{N} \gg \mathbf{1}$ of the device, in different rounds $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{N}$, with uniformly random inputs $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, outputs $\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}$
- Accumulation of statistics
- Score at round i :
- If $\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{1}$

○ If $\boldsymbol{a} \oplus \boldsymbol{b} \neq \boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{0}$

CHSH inequality

CHSH game

Alice, in Bordeaux

Bob, in Saclay

\boldsymbol{i}	$\boldsymbol{x}^{(\boldsymbol{i})}$	$\boldsymbol{a}^{(i)}$	$\boldsymbol{y}^{(i)}$	$\boldsymbol{b}^{(i)}$	$\boldsymbol{S}^{(\boldsymbol{i})}$
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
4	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
5	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
6	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
7	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Game

- Many test $\boldsymbol{N} \gg \mathbf{1}$ of the device, in different rounds $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{N}$, with uniformly random inputs $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, outputs $\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}$
- Accumulation of statistics
- Score at round i :
- If $\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=1$
- If $\boldsymbol{a} \oplus \boldsymbol{b} \neq \boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{0}$
- Mean score:
$\langle S\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i} S^{(i)}=p(a \oplus b=x \cdot y)$

CHSH inequality

CHSH game

Alice, in Bordeaux

Bob, in Saclay

\boldsymbol{i}	$\boldsymbol{x}^{(\boldsymbol{i})}$	$\boldsymbol{a}^{(\boldsymbol{i})}$	$\boldsymbol{y}^{(\boldsymbol{i})}$	$\boldsymbol{b}^{(i)}$	$\boldsymbol{S}^{(\boldsymbol{i})}$
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
4	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
5	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
6	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
7	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Game

- Many test $\boldsymbol{N} \gg \mathbf{1}$ of the device, in different rounds $\boldsymbol{i}=\mathbf{1}, \ldots, N$, with uniformly random inputs $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, outputs $\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}$
- Accumulation of statistics
- Score at round i :

○ If $\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{1}$

- If $\boldsymbol{a} \oplus \boldsymbol{b} \neq \boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{0}$
- Mean score:
$\langle S\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i} S^{(i)}=p(a \oplus b=x \cdot y)$
$>$ The detective sees

$$
p(a \oplus b=x \cdot y) \approx 0.85
$$

CHSH inequality

CHSH game

Alice, in Bordeaux

Bob, in Saclay

\boldsymbol{i}	$\boldsymbol{x}^{(\boldsymbol{i})}$	$\boldsymbol{a}^{(\boldsymbol{i})}$	$\boldsymbol{y}^{(\boldsymbol{i})}$	$\boldsymbol{b}^{(\boldsymbol{i})}$	$\boldsymbol{S}^{(\boldsymbol{i})}$
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
4	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
5	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
6	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{7}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Game

- Many test $\boldsymbol{N} \gg \mathbf{1}$ of the device, in different rounds $\boldsymbol{i}=\mathbf{1}, \ldots, N$, with uniformly random inputs $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, outputs $\boldsymbol{a}^{(i)}, \boldsymbol{b}^{(i)}$
- Accumulation of statistics
- Score at round i :

○ If $\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{1}$

- If $\boldsymbol{a} \oplus \boldsymbol{b} \neq \boldsymbol{x} \cdot \boldsymbol{y}: \boldsymbol{S}^{(i)}=\mathbf{0}$
- Mean score:
$\langle S\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i} S^{(i)}=p(a \oplus b=x \cdot y)$
\Rightarrow The detective sees

$$
p(a \oplus b=x \cdot y) \approx 0.85
$$

$\Leftrightarrow \mathbf{C H S H} \equiv\left\langle A_{\mathbf{0}} \boldsymbol{B}_{\mathbf{0}}\right\rangle+\left\langle A_{\mathbf{0}} B_{\mathbf{1}}\right\rangle+\left\langle A_{\mathbf{1}} B_{\mathbf{0}}\right\rangle-\left\langle A_{\mathbf{1}} B_{\mathbf{1}}\right\rangle$

$$
=2 \sqrt{2}
$$

The CHSH experiment

Alice, in Bordeaux

Bob, in Saclay

Correlated behavior:
○If $x=y=1$:

$$
\begin{aligned}
& p(a=b)<p(a \neq b) \\
& p(a=b)>p(a \neq b)
\end{aligned}
$$

The CHSH experiment

Alice, in Bordeaux

Bob, in Saclay

Correlated behavior:
○ If $\boldsymbol{x}=\boldsymbol{y}=1$:

$$
\begin{aligned}
& p(a=b)<p(a \neq b) \\
& p(a=b)>p(a \neq b)
\end{aligned} \quad p(a \oplus b=x \cdot y) \approx 0.85
$$

o If not:
$>$ Detective's question: Where does it come from?

Correlations = Influence or Common Cause

Only two possibilities:

Correlations = Influence or Common Cause

Only two possibilities:
Influence

Correlations = Influence or Common Cause

Only two possibilities:

Influence

Common cause

Correlations = Influence or Common Cause

Only two possibilities:

Influence

Common cause

Space-like separation = Distance + Synchronization + no faster than light communications = No-Signalling Hypothesis

Correlations = Influence or Common Cause

Only two possibilities:

Influence

Common cause

Correlations = Influence or Common Cause

Only two possibilities:

Influence

Space-like separation = Distance + Synchronisatic = No-Signalling Hypothesis

Common cause

- The experimentalist agrees with deduction: for him , it is $\left|\psi^{+}\right\rangle=\left(|0\rangle_{A}|1\rangle_{B}+|1\rangle_{A}|0\rangle_{B}\right) / \sqrt{2}$
- For the detective, the detectors might not use the photons.

Correlations = Influence or Common Cause

Only two possibilities:

Common cause

The experimentalist agrees with deduction: for him , it is $\left|\psi^{+}\right\rangle=\left(|0\rangle_{A}|1\rangle_{B}+|1\rangle_{A}|0\rangle_{B}\right) / \sqrt{2}$

- For the detective, the detectors might not use the photons.
Could be seismic vibrations, cosmic rays, ... Whatever it is, this is the «Common Cause ».

The CHSH experiment

Alice, in Bordeaux

CHSH inequality

The detective model: LHV model

Local strategies

Local Hidden Variable model
 = 'classical physics' = 'shared randomness'

CHSH inequality

The detective model: LHV model

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties

CHSH inequality

The detective model: LHV model

Local strategies

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two

CHSH inequality

The detective model: LHV model

Local strategies

The experimentalist does not agree with this second detective deduction
$\ln \left|\psi^{+}\right\rangle=\left(|0\rangle_{A}|\mathbf{1}\rangle_{B}+|\mathbf{1}\rangle_{A}|\mathbf{0}\rangle_{B}\right) / \sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two
$>\lambda$: carried information. It takes value λ_{1} or $\boldsymbol{\lambda}_{2}$ or \ldots : shared randomness distributed as $\boldsymbol{d} \boldsymbol{\lambda}$

CHSH inequality

The detective model: LHV model

Local strategies

Local Hidden Variable model
 = 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two
$>\boldsymbol{\lambda}$: carried information. It takes value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{2}$ or \ldots : shared randomness distributed as $\boldsymbol{d} \boldsymbol{\lambda}$
$>\boldsymbol{a}$ is a function of $\boldsymbol{x}, \boldsymbol{\lambda}$
$>\boldsymbol{b}$ is a function of $\boldsymbol{y}, \boldsymbol{\lambda}$

The experimentalist does not agree with this second detective deduction
$\ln \left|\boldsymbol{\psi}^{+}\right\rangle=\left(|\mathbf{0}\rangle_{A}|\mathbf{1}\rangle_{B}+|\mathbf{1}\rangle_{A}|\mathbf{0}\rangle_{B}\right) / \sqrt{2}$, even far, the two photons are "one system"

CHSH inequality

The detective model: LHV model

Local strategies

The experimentalist does not agree with this second detective deduction
$\ln \left|\boldsymbol{\psi}^{+}\right\rangle=\left(|\mathbf{0}\rangle_{A}|\mathbf{1}\rangle_{B}+|\mathbf{1}\rangle_{A}|\mathbf{0}\rangle_{B}\right) / \sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two
$>\lambda$: carried information. It takes value λ_{1} or $\boldsymbol{\lambda}_{2}$ or \ldots : shared randomness distributed as $\boldsymbol{d} \boldsymbol{\lambda}$
$>\boldsymbol{a}$ is a function of $\boldsymbol{x}, \boldsymbol{\lambda}$
$>\boldsymbol{b}$ is a function of $\boldsymbol{y}, \boldsymbol{\lambda}$
$>p(a b \mid x y)=\int d \lambda p(a \mid x \lambda) p(b \mid y \lambda)$

CHSH inequality

The detective model: LHV model

Local strategies

The experimentalist does not agree with this second detective deduction
$\ln \left|\psi^{+}\right\rangle=\left(|0\rangle_{A}|\mathbf{1}\rangle_{B}+|\mathbf{1}\rangle_{A}|\mathbf{0}\rangle_{B}\right) / \sqrt{2}$, even far, the two photons are "one system"

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two
$>\lambda$: carried information. It takes value λ_{1} or $\boldsymbol{\lambda}_{2}$ or \ldots : shared randomness distributed as $\boldsymbol{d} \boldsymbol{\lambda}$
$\Rightarrow \boldsymbol{a}$ is a function of $\boldsymbol{x}, \boldsymbol{\lambda}$
$>\boldsymbol{b}$ is a function of $\boldsymbol{y}, \boldsymbol{\lambda}$
$>p(a b \mid x y)=\int d \lambda p(a \mid x \lambda) p(b \mid y \lambda)$

Bell Theorem [CHSH]:

1. For any LHV model λ :

$$
S=p(a \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

CHSH inequality

The detective model: LHV model

Local strategies

PROOF (1.):

- $\boldsymbol{p}(\boldsymbol{a b} \mid \boldsymbol{x y})$ is a linear superposition of deterministic strategies
- Deterministic strategies have $S \leq \frac{3}{4}$
- $\boldsymbol{S}=\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b}=\boldsymbol{x} \cdot \boldsymbol{y})$ is a linear score

Local Hidden Variable model

= 'classical physics' = 'shared randomness'

- Two carriers of information travel contiguously from source to parties
- Each party measures one of the two
$>\boldsymbol{\lambda}$: carried information. It takes value $\boldsymbol{\lambda}_{1}$ or $\boldsymbol{\lambda}_{\mathbf{2}}$ or ... : shared randomness distributed as $\boldsymbol{d} \boldsymbol{\lambda}$
$\Rightarrow \boldsymbol{a}$ is a function of $\boldsymbol{x}, \boldsymbol{\lambda}$
$>\boldsymbol{b}$ is a function of $\boldsymbol{y}, \boldsymbol{\lambda}$
$>p(a b \mid x y)=\int d \lambda p(a \mid x \lambda) p(b \mid y \lambda)$

Bell Theorem [CHSH]:

1. For any LHV model λ :

$$
S=p(a \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

CHSH inequality

Quantum model

Quantum strategy

Quantum strategy

- The parties share a quantum state $|\phi\rangle$
- They have measurement operators $\boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}}, \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}$
- The observation probabilities are: $p(a b \mid x y)=\langle\phi| A_{a \mid x} \otimes B_{b \mid y}|\phi\rangle$

CHSH inequality

Quantum model

Quantum strategy

Quantum strategy

- The parties share a quantum state $|\phi\rangle$
- They have measurement operators $\boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}}, \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}$
- The observation probabilities are: $p(a b \mid x y)=\langle\phi| A_{a \mid x} \otimes B_{b \mid y}|\boldsymbol{\phi}\rangle$

Bell Theorem [CHSH, 1964, 1969]:

1. For any LHV model λ :

$$
\overline{S=p(a} \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

2. For some quantum strategy:

$$
S=p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

CHSH inequality

Quantum model

Quantum strategy

Quantum strategy

- The parties share a quantum state $|\phi\rangle$
- They have measurement operators $\boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}}, \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}$
- The observation probabilities are:

$$
p(a b \mid x y)=\langle\phi| A_{a \mid x} \otimes B_{b \mid y}|\phi\rangle
$$

Bell Theorem [CHSH, 1964, 1969]:

1. For any LHV model λ :

$$
S=p(a \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

2. For some quantum strategy:

$$
S=p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

PROOF (2.):

- $|\phi\rangle=\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$
- Alice measures $\boldsymbol{\sigma}_{Z}, \boldsymbol{\sigma}_{\boldsymbol{X}}$
- Bob measures $\frac{\sigma_{X} \pm \sigma_{Z}}{\sqrt{2}}$

CHSH inequality

Quantum model

PROOF (2.) [for the detective] : Look at the experiment, no need to understand quantum theory! > Bell theorem is 'not about' quantum theory

Quantum strategy

- The parties share a quantum state $|\phi\rangle$
- They have measurement operators $\boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}}, \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}$
- The observation probabilities are: $p(a b \mid x y)=\langle\phi| A_{a \mid x} \otimes B_{b \mid y}|\phi\rangle$

Bell Theorem [CHSH, 1964, 1969]:

1. For any LHV model λ :

$$
\overline{S=p(a} \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

2. For some quantum strategy:
$S=p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$

CHSH inequality

Quantum model

PROOF (2.) [for the detective] : Look at the experiment, no need to understand quantum theory!

Quantum strategy

- The parties share a quantum state $|\boldsymbol{\phi}\rangle$
- They have measurement operators $\boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}}, \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}$
- The observation probabilities are: $\boldsymbol{p}(\boldsymbol{a b} \mid \boldsymbol{x y})=\langle\boldsymbol{\phi}| \boldsymbol{A}_{\boldsymbol{a} \mid \boldsymbol{x}} \otimes \boldsymbol{B}_{\boldsymbol{b} \mid \boldsymbol{y}}|\boldsymbol{\phi}\rangle$

Bell Theorem [CHSH, 1964, 1969]:

1. For any LHV model λ :

$$
\overline{S=p(a} \oplus b=x \cdot y) \leq \frac{3}{4}=0.75
$$

2. For some quantum strategy:

$$
S=p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

CHSH inequality

Quantum model

PROOF (2.) [for the detective] : Look at the experiment, no need to understand quantum theory! > Bell theorem is 'not about' quantum theory
$>$ Bell theorem is about any theory of physics explaining operational observations
$>$ Such theory must be more crazy than any crazy explanation compatible with the classical principles

$$
S=p(a \oplus b=x \cdot y)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85
$$

1. For any LHV model λ :
2. For some quantum strategy:

Overview

Single state quantum correlations

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021

Any theory of physics explaining operational observations:

- Is Nonlocal
- Is Contextual
- Does not allow cloning of information
- Is non determinist

Applications:

Can be certified Device Independently, from the observed correlations only, even if an adversary controls the devices

- Nonlocality
$>$ DI certification of quantum devices (2003)
- No cloning
> DI quantum key distribution (2007)
- Non determinist
$>$ DI quantum random number generation (2010)

Consequences for Physics foundations, applications

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l'ère des réseaux Pour la Science Octobre 2021

Commercial Quantum Random Number Generator

Any theory of physics explaining operational observations:

- Is Nonlocal
- Is Contextual
- Does not allow cloning of information
- Is non determinist

Applications:

Can be certified Device Independently, from the observed correlations only, even if an adversary controls the devices

- Nonlocality
$>$ DI certification of quantum devices (2003)
- No cloning
$>$ DI quantum key distribution (2007)
- Non determinist
$>$ DI quantum random number generation (2010)

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
- Process duplicated after the cloner

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
- Process duplicated after the cloner
- if one is ignored, we are back to the initial situation

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
- Process duplicated after the cloner
- if one is ignored, we are back to the initial situation

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
- Process duplicated after the cloner
- if one is ignored, we are back to the initial situation

According to Quantum Theory

$>$ Does not exist

No-cloning from Bell theorem

What is a cloner?

- Causal process with an information carrier traveling
- Insert a cloner:
- Process duplicated after the cloner
- if one is ignored, we are back to the initial situation

According to Quantum Theory

> Does not exist
According to an other 'reasonable theory'
$>$ Cannot exist!
$>$ Consequence of Bell theorem

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y) \approx \mathbf{0 . 8 5}
$$

Proof by contradiction

- Start from the CHSH game

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y) \approx \mathbf{0 . 8 5}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y) \approx \mathbf{0 . 8 5}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right) \approx 0.85, P\left(a \oplus b_{2}=x \cdot y_{2}\right) \approx 0.85$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \rightarrow \mathbf{1}$

- Place B_{1}, B_{2} in a same location:

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \rightarrow \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

We have:

$$
a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

We have:

$$
\begin{aligned}
& a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a \\
& a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x
\end{aligned}
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a$
$a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x$
Hence $\beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$

No-cloning from Bell theorem

$$
P(a \oplus b=x \cdot y)=\mathbf{1}
$$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a$
$a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x$
Hence $\beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $0.85 \rightarrow 1$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$
\Rightarrow Then $\beta=x$!

No-cloning from Bell theorem

$$
P(a \bigoplus b=x \cdot y)=\mathbf{1}
$$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a$
$a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x$
Hence $\beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \boldsymbol{\rightarrow} \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$
$>$ Then $\beta=x$!
$>$ "Signalling"! ANot 'reasonable'!

No-cloning from Bell theorem

$$
P(a \bigoplus b=x \cdot y)=\mathbf{1}
$$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a$ $a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x$
Hence $\beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \boldsymbol{\rightarrow} \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$
$>$ Then $\beta=x$!
$>$ "Signalling"! A Not 'reasonable'!

Without simplification? 0.85

$>$ With 1 : 'maximally signalling'

No-cloning from Bell theorem

$$
P(a \bigoplus b=x \cdot y)=\mathbf{1}
$$

We have:
$a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a$ $a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x$
Hence $\beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \boldsymbol{\rightarrow} \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$
$>$ Then $\beta=x$!
$>$ "Signalling"! A Not 'reasonable'!

Without simplification? 0.85

$>$ With 1 : 'maximally signalling'
$>$ ' ϵ signalling' is already not reasonable as can be amplified

No-cloning from Bell theorem

$$
P(a \bigoplus b=x \cdot y)=\mathbf{1}
$$

We have:

$$
\begin{aligned}
& a \oplus b_{1}=x \cdot y_{1}=x \cdot 0=0: b_{1}=a \\
& a \oplus b_{2}=x \cdot y_{2}=x \cdot 1=x: b_{1}=a \oplus x
\end{aligned}
$$

$$
\text { Hence } \beta=b_{1} \oplus b_{2}=a \oplus a \oplus x=x
$$

Proof by contradiction

- Start from the CHSH game
- Assume some 'reasonable' theory of physics explains it and allows for cloning
- Insert the cloner:
- obtain $P\left(a, b_{1}, b_{2} \mid x, y_{1}, y_{2}\right)$
- such that $P\left(a \oplus b_{1}=x \cdot y_{1}\right)=\mathbf{1}, P\left(a \oplus b_{2}=x \cdot y_{2}\right)=\mathbf{1}$

Simplification of the proof $\mathbf{0 . 8 5} \boldsymbol{\rightarrow} \mathbf{1}$

- Place B_{1}, B_{2} in a same location:
- take $y_{1}=0, y_{2}=1$, output $\beta:=b_{1} \oplus b_{2}$
\Rightarrow Then $\beta=x$!
$>$ "Signalling"! \& Not 'reasonable'!

Without simplification? 0.85

$>$ With 1 : 'maximally signalling'
$>$ ' ϵ signalling' is already not reasonable as can be amplified
> As soon as CHSH > 2, the proof holds: no 'reasonable' theory of physics with cloning can explain any CHSH violation

Device independence

General idea

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Device independence

General idea

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / ...

Device independence

General idea

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / ...

Proofs valid under very weak hypothesis:
X Trusted sources / measurements
X Trusted Quantum Theory

Device independence

General idea

Proofs that "any reasonable future theory of physics" satisfies: Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / ...
Proofs valid under very weak hypothesis:

* Trusted sources / measurements
* Trusted Quantum Theory (except some applications)

Device independence

General idea

Proofs that "any reasonable future theory of physics" satisfies:
Non locality / Randomness / No cloning / ...

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / ...

Proofs valid under very weak hypothesis:

* Trusted sources / measurements
* Trusted Quantum Theory (except some applications)
\checkmark No Signalling
\checkmark No super-determinism

Device independence

Foundational physics
$\underset{\sim}{\left|\psi^{+}\right\rangle=} \underset{ }{|01\rangle+|10\rangle} \underset{ }{\sqrt{2}}$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement

Device independence

Foundational physics
$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness

Device independence

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information

Device independence

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
- ...

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
- ..
- Can we imagine a future theory which:
- Does not have these 'unpleasant' properties
- Is consistent with the CHSH game

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
- ..
- Can we imagine a future theory which:
- Does not have these 'unpleasant' properties
- Is consistent with the CHSH game

Corollaries of Bell theorem : No!

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
-
- Can we imagine a future theory which:
- Does not have these 'unpleasant' properties
- Is consistent with the CHSH game

Corollaries of Bell theorem : No!

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sim}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
-
- Can we imagine a future theory which:
- Does not have these 'unpleasant’ properties
- Is consistent with the CHSH game

Corollaries of Bell theorem : No!

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sim}$

Device independence

Foundational physics

$\left|\psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sim}$

$|\phi\rangle \otimes|\phi\rangle$

- Quantum theory has many 'not intuitive', 'nonclassical' properties
- Entanglement
- Intrinsic randomness
- No cloning of information
-
- Can we imagine a future theory which:
- Does not have these 'unpleasant' properties
- Is consistent with the CHSH game

Corollaries of Bell theorem : No!
$>$ 'Device/theory Independent' certification of these properties

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private
- Assumptions:
- perfect single photon sources
- Perfect polarization measurements

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private
> Assumptions:
- perfect single photon sources
- Perfect polarization measurements
- Bell theorem : DI QKD

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private
> Assumptions:
- perfect single photon sources
- Perfect polarization measurements
- Bell theorem : DI QKD
- Assuming quantum theory

Theorem: If for $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}, P(a \oplus b=x \cdot y) \approx 0.85$, then for $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=2$: $\boldsymbol{a}=\mathbf{1}-\boldsymbol{b}$ shared, secret.

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private
- Assumptions:
- perfect single photon sources
- Perfect polarization measurements
- Bell theorem : DI QKD
- Assuming quantum theory

Theorem: If for $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}, P(a \oplus b=x \cdot y) \approx 0.85$, then for $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=2$: $\boldsymbol{a}=\mathbf{1}-\boldsymbol{b}$ shared, secret.

>'Device Independent' certification of quantum key distribution

Device independence

Applications of quantum physics: QKD

- Quantum Key Distribution (QKD)
- BB84 protocol
$>\boldsymbol{A}, \boldsymbol{B}$ agree on a key, proven to be private
\rightarrow Assumptions:
- perfect single photon sources
- Perfect polarization measurements
- Bell theorem : DI QKD
- Assuming quantum theory

Theorem: If for $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}, P(a \oplus b=x \cdot y) \approx 0.85$, then for $\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=2$: $\boldsymbol{a}=\mathbf{1}-\boldsymbol{b}$ shared, secret.

- 2022: First two experimental realisation $1^{\text {st }}$ expt: 95628 key bits in 8 hours, 2 m distance $2^{\text {nd }}$ expt: Only valid in 'infinit running time', 700 m

Overview

Causal network quantum correlations

Characterisation

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network
Can they win a concrete game, e.g.
$\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b} \oplus \boldsymbol{c}=\boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{z})>\mathbf{0} .7$, with classical/quantum theory?

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network
Can they win a concrete game, e.g.
$\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b} \oplus \boldsymbol{c}=\boldsymbol{x} \cdot \boldsymbol{y} \cdot \mathbf{z})>\mathbf{0} .7$, with classical/quantum theory?
(Quantum) distributed computing structure:
Several processors exchange information (e.g., synchronisation, limited number of communications steps).
Can they find a proper coloring, that is $a \neq b, \ldots, e \neq a$, with 1 synchronised communication step and classical/quantum theory?

Causal network quantum correlations

(Quantum) causal network:

Several hidden sources distributed and measured in a quantum network
Can they win a concrete game, e.g.
$\boldsymbol{p}(\boldsymbol{a} \oplus \boldsymbol{b} \oplus \boldsymbol{c}=\boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{z})>\mathbf{0} .7$, with classical/quantum theory?

(Quantum) distributed computing structure:

Several processors exchange information (e.g., synchronisation, limited number of communications steps).
Can they find a proper coloring, that is $a \neq b, \ldots, e \neq a$, with 1 synchronised communication step and classical/quantum theory?

(Quantum) causal structure:

Causal structure involving hidden sources and non-hidden causes

Characterisation

Characterisation

Genuine triangle nonlocality

Genuine nonlocality in the triangle network (2019)

Characterisation

Genuine triangle nonlocality

Genuine nonlocality in the triangle network (2019)

- Goal:
> Find quantum experiment with statistics \boldsymbol{P}

Characterisation

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements
> Give P

$\forall \lambda, \mu, v$ and processing
$>$ Cannot give P

Genuine nonlocality in the triangle network (2019)

- Goal:
- Find quantum experiment with statistics \boldsymbol{P}
$>$ Such that a classical detective cannot explain it

Characterisation

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements
$>$ Give P

$\forall \lambda, \mu, v$ and processing
$>$ Cannot give P

Genuine nonlocality in the triangle network (2019)

- Goal:
- Find quantum experiment with statistics \boldsymbol{P}
$>$ Such that a classical detective cannot explain it
- Generalisation to other networks
$>$ Method fundamentally different from standard Bell arguments

Characterisation

Genuine triangle nonlocality

Concrete ρ, σ, τ and measurements
$>$ Give P

$\forall \lambda, \mu, v$ and processing
$>$ Cannot give P

Genuine nonlocality in the triangle network (2019)

- Goal:
- Find quantum experiment with statistics \boldsymbol{P}
$>$ Such that a classical detective cannot explain it
- Generalisation to other networks
$>$ Method fundamentally different from standard Bell arguments
$>$ This allows new applications: « certify randomness without inputs »

Foundations

Characterisation

Foundations

R-QT can be experimentally ruled out

Experimentalist

Detective

- Master standard Quantum Theory
- Believes in $\mathbb{R}-Q T$

Foundations

R-QT can be experimentally ruled out

Experimentalist

Detective

- Master standard Quantum Theory

1 Particle S

$(\boldsymbol{i})_{\mathbb{C}}$ State: operator $\boldsymbol{\rho}_{S} \succcurlyeq \mathbf{0}$ of \mathbb{C}-Hilbert Space \mathcal{H}_{S} with $\mathbf{T r}\left(\boldsymbol{\rho}_{S}\right)=\mathbf{1}$
(ii) Measurement: operators $\boldsymbol{M}=\left\{\boldsymbol{M}_{r}\right\} \in \mathcal{H}_{S}, \boldsymbol{M}_{r} \succcurlyeq \mathbf{0}, \boldsymbol{M}_{r}^{2}=\boldsymbol{M}_{r}$, $\sum_{r} M_{r}=\mathbf{I d}$
(iii) Born rule: result \boldsymbol{r} has probability $\boldsymbol{P}(\boldsymbol{r})=\operatorname{Tr}\left(\boldsymbol{\rho}_{S} \cdot \boldsymbol{M}_{r}\right)$

2 Particles $\{\mathbf{S}, \mathbf{T}\}$

(iv) Hilbert space: $\mathcal{H}_{S T}=\mathcal{H}_{S} \otimes \mathcal{H}_{T}$.

Independent preparations of ρ_{S}, σ_{T} : State $\rho_{S T}=\rho_{S} \otimes \sigma_{T}$

- Believes in $\mathbb{R}-Q T$

1 Particle S

$(\boldsymbol{i})_{\mathbb{R}}$ State: operator $\boldsymbol{\rho}_{S} \succcurlyeq \mathbf{0}$ of \mathbb{R}-Hilbert Space \mathcal{H}_{S} with $\mathbf{T r}\left(\boldsymbol{\rho}_{S}\right)=\mathbf{1}$
(ii) Measurement: operators $\boldsymbol{M}=\left\{\boldsymbol{M}_{r}\right\} \in \mathcal{H}_{S}, \boldsymbol{M}_{r} \succcurlyeq \mathbf{0}, \boldsymbol{M}_{r}^{2}=\boldsymbol{M}_{r}$, $\sum_{r} M_{r}=$ Id
(iii) Born rule: result \boldsymbol{r} has probability $\boldsymbol{P}(\boldsymbol{r})=\operatorname{Tr}\left(\boldsymbol{\rho}_{\boldsymbol{S}} \cdot \boldsymbol{M}_{\boldsymbol{r}}\right)$

2 Particles $\{\mathbf{S}, \mathbf{T}\}$

(iv) Hilbert space: $\mathcal{H}_{S T}=\mathcal{H}_{S} \otimes \mathcal{H}_{T}$.

Independent preparations of ρ_{S}, σ_{T} : State $\rho_{S T}=\rho_{S} \otimes \sigma_{T}$

Foundations

R-QT can be experimentally ruled out

Experimentalist

Detective

- Master standard Quantum Theory
- Believes in $\mathbb{R}-Q T$
- Construct a concrete experiment

- Obtains experimental results (statistics)

Foundations

R-QT can be experimentally ruled out

Experimentalist

Detective

- Master standard Quantum Theory
- Construct a concrete experiment

- Obtains experimental results (statistics)
- Believes in $\mathbb{R}-Q T$
- Tries to explain these experimental results results. Any 'crazy' explanation compatible with $\mathbb{R}-Q T$ is possible.
$>$ Fails

$$
\boldsymbol{P}(\boldsymbol{a b c} \mid \boldsymbol{x} \boldsymbol{Z}):\left\{\begin{array}{l}
\operatorname{CHSH}^{b}(\mathbf{1 , 2 ; 1 , 2)}=2 \sqrt{2} \\
\operatorname{CHSH}^{b}(\mathbf{2}, 3,3,4)=2 \sqrt{2} \\
\operatorname{CHSH}^{b}(\mathbf{3}, 1 ; 5,6)=2 \sqrt{2}
\end{array}\right.
$$

Applications

Characterisation

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
$>$ Involves bipartite entangled sources

$$
|\phi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
$>$ Involves bipartite entangled sources

$$
|\phi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
>Involves bipartite entangled sources

$$
|\phi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
> Accepts bipartite « crazy » sources and shared randomness

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
> Involves bipartite entangled sources

$>$ Involves tripartite (and n-partite) entangled sources

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
$>$ Accepts bipartite « crazy » sources and shared randomness

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
> Involves bipartite entangled sources

$>$ Involves tripartite (and n -partite) entangled

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
$>$ Accepts bipartite « crazy » sources and shared randomness

- However, would like to keep this craziness of low degree:
> Rejects tripartite (or more) « crazy » sources

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
>Involves bipartite entangled sources

$>$ Involves tripartite (and n -partite) entangled sources

$$
|\phi\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
> Accepts bipartite « crazy » sources and shared randomness

- However, would like to keep this craziness of low degree:
$>$ Rejects tripartite (or more) « crazy » sources

Important question for:

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
> Involves bipartite entangled sources

$>$ Involves tripartite (and n -partite) entangled sources

$$
|\phi\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
$>$ Accepts bipartite « crazy » sources and shared randomness

- However, would like to keep this craziness of low degree:
$>$ Rejects tripartite (or more) « crazy » sources

The foundations of QT: is tripartite entanglement really needed?
Important question for:
Applications of QT: Can I do more with tripartite entanglement, what?

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
> Involves bipartite entangled sources

$$
|\phi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

$>$ Involves tripartite (and n-partite) entangled sources

$$
|\phi\rangle=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

- Accepted that only "more crazy theory than any crazy explanation compatible with classical physics"
$>$ Accepts bipartite « crazy » sources and shared randomness

- However, would like to keep this craziness of low degree:
> Rejects tripartite (or more) « crazy » sources

$>$ The foundations of QT: is tripartite entanglement really needed?
Important question for:
>Applications of QT: Can I do more with tripartite entanglement, what?
$>$ Benchmark Q systems: How to prove «I can produce tripartite entanglement »?

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics)
$\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics) $\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$
- Believes in bipartite « crazy » sources and shared randomness

Foundations

Bipartite exotic sources are not enough

Experimentalist

Detective

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics) $\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$
- Believes in bipartite « crazy » sources and shared randomness

>If the crazy sources satisfy causality and can be duplicated in independent copies:
$>$ Detective explanation must fails

Applications

Certification of all pure states

State certification: "self-testing"

- Observation: $\mathbf{C H S H}=2 \sqrt{2}$

$$
\mathrm{CHSH}=2 \sqrt{2}
$$

Applications

Certification of all pure states

State certification: "self-testing"

- Observation: $\mathbf{C H S H}=2 \sqrt{2}$
$>$ This certifies that the quantum state $\left|\boldsymbol{\psi}^{+}\right\rangle=\frac{|\mathbf{0}\rangle|\mathbf{1}\rangle+|\mathbf{1}\rangle|\mathbf{0}\rangle}{\sqrt{2}}$ was produced

Applications

Certification of all pure states

State certification: "self-testing"

- Observation: $\mathbf{C H S H}=2 \sqrt{2}$
$>$ This certifies that the quantum state $\left|\boldsymbol{\psi}^{+}\right\rangle=\frac{|\mathbf{0}\rangle|\mathbf{1}\rangle+|\mathbf{1}\rangle|\mathbf{0}\rangle}{\sqrt{2}}$ was produced

Open question: is there an operational way to test all pure states?

Applications

Certification of all pure states

Open question: is there an operational way to test all pure states?
> Answer: yes, considering network correlations

Foundations: Some past works

Experimentalist

- Master standard Quantum Theory
- Construct a concrete experiement

- Obtains experimental results (statistics) $\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$

Detective

?

Foundations: Some past works

Experimentalist

Detective

- Master standard Quantum Theory
- Construct a concrete experiement

- Believes in bipartite « crazy » sources and shared randomness

- Obtains experimental results (statistics) $\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$

Foundations: Some past works

Experimentalist

Detective

- Master standard Quantum Theory
- Believes in bipartite « crazy » sources and shared randomness

- Obtains experimental results (statistics) $\left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=\mathbf{2}$,
$\left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}$

Foundations: Some past works

Experimentalist

Detective

- Master standard Quantum Theory
- Believes in bipartite « crazy » sources and shared randomness

- Obtains experimental results (statistics)

$$
\begin{aligned}
& \left\langle A_{0} B_{2}\right\rangle+\left\langle B_{2} C_{0}\right\rangle=2, \\
& \left\langle A_{0} B_{0}\right\rangle^{\mid C_{1}=1}+\left\langle A_{0} B_{1}\right\rangle^{\mid C_{1}=1}+\left\langle A_{1} B_{0}\right\rangle^{\mid C_{1}=1}-\left\langle A_{1} B_{1}\right\rangle^{\mid C_{1}=1}=2 \sqrt{2}
\end{aligned}
$$

- Construct a concrete experiement

Causal network quantum correlations

Foundations: ongoing and future goals

Reconstruct QIT from its correlations?

- Bell theorem excludes LHV models
- \mathbb{R} - quantum theory excluded
- Generalised bipartite entanglement excluded

Foundations: ongoing and future goals

Reconstruct QIT from its correlations?

- Bell theorem excludes LHV models
- \mathbb{R} - quantum theory excluded
- Generalised bipartite entanglement excluded
$>$ Exclude more?
$>$ Characterise Quantum Information Theory from its correlations?

