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Bell’s theorem 1964

Bell theorem:

Quantum theory predictions incompatible with ‘a 
natural notion of locality’

Main ingredient: 

‘classical physics correlations ≠ quantum correlations

Bell theorem
the Bell theorem is not about quantum theory
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Game
• Many test 𝑵 ≫ 𝟏 of the device, in different rounds 
𝒊 = 𝟏,… ,𝑵, with uniformly random inputs 𝒙(𝒊), 𝒚(𝒊), 
outputs 𝒂(𝒊), 𝒃(𝒊)

• Accumulation of statistics

CHSH inequality

CHSH game
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Correlated behavior:
o If 𝒙 = 𝒚 = 𝟏:

𝒑 𝒂 = 𝒃 < 𝒑 𝒂 ≠ 𝒃
o If not:

𝒑 𝒂 = 𝒃 > 𝒑 𝒂 ≠ 𝒃

𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≈ 𝟎. 𝟖𝟓

Bob, in Saclay

0 1 0 1

0 1 0 1

𝒙 ∈ 𝟎, 𝟏 𝒚 ∈ 𝟎, 𝟏

𝒂 ∈ 𝟎, 𝟏 𝒃 ∈ 𝟎, 𝟏

The CHSH experiment 
as observed by the detective

Alice, in Bordeaux



Correlated behavior:
o If 𝒙 = 𝒚 = 𝟏:

𝒑 𝒂 = 𝒃 < 𝒑 𝒂 ≠ 𝒃
o If not:

𝒑 𝒂 = 𝒃 > 𝒑 𝒂 ≠ 𝒃

𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≈ 𝟎. 𝟖𝟓

0 1 0 1

0 1 0 1

𝒙 ∈ 𝟎, 𝟏 𝒚 ∈ 𝟎, 𝟏

𝒂 ∈ 𝟎, 𝟏 𝒃 ∈ 𝟎, 𝟏

The CHSH experiment 
as observed by the detective
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Only two possibilities:
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= No-Signalling Hypothesis

• The experimentalist agrees with deduction: for 

him, it is 𝝍+ = ( 𝟎 𝑨 𝟏 𝑩 + 𝟏 𝑨 𝟎 𝑩)/ 𝟐

• For the detective, the detectors might not use 
the photons.

• Could be seismic vibrations, cosmic rays, … 
Whatever it is, this is the « Common Cause ». 
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We must have a pre-established 
source of correlations

Classical source
local source of randomness 𝝀

Quantum source 𝝓
≠

𝝀

𝝓
*
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The CHSH experiment 
as observed by the detective

Bob, in SaclayAlice, in Bordeaux



Local Hidden Variable model 
= ‘classical physics’ = ‘shared randomness’

CHSH inequality
The detective model: LHV model

32

Local strategies

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1



Local Hidden Variable model 
= ‘classical physics’ = ‘shared randomness’

• Two carriers of information travel contiguously from 
source to parties

CHSH inequality
The detective model: LHV model
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Local Hidden Variable model 
= ‘classical physics’ = ‘shared randomness’

• Two carriers of information travel contiguously from 
source to parties

• Each party measures one of the two
➢ 𝝀: carried information. It takes value 𝝀𝟏 or 𝝀𝟐 or … : 

shared randomness distributed as 𝒅𝝀

CHSH inequality
The detective model: LHV model
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Local strategies

The experimentalist does not agree with this 
second detective deduction

In 𝝍+ = ( 𝟎 𝑨 𝟏 𝑩 + 𝟏 𝑨 𝟎 𝑩)/ 𝟐, even far, 
the two photons are “one system” 

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

𝝀



Local Hidden Variable model 
= ‘classical physics’ = ‘shared randomness’

• Two carriers of information travel contiguously from 
source to parties

• Each party measures one of the two
➢ 𝝀: carried information. It takes value 𝝀𝟏 or 𝝀𝟐 or … : 

shared randomness distributed as 𝒅𝝀

➢ 𝒂 is a function of 𝒙, 𝝀

➢ 𝒃 is a function of 𝒚, 𝝀

CHSH inequality
The detective model: LHV model

36

Local strategies

The experimentalist does not agree with this 
second detective deduction

In 𝝍+ = ( 𝟎 𝑨 𝟏 𝑩 + 𝟏 𝑨 𝟎 𝑩)/ 𝟐, even far, 
the two photons are “one system” 

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

𝝀
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= ‘classical physics’ = ‘shared randomness’

• Two carriers of information travel contiguously from 
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CHSH inequality
The detective model: LHV model
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Local strategies

Bell Theorem [CHSH]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

The experimentalist does not agree with this 
second detective deduction

In 𝝍+ = ( 𝟎 𝑨 𝟏 𝑩 + 𝟏 𝑨 𝟎 𝑩)/ 𝟐, even far, 
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Local Hidden Variable model 
= ‘classical physics’ = ‘shared randomness’

• Two carriers of information travel contiguously from 
source to parties

• Each party measures one of the two
➢ 𝝀: carried information. It takes value 𝝀𝟏 or 𝝀𝟐 or … : 

shared randomness distributed as 𝒅𝝀

➢ 𝒂 is a function of 𝒙, 𝝀

➢ 𝒃 is a function of 𝒚, 𝝀

➢ 𝒑 𝒂𝒃 𝒙𝒚 = ∫ 𝒅𝝀𝒑(𝒂|𝒙𝝀)𝒑(𝒃|𝒚𝝀)

CHSH inequality
The detective model: LHV model

39

Local strategies

PROOF (1.): 
• 𝒑 𝒂𝒃 𝒙𝒚 is a linear superposition of deterministic strategies

• Deterministic strategies have 𝑺 ≤
𝟑

𝟒

• 𝑺 = 𝒑(𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚) is a linear score

Bell Theorem [CHSH]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

𝝀



Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

40

Quantum strategy

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝜙

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

𝐴𝑎|𝑥 𝐵𝑏|𝑦
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Quantum strategy

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

𝐴𝑎|𝑥 𝐵𝑏|𝑦
𝜙

Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

Bell Theorem [CHSH, 1964, 1969]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

2. For some quantum strategy:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 = 𝐜𝐨𝐬𝟐
𝝅

𝟖
≈ 𝟎. 𝟖𝟓
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Quantum strategy

𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

PROOF (2.): 

• 𝝓 = ൿห𝝍+ =
𝟏

𝟐
⟩|𝟎𝟏 + ⟩|𝟏𝟎

• Alice measures 𝝈𝒁, 𝝈𝑿

• Bob measures 
𝝈𝑿±𝝈𝒁

𝟐

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

𝜎𝑍
𝜎𝑋

(𝜎𝑋 − 𝜎𝑍)/ 2

(𝜎𝑋 + 𝜎𝑍)/ 2

ൿห𝜓+

Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

Bell Theorem [CHSH, 1964, 1969]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

2. For some quantum strategy:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 = 𝐜𝐨𝐬𝟐
𝝅

𝟖
≈ 𝟎. 𝟖𝟓
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𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

PROOF (2.) [for the detective] :
Look at the experiment, no need to understand quantum theory!
➢ Bell theorem is ‘not about’ quantum theory

Bell Theorem [CHSH, 1964, 1969]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

2. For some quantum strategy:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 = 𝐜𝐨𝐬𝟐
𝝅

𝟖
≈ 𝟎. 𝟖𝟓
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𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

PROOF (2.) [for the detective] :
Look at the experiment, no need to understand quantum theory!
➢ Bell theorem is ‘not about’ quantum theory
➢ Bell theorem is about any theory of physics explaining operational observations

Bell Theorem [CHSH, 1964, 1969]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

2. For some quantum strategy:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 = 𝐜𝐨𝐬𝟐
𝝅

𝟖
≈ 𝟎. 𝟖𝟓
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𝐵𝐴 *

𝑥 ∈ 0,1 𝑦 ∈ 0,1

PROOF (2.) [for the detective] :
Look at the experiment, no need to understand quantum theory!
➢ Bell theorem is ‘not about’ quantum theory
➢ Bell theorem is about any theory of physics explaining operational observations
➢ Such theory must be more crazy than any crazy explanation compatible with the classical principles

𝑎 ∈ 0,1 𝑏 ∈ 0,1

CHSH inequality
Quantum model

Quantum strategy 
• The parties share a quantum state 𝝓

• They have measurement operators 𝑨𝒂|𝒙, 𝑩𝒃|𝒚

• The observation probabilities are:
𝒑 𝒂𝒃 𝒙𝒚 = ⟨𝝓 𝑨𝒂|𝒙⊗𝑩𝒃|𝒚 𝝓⟩

Bell Theorem [CHSH, 1964, 1969]:
1. For any LHV model 𝝀:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≤
𝟑

𝟒
= 𝟎. 𝟕𝟓

2. For some quantum strategy:

𝑺 = 𝒑 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 = 𝐜𝐨𝐬𝟐
𝝅

𝟖
≈ 𝟎. 𝟖𝟓
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Overview
Single state quantum correlations

Characterisation
Bell Inequalities (1969)

Foundations
Bell Theorem (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

* * *
* *

Characterisation

Foundations
Experiments, 
applications



Consequences for Physics foundations, applications

47

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l’ère des réseaux
Pour la Science Octobre 2021 

Aspect experiment 1981

Any theory of physics explaining operational observations:

• Is Nonlocal 

• Is Contextual

• Does not allow cloning of information

• Is non determinist



Consequences for Physics foundations, applications

48
Commercial Quantum Random Number Generator

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l’ère des réseaux
Pour la Science Octobre 2021 

Aspect experiment 1981

Any theory of physics explaining operational observations:

• Is Nonlocal 

• Is Contextual

• Does not allow cloning of information

• Is non determinist

Applications :

Can be certified Device Independently, from the observed 
correlations only, even if an adversary controls the 
devices

• Nonlocality

➢DI certification of quantum devices (2003)

• No cloning

➢DI quantum key distribution (2007)

• Non determinist

➢DI quantum random number generation (2010)
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Commercial Quantum Random Number Generator

M-O. Renou, N. Brunner, N. Gisin, La non-localité quantique à l’ère des réseaux
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Applications :

Can be certified Device Independently, from the observed 
correlations only, even if an adversary controls the 
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➢DI quantum key distribution (2007)

• Non determinist

➢DI quantum random number generation (2010)
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No-cloning from Bell theorem

What is a cloner? 
• Causal process with an information carrier traveling
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No-cloning from Bell theorem

What is a cloner? 
• Causal process with an information carrier traveling

• Insert a cloner:
• Process duplicated after the cloner 

• if one is ignored, we are back to the initial situation

According to Quantum Theory
➢Does not exist

℧

|𝝓⟩𝑨
𝝆𝑨𝟏𝑨𝟐

s.t. 𝝆𝑨𝟏 ≔ 𝐓𝐫𝐀𝟐 𝝆𝑨𝟏𝑨𝟐 = |𝝓⟩
𝑨𝟏

𝝆𝑨𝟐 ≔ 𝐓𝐫𝐀𝟏 𝝆𝑨𝟏𝑨𝟐 = |𝝓⟩
𝑨𝟐

𝑼
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No-cloning from Bell theorem

What is a cloner? 
• Causal process with an information carrier traveling

• Insert a cloner:
• Process duplicated after the cloner 

• if one is ignored, we are back to the initial situation

According to Quantum Theory
➢Does not exist

According to an other ‘reasonable theory’
➢Cannot exist! 

➢Consequence of Bell theorem

℧

|𝝓⟩𝑨
𝝆𝑨𝟏𝑨𝟐𝑼

𝑬
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 ≈ 𝟎. 𝟖𝟓

𝐴

𝑥 ∈ 0,1

𝑎 ∈ 0,1

𝑦1 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

*
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 ≈ 𝟎. 𝟖𝟓

𝐴

𝑥 ∈ 0,1

𝑎 ∈ 0,1

𝑦1 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 ≈ 0.85, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 ≈ 0.85

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 ≈ 𝟎. 𝟖𝟓

𝐴

𝑥 ∈ 0,1

𝑦1 ∈ 0,1

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 ∈ 0,1

𝐵2

𝑏2 ∈ 0,1
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 ∈ 0,1

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 ∈ 0,1

𝐵2

𝑏2 ∈ 0,1
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧

𝐵2

𝑏2 ∈ 0,1

𝑦1 ∈ 0,1

𝑦2 ∈ 0,1
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2
➢ Then 𝛽 = 𝑥!

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2
➢ Then 𝛽 = 𝑥!

➢ “Signalling”!                          Not ‘reasonable’ !

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2
➢ Then 𝛽 = 𝑥!

➢ “Signalling”!                          Not ‘reasonable’ !

Without simplification? 𝟎. 𝟖𝟓
➢With 𝟏 : ‘maximally signalling’

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥
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No-cloning from Bell theorem

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2
➢ Then 𝛽 = 𝑥!

➢ “Signalling”!                          Not ‘reasonable’ !

Without simplification? 𝟎. 𝟖𝟓
➢With 𝟏 : ‘maximally signalling’

➢ ‘𝜖 signalling’ is already not reasonable as can be amplified

𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥
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𝑃 𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 = 𝟏

𝐴

𝑥 ∈ 0,1

𝑦1 = 0

𝑎 ∈ 0,1

𝐵1

𝑏1 ∈ 0,1

𝑬 ℧
𝑦2 = 1

𝐵2

𝑏2 ∈ 0,1

𝛽 ≔ 𝑏1 ⊕𝑏2

We have:
𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝑥 ⋅ 0 = 0: 𝑏1 = 𝑎
𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝑥 ⋅ 1 = 𝑥: 𝑏1 = 𝑎⊕ 𝑥
Hence 𝛽 = 𝑏1 ⊕𝑏2 = 𝑎⊕ 𝑎⊕ 𝑥 = 𝑥

Proof by contradiction
• Start from the CHSH game

• Assume some ‘reasonable’ theory of physics explains it and 
allows for cloning

• Insert the cloner: 

• obtain 𝑃 𝑎, 𝑏1, 𝑏2|𝑥, 𝑦1, 𝑦2
• such that 𝑃 𝑎 ⊕ 𝑏1 = 𝑥 ⋅ 𝑦1 = 𝟏, 𝑃 𝑎 ⊕ 𝑏2 = 𝑥 ⋅ 𝑦2 = 𝟏

Simplification of the proof 𝟎. 𝟖𝟓 → 𝟏
• Place 𝐵1, 𝐵2 in a same location:

• take 𝑦1 = 0, 𝑦2 = 1, output 𝛽:= 𝑏1 ⊕𝑏2
➢ Then 𝛽 = 𝑥!

➢ “Signalling”!                          Not ‘reasonable’ !

Without simplification? 𝟎. 𝟖𝟓
➢With 𝟏 : ‘maximally signalling’

➢ ‘𝜖 signalling’ is already not reasonable as can be amplified

➢ As soon as 𝐂𝐇𝐒𝐇 > 𝟐, the proof holds: no ‘reasonable’ theory 
of physics with cloning can explain any CHSH violation
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Device independence
General idea

Proofs that “any reasonable future theory of physics” satisfies:
Non locality / Randomness / No cloning / …
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Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / …
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Proofs that “any reasonable future theory of physics” satisfies:
Non locality / Randomness / No cloning / …

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / …

Proofs valid under very weak hypothesis:
X Trusted sources / measurements

X Trusted Quantum Theory

Device independence
General idea
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Proofs that “any reasonable future theory of physics” satisfies:
Non locality / Randomness / No cloning / …

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / …

Proofs valid under very weak hypothesis:
X Trusted sources / measurements

X Trusted Quantum Theory (except some applications)
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Proofs that “any reasonable future theory of physics” satisfies:
Non locality / Randomness / No cloning / …

Proofs of the correct working of practical devices:
Quantum Randomness / Quantum Cryptography / …

Proofs valid under very weak hypothesis:
X Trusted sources / measurements

X Trusted Quantum Theory (except some applications)

✓No Signalling

✓No super-determinism

Device independence
General idea
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement

*
ൿห𝜓+ =

01 + 10

2
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement 

• Intrinsic randomness

• No cloning of information

• …

*
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2

𝑼
|𝜙⟩

𝜙 ⊗ |𝜙⟩
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement 

• Intrinsic randomness

• No cloning of information

• …

• Can we imagine a future theory which:
• Does not have these ‘unpleasant’ properties

• Is consistent with the CHSH game

*
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement 

• Intrinsic randomness

• No cloning of information

• …

• Can we imagine a future theory which:
• Does not have these ‘unpleasant’ properties

• Is consistent with the CHSH game

➢Corollaries of Bell theorem : No!

*
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*
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement

• Intrinsic randomness

• No cloning of information

• …

• Can we imagine a future theory which:
• Does not have these ‘unpleasant’ properties

• Is consistent with the CHSH game

➢Corollaries of Bell theorem : No!

*
ൿห𝜓+ =

01 + 10

2

𝑼
|𝜙⟩

𝜙 ⊗ |𝜙⟩
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Device independence
Foundational physics

• Quantum theory has many ‘not intuitive’, 
‘nonclassical’ properties
• Entanglement

• Intrinsic randomness

• No cloning of information

• …

• Can we imagine a future theory which:
• Does not have these ‘unpleasant’ properties

• Is consistent with the CHSH game

➢Corollaries of Bell theorem : No!

➢‘Device/theory Independent’ certification of 
these properties

*
ൿห𝜓+ =

01 + 10

2

𝑼
|𝜙⟩

𝜙 ⊗ |𝜙⟩
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• Quantum Key Distribution (QKD)
• BB84 protocol
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Device independence
Applications of quantum physics: QKD

BB84 protocol

• Quantum Key Distribution (QKD)
• BB84 protocol

➢ 𝑨,𝑩 agree on a key, proven to be private

➢ Assumptions:

▪ perfect single photon sources

▪ Perfect polarization measurements

• Bell theorem : DI QKD
• Assuming quantum theory

Theorem: If for 𝒙, 𝒚 ∈ 𝟎, 𝟏 , 𝑷 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≈ 𝟎. 𝟖𝟓, 
then for 𝒙 = 𝟎, 𝒚 = 𝟐: 𝒂 = 𝟏 − 𝒃 shared, secret.
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Device independence
Applications of quantum physics: QKD

BB84 protocol

• Quantum Key Distribution (QKD)
• BB84 protocol

➢ 𝑨,𝑩 agree on a key, proven to be private

➢ Assumptions:

▪ perfect single photon sources

▪ Perfect polarization measurements

• Bell theorem : DI QKD
• Assuming quantum theory

Theorem: If for 𝒙, 𝒚 ∈ 𝟎, 𝟏 , 𝑷 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≈ 𝟎. 𝟖𝟓, 
then for 𝒙 = 𝟎, 𝒚 = 𝟐: 𝒂 = 𝟏 − 𝒃 shared, secret.

➢‘Device Independent’ certification of 
quantum key distribution
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Device independence
Applications of quantum physics: QKD

• Quantum Key Distribution (QKD)
• BB84 protocol

➢ 𝑨,𝑩 agree on a key, proven to be private

➢ Assumptions:

▪ perfect single photon sources

▪ Perfect polarization measurements

• Bell theorem : DI QKD
• Assuming quantum theory

Theorem: If for 𝒙, 𝒚 ∈ 𝟎, 𝟏 , 𝑷 𝒂⊕ 𝒃 = 𝒙 ⋅ 𝒚 ≈ 𝟎. 𝟖𝟓, 
then for 𝒙 = 𝟎, 𝒚 = 𝟐: 𝒂 = 𝟏 − 𝒃 shared, secret.

• 2022: First two experimental realisation
1st expt: 95628 key bits in 8 hours, 2m distance

2nd expt: Only valid in ‘infinit running time’, 700m
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Overview
Causal network quantum correlations

Characterisation

Foundations
Experiments, 
applications

Foundations
Nonlocality (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

Characterisation
Bell Inequalities (1969)



Causal network quantum correlations
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𝐶

𝑐

𝐵

𝑏

𝐴
𝑎

𝐷

𝑑

*

*

**

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

𝐷

𝑑

*

(Quantum) causal network:
Several hidden sources distributed and measured in a 
quantum network
Can they win a concrete game, e.g.                                              
𝒑 𝒂⊕ 𝒃⊕ 𝒄 = 𝒙 ⋅ 𝒚 ⋅ 𝒛 > 𝟎. 𝟕, with classical/quantum theory?

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*
𝑥

𝑧

𝑦
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𝐶

𝑐

𝐵

𝑏

𝐴
𝑎

𝐷

𝑑

*

*

**

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

𝐷

𝑑

*

(Quantum) causal network:
Several hidden sources distributed and measured in a 
quantum network
Can they win a concrete game, e.g.                                             
𝒑 𝒂⊕ 𝒃⊕ 𝒄 = 𝒙 ⋅ 𝒚 ⋅ 𝒛 > 𝟎. 𝟕, with classical/quantum theory?

(Quantum) distributed computing structure:
Several processors exchange information (e.g., 
synchronisation, limited number of communications steps).

Can they find a proper coloring, that is 𝑎 ≠ 𝑏,… , 𝑒 ≠ 𝑎, with 1 
synchronised communication step and classical/quantum theory?

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*
𝑥

𝑧

𝑦

𝑏𝑎

𝑑

𝑐𝑒
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𝐶

𝑐

𝐵

𝑏

𝐴
𝑎

𝐷

𝑑

*

*

**

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

𝐷

𝑑

*

(Quantum) causal network:
Several hidden sources distributed and measured in a 
quantum network
Can they win a concrete game, e.g.                                             
𝒑 𝒂⊕ 𝒃⊕ 𝒄 = 𝒙 ⋅ 𝒚 ⋅ 𝒛 > 𝟎. 𝟕, with classical/quantum theory?

(Quantum) distributed computing structure:
Several processors exchange information (e.g., 
synchronisation, limited number of communications steps).

Can they find a proper coloring, that is 𝑎 ≠ 𝑏,… , 𝑒 ≠ 𝑎, with 1 
synchronised communication step and classical/quantum theory?

(Quantum) causal structure:
Causal structure involving hidden sources and non-hidden 
causes

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*
𝑥

𝑧

𝑦

𝐵

𝑏
𝐶

𝐴

𝑎

𝑐

𝐵

𝑏
𝐷

𝐴

𝑎
𝐶

𝑐

𝑑

𝑦

𝑏𝑎

𝑑

𝑐𝑒
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Characterisation

Characterisation

Foundations
Experiments, 
applications

*

Foundations
Nonlocality (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

Characterisation
Bell Inequalities (1969)
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Genuine triangle nonlocality
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Genuine nonlocality in the triangle network (2019) 
𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜌𝜎

𝜏

Concrete 𝜌, 𝜎, 𝜏 and 
measurements
➢ Give 𝑷

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022) 
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022) 
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)
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Genuine nonlocality in the triangle network (2019) 

• Goal: 

➢ Find quantum experiment with statistics 𝑷

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜌𝜎

𝜏

Concrete 𝜌, 𝜎, 𝜏 and 
measurements
➢ Give 𝑷

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022) 
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022) 
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Characterisation
Genuine triangle nonlocality
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Genuine nonlocality in the triangle network (2019) 

• Goal: 

➢ Find quantum experiment with statistics 𝑷

➢ Such that a classical detective cannot explain it

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜌𝜎

𝜏

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜆𝜇

𝜈

Concrete 𝜌, 𝜎, 𝜏 and 
measurements
➢ Give 𝑷

∀𝜆, 𝜇, 𝜈 and processing
➢ Cannot give 𝑷

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022) 
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022) 
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Characterisation
Genuine triangle nonlocality
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Genuine nonlocality in the triangle network (2019) 

• Goal: 

➢ Find quantum experiment with statistics 𝑷

➢ Such that a classical detective cannot explain it

• Generalisation to other networks
➢Method fundamentally different from standard Bell arguments

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜌𝜎

𝜏

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜆𝜇

𝜈

Concrete 𝜌, 𝜎, 𝜏 and 
measurements
➢ Give 𝑷

∀𝜆, 𝜇, 𝜈 and processing
➢ Cannot give 𝑷

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022) 
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022) 
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)

Characterisation
Genuine triangle nonlocality
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Genuine nonlocality in the triangle network (2019) 

• Goal: 

➢ Find quantum experiment with statistics 𝑷

➢ Such that a classical detective cannot explain it

• Generalisation to other networks
➢Method fundamentally different from standard Bell arguments

➢ This allows new applications: « certify randomness without
inputs »

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜌𝜎

𝜏

𝐶

𝑐

𝐵
𝑏

𝐴
𝑎

*

𝜆𝜇

𝜈

Concrete 𝜌, 𝜎, 𝜏 and 
measurements
➢ Give 𝑷

∀𝜆, 𝜇, 𝜈 and processing
➢ Cannot give 𝑷

M-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, S. Beigi, Phys. Rev. Lett. 123, 140401 (2019)
M-O. Renou, S. Beigi, Phys. Rev. Lett. 128, 060401 (2022) 
M-O. Renou, S. Beigi, Phys. Rev. A 105, 022408 (2022) 
A. Pozas-Kerstjens, N. Gisin, M-O. Renou, Phys. Rev. Lett. 130, 090201 (2023)
P. Sekatski, S. Boreiri, N. Brunner, arXiv:2209.09921 (2022)

Characterisation
Genuine triangle nonlocality
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Foundations

Characterisation

Foundations
Experiments, 
applications

*

Foundations
Nonlocality (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

Characterisation
Bell Inequalities (1969)



M-O. Renou, D. Trillo, M. Weilenmann, T. Le Phuc, A. Tavakoli, N. Gisin, A. Acin, M. Navascues, Nature 600, 625–629 (2021) 105

Experimentalist

• Master standard Quantum Theory

Detective

• Believes in ℝ-QT

Foundations
ℝ-QT can be experimentally ruled out



M-O. Renou, D. Trillo, M. Weilenmann, T. Le Phuc, A. Tavakoli, N. Gisin, A. Acin, M. Navascues, Nature 600, 625–629 (2021) 106

Experimentalist

• Master standard Quantum Theory

𝟏 Particle 𝑺
𝒊 ℂ State: operator 𝝆𝑺 ≽ 𝟎 of ℂ-Hilbert Space 𝓗𝑺 with 𝐓𝐫 𝝆𝑺 = 𝟏

(𝒊𝒊) Measurement: operators 𝑴 = 𝑴𝒓 ∈ 𝓗𝑺, 𝑴𝒓 ≽ 𝟎, 𝑴𝒓
𝟐 = 𝑴𝒓,

σ𝒓𝑴𝒓 = 𝐈𝐝

(𝒊𝒊𝒊) Born rule: result 𝒓 has probability 𝑷(𝒓) = 𝐓𝐫 𝝆𝑺 ⋅ 𝑴𝒓

𝟐 Particles 𝐒, 𝐓
(𝒊𝒗) Hilbert space: 𝓗𝑺𝑻 = 𝓗𝑺 ⊗𝓗𝑻. 

Independent preparations of 𝝆𝑺, 𝝈𝑻: State 𝝆𝑺𝑻 = 𝝆𝑺 ⊗𝝈𝑻

Detective

• Believes in ℝ-QT

𝟏 Particle 𝑺
𝒊 ℝ State: operator 𝝆𝑺 ≽ 𝟎 of ℝ-Hilbert Space 𝓗𝑺 with 𝐓𝐫 𝝆𝑺 = 𝟏

(𝒊𝒊) Measurement: operators 𝑴 = 𝑴𝒓 ∈ 𝓗𝑺, 𝑴𝒓 ≽ 𝟎, 𝑴𝒓
𝟐 = 𝑴𝒓,

σ𝒓𝑴𝒓 = 𝐈𝐝

(𝒊𝒊𝒊) Born rule: result 𝒓 has probability 𝑷(𝒓) = 𝐓𝐫 𝝆𝑺 ⋅ 𝑴𝒓

𝟐 Particles 𝐒, 𝐓
(𝒊𝒗) Hilbert space: 𝓗𝑺𝑻 = 𝓗𝑺 ⊗𝓗𝑻. 

Independent preparations of 𝝆𝑺, 𝝈𝑻: State 𝝆𝑺𝑻 = 𝝆𝑺 ⊗𝝈𝑻

Foundations
ℝ-QT can be experimentally ruled out



M-O. Renou, D. Trillo, M. Weilenmann, T. Le Phuc, A. Tavakoli, N. Gisin, A. Acin, M. Navascues, Nature 600, 625–629 (2021) 107

Experimentalist

• Master standard Quantum Theory

• Construct a concrete experiment

• Obtains experimental results (statistics)

Detective

• Believes in ℝ-QT

𝑷 𝒂𝒃𝒄 𝒙𝒛 :
𝐂𝐇𝐒𝐇𝒃 𝟏, 𝟐; 𝟏, 𝟐 = 𝟐 𝟐

𝐂𝐇𝐒𝐇𝒃 𝟐, 𝟑; 𝟑, 𝟒 = 𝟐 𝟐

𝐂𝐇𝐒𝐇𝒃 𝟑, 𝟏; 𝟓, 𝟔 = 𝟐 𝟐

Foundations
ℝ-QT can be experimentally ruled out



M-O. Renou, D. Trillo, M. Weilenmann, T. Le Phuc, A. Tavakoli, N. Gisin, A. Acin, M. Navascues, Nature 600, 625–629 (2021) 108

Experimentalist

• Master standard Quantum Theory

• Construct a concrete experiment

• Obtains experimental results (statistics)

Detective

• Believes in ℝ-QT

• Tries to explain these experimental results
results. Any ‘crazy’ explanation compatible 
with ℝ-QT is possible. 

➢Fails

𝑷 𝒂𝒃𝒄 𝒙𝒛 :
𝐂𝐇𝐒𝐇𝒃 𝟏, 𝟐; 𝟏, 𝟐 = 𝟐 𝟐

𝐂𝐇𝐒𝐇𝒃 𝟐, 𝟑; 𝟑, 𝟒 = 𝟐 𝟐

𝐂𝐇𝐒𝐇𝒃 𝟑, 𝟏; 𝟓, 𝟔 = 𝟐 𝟐

Foundations
ℝ-QT can be experimentally ruled out
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Applications

Characterisation

Foundations
Experiments, 
applications

*

Foundations
Nonlocality (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

Characterisation
Bell Inequalities (1969)



110

Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

Detective

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

➢ Involves tripartite (and n-partite) entangled 
sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

➢ Involves tripartite (and n-partite) entangled 
sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

• However, would like to keep this craziness of low 
degree:

➢Rejects tripartite (or more) « crazy » sources

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

➢ Involves tripartite (and n-partite) entangled 
sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

• However, would like to keep this craziness of low 
degree:

➢Rejects tripartite (or more) « crazy » sources

➢The foundations of QT: is tripartite entanglement really needed?
Important question for: 

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

➢ Involves tripartite (and n-partite) entangled 
sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

• However, would like to keep this craziness of low 
degree:

➢Rejects tripartite (or more) « crazy » sources

➢The foundations of QT: is tripartite entanglement really needed?
➢Applications of QT: Can I do more with tripartite entanglement, what? Important question for: 

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory

➢ Involves bipartite entangled sources

➢ Involves tripartite (and n-partite) entangled 
sources

Detective

• Accepted that only “more crazy theory than any 
crazy explanation compatible with classical physics”

➢Accepts bipartite « crazy » sources and shared 
randomness

• However, would like to keep this craziness of low 
degree:

➢Rejects tripartite (or more) « crazy » sources

➢The foundations of QT: is tripartite entanglement really needed?
➢Applications of QT: Can I do more with tripartite entanglement, what? 
➢Benchmark Q systems: How to prove « I can produce tripartite entanglement »?

Important question for: 

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

• Believes in bipartite « crazy » sources and 
shared randomness

➢If the crazy sources satisfy causality and can be 
duplicated in independent copies:
➢Do Inflation

Foundations
Bipartite exotic sources are not enough
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

• Believes in bipartite « crazy » sources and 
shared randomness

➢If the crazy sources satisfy causality and can be 
duplicated in independent copies:
➢Detective explanation must fails

Foundations
Bipartite exotic sources are not enough



State certification: “self-testing”

• Observation: 𝐂𝐇𝐒𝐇 = 𝟐 𝟐

TURING CPHT

𝐂𝐇𝐒𝐇 = 𝟐 𝟐

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

Applications
Certification of all pure states



State certification: “self-testing”

• Observation: 𝐂𝐇𝐒𝐇 = 𝟐 𝟐

➢This certifies that the quantum state 𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐
was produced

TURING CPHT

𝐂𝐇𝐒𝐇 = 𝟐 𝟐

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

Applications
Certification of all pure states

𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐



State certification: “self-testing”

• Observation: 𝐂𝐇𝐒𝐇 = 𝟐 𝟐

➢This certifies that the quantum state 𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐
was produced

Open question: is there an operational way to test all pure 
states?

TURING CPHT

𝐂𝐇𝐒𝐇 = 𝟐 𝟐

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

Applications
Certification of all pure states

𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐



State certification: “self-testing”

• Observation: 𝐂𝐇𝐒𝐇 = 𝟐 𝟐

➢This certifies that the quantum state 𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐
was produced

Open question: is there an operational way to test all pure 
states?

➢Answer: yes, considering network correlations

TURING CPHT

𝐂𝐇𝐒𝐇 = 𝟐 𝟐

I. Šupić, J. Bowles, M-O. Renou, A. Acín, M. J. Hoban, Nature Physics, 1745-2481 (2023)

Applications
Certification of all pure states

𝝍+ =
𝟎 𝟏 + 𝟏 𝟎

𝟐
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

Foundations: Some past works
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

• Believes in bipartite « crazy » sources and 
shared randomness

➢If the crazy sources satisfy causality and can be 
duplicated in independent copies:
➢Do Inflation

Foundations: Some past works
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

• Believes in bipartite « crazy » sources and 
shared randomness

➢If the crazy sources satisfy causality and can be 
duplicated in independent copies:
➢Do Inflation

Foundations: Some past works
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Experimentalist

• Master standard Quantum Theory 

• Construct a concrete experiement

• Obtains experimental results (statistics)
𝑨𝟎𝑩𝟐 + 𝑩𝟐𝑪𝟎 = 𝟐, 

𝑨𝟎𝑩𝟎
|𝑪𝟏=𝟏 + 𝑨𝟎𝑩𝟏

|𝑪𝟏=𝟏 + 𝑨𝟏𝑩𝟎
|𝑪𝟏=𝟏 − 𝑨𝟏𝑩𝟏

|𝑪𝟏=𝟏 = 𝟐 𝟐

Detective

• Believes in bipartite « crazy » sources and 
shared randomness

➢If the crazy sources satisfy causality and can be 
duplicated in independent copies:
➢Do Inflation
➢Detective explaination must fails

Foundations: Some past works
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Characterisation

Foundations
Experiments, 
applications

*

Foundations
Nonlocality (1964) 

Experiments, applications
Bell tests (1982, 2015)
Certification (2003-2010) 

Characterisation
Bell Inequalities (1969)

Causal network quantum correlations



Foundations: ongoing and future goals 

Incompatibility

| ⟩𝜙+

Alternative Theory

Classical physics

ℝ− quantum theory

Generalised bipartite 
entanglement

More? …

𝐵

𝑏

𝐴

𝑎

*

𝑦𝑥 Reconstruct QIT from its correlations?

• Bell theorem excludes LHV models

• ℝ− quantum theory excluded 

• Generalised bipartite entanglement excluded



Foundations: ongoing and future goals 

Incompatibility

| ⟩𝜙+

Alternative Theory

Classical physics

ℝ− quantum theory

Generalised bipartite 
entanglement

More? …

𝐵

𝑏

𝐴

𝑎

*

𝑦𝑥 Reconstruct QIT from its correlations?

• Bell theorem excludes LHV models

• ℝ− quantum theory excluded 

• Generalised bipartite entanglement excluded

➢Exclude more ?

➢Characterise Quantum Information Theory from 
its correlations?


