

Hull Attacks on the Lattice Isomorphism Problem

Léo Ducas ^{1,2} Shane Gibbons ^{1,2}

¹Cryptology Group, CWI Amsterdam

²Mathematical Institute, Leiden University

4 April 2023

A B M A B M

Context and Motivation

Definition (Lattice Isomorphism)

Let $L, L' \subseteq \mathbb{R}^n$ be lattices. Then L and L' are *isomorphic* if there exists an $O \in \mathcal{O}_n(\mathbb{R})$ such that

$$\{Ox: x \in L\} := O \cdot L = L'.$$

< ロ > < 同 > < 三 > < 三 >

Context and Motivation

Definition (Lattice Isomorphism)

Let $L, L' \subseteq \mathbb{R}^n$ be lattices. Then L and L' are *isomorphic* if there exists an $O \in \mathcal{O}_n(\mathbb{R})$ such that

$$\{Ox: x \in L\} := O \cdot L = L'.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Computationally, the instance of the problem is with bases, not lattices.

Definition (Lattice Isomorphism Problem)

Let $m \leq n$. Let $B, B' \in \mathbb{R}^{n \times m}$ be bases of lattices L, L' that are isomorphic. Find an invertible $U \in GL_m(\mathbb{Z})$ and orthonormal $O \in \mathcal{O}_n(\mathbb{R})$ such that

OBU = B'.

(日)

Definition (Lattice Isomorphism Problem)

Let $m \leq n$. Let $B, B' \in \mathbb{R}^{n \times m}$ be bases of lattices L, L' that are isomorphic. Find an invertible $U \in GL_m(\mathbb{Z})$ and orthonormal $O \in \mathcal{O}_n(\mathbb{R})$ such that

$$OBU = B'.$$

Definition (Δ -Lattice Isomorphism Problem (Lattice Version)) Given two lattices L_1, L_2 , and the promise that a third lattice L_3 is isomorphic to L_b where $b \in \{0, 1\}$, find b.

▲ 同 ▶ ▲ 三 ▶ ▲

Definition (Lattice Isomorphism Problem)

Let $m \leq n$. Let $B, B' \in \mathbb{R}^{n \times m}$ be bases of lattices L, L' that are isomorphic. Find an invertible $U \in GL_m(\mathbb{Z})$ and orthonormal $O \in \mathcal{O}_n(\mathbb{R})$ such that

$$OBU = B'.$$

Definition (Δ -Lattice Isomorphism Problem (Lattice Version)) Given two lattices L_1, L_2 , and the promise that a third lattice L_3 is isomorphic to L_b where $b \in \{0, 1\}$, find b. [BGPSD21, DvW22] propose using Δ LIP for cryptography, while [DPPW22] propose LIP.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Using the Gap to Conjecture Hardness

All known attacks against ΔLIP solve SVP.

Using the Gap to Conjecture Hardness

All known attacks against Δ LIP solve SVP. SVP can be solved by lattice reduction. BKZ reduction with blocksize β runs in time $2^{0.292\beta+o(\beta)}$ [BDGL16].

Using the Gap to Conjecture Hardness

All known attacks against Δ LIP solve SVP. SVP can be solved by lattice reduction. BKZ reduction with blocksize β runs in time $2^{0.292\beta+o(\beta)}$ [BDGL16]. The parameter β required for solving SVP (heuristically) depends on the length of the shortest vector.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Using the Gap to Conjecture Hardness

All known attacks against Δ LIP solve SVP.

SVP can be solved by lattice reduction. BKZ reduction with blocksize β runs in time $2^{0.292\beta+o(\beta)}$ [BDGL16]. The parameter β required for solving SVP (heuristically) depends on the length of the shortest vector.

< ロ > < 同 > < 三 > < 三 >

In a random lattice L of dimension n, we expect

 $\lambda_1(L) \sim gh(n) \approx \det(L)^{1/n} \sqrt{\frac{n}{2\pi e}}.$

Using the Gap to Conjecture Hardness

All known attacks against Δ LIP solve SVP.

SVP can be solved by lattice reduction. BKZ reduction with blocksize β runs in time $2^{0.292\beta+o(\beta)}$ [BDGL16]. The parameter β required for solving SVP (heuristically) depends on the length of the shortest vector.

In a random lattice *L* of dimension *n*, we expect $\lambda_1(L) \sim gh(n) \approx \det(L)^{1/n} \sqrt{\frac{n}{2\pi a}}$.

Definition (Gap)

The ratio between λ_1 and the Gaussian heuristic is called the gap:

- 4 目 1 - 4 日 1 - 4 日 1

Using the Gap to Conjecture Hardness

All known attacks against Δ LIP solve SVP.

SVP can be solved by lattice reduction. BKZ reduction with blocksize β runs in time $2^{0.292\beta+o(\beta)}$ [BDGL16]. The parameter β required for solving SVP (heuristically) depends on the length of the shortest vector.

In a random lattice *L* of dimension *n*, we expect $\lambda_1(L) \sim gh(n) \approx \det(L)^{1/n} \sqrt{\frac{n}{2\pi e}}$.

Definition (Gap)

The ratio between λ_1 and the Gaussian heuristic is called the gap:

$$\mathsf{gap} := \mathsf{max}\left\{ rac{\mathsf{gh}(\mathcal{L})}{\lambda_1(\mathcal{L})}, rac{\mathsf{gh}(\mathcal{L}^*)}{\lambda_1(\mathcal{L}^*)}
ight\}.$$

Using the Gap to Conjecture Hardness

For random lattices L, L', we expect gap(L), gap(L') = O(1). We solve with BKZ, β = n.

Using the Gap to Conjecture Hardness

- For random lattices L, L', we expect gap(L), gap(L') = O(1). We solve with BKZ, β = n.
- For the lattice \mathbb{Z}^n , gap $(\mathbb{Z}^n) = O(\sqrt{n})$, so we can solve with $\beta = n/2$.

<ロト < 同ト < ヨト < ヨト

Using the Gap to Conjecture Hardness

- For random lattices L, L', we expect gap(L), gap(L') = O(1). We solve with BKZ, β = n.
- For the lattice \mathbb{Z}^n , gap $(\mathbb{Z}^n) = O(\sqrt{n})$, so we can solve with $\beta = n/2$.

Conjecture ([DvW22] informal)

The best attack against Δ LIP for lattices L, L' requires solving f-approx SVP in both lattices, where

$$f = \max\{gap(L), gap(L')\}$$

- 4 同 1 4 三 1 4 三 1

Using the Gap to Conjecture Hardness

- For random lattices L, L', we expect gap(L), gap(L') = O(1). We solve with BKZ, β = n.
- For the lattice \mathbb{Z}^n , gap $(\mathbb{Z}^n) = O(\sqrt{n})$, so we can solve with $\beta = n/2$.

Conjecture ([DvW22] informal)

The best attack against Δ LIP for lattices L, L' requires solving f-approx SVP in both lattices, where

$$f = \max\{gap(L), gap(L')\}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Our result: a counterexample to this conjecture.

Using the Gap to Conjecture Hardness

- For random lattices L, L', we expect gap(L), gap(L') = O(1). We solve with BKZ, β = n.
- For the lattice \mathbb{Z}^n , gap $(\mathbb{Z}^n) = O(\sqrt{n})$, so we can solve with $\beta = n/2$.

Conjecture ([DvW22] informal)

The best attack against Δ LIP for lattices L, L' requires solving f-approx SVP in both lattices, where

$$f = \max\{gap(L), gap(L')\}$$

Our result: a counterexample to this conjecture. We make the gap larger, by extracting the sublattice \mathbb{Z}^n , then solving $\mathbb{Z}LIP$.

< 同 ト < 三 ト < 三 ト

Introduction 0000●	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull	LIP via Code Equivalence	Conclusion 000

æ

イロト イヨト イヨト イヨト

Plan

Construction A Lattices and their Hulls

Introduction 0000●	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull	LIP via Code Equivalence	Conclusion 000

-

문▶ 문

Plan

Construction A Lattices and their Hulls

The Genus of the Hull.

Introduction 0000●	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull	LIP via Code Equivalence	Conclusion 000

Plan

- Construction A Lattices and their Hulls
- The Genus of the Hull.
- ► Solving LIP via ℤLIP and Code Equivalence

Introduction 0000●	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull	LIP via Code Equivalence	Conclusion 000

Plan

- Construction A Lattices and their Hulls
- The Genus of the Hull.
- Solving LIP via ZLIP and Code Equivalence
- Solving instances of Code Equivalence via Graph Isomorphism

<ロ> <回> <回> <目> <目> <目> <回> <回> <回> <回> <回> <回> <回</p>

Definition

Given an $[n, k]_q$ linear code C over \mathbb{F}_q , the hull of C is

$$\mathcal{H}:=\mathcal{C}\cap\mathcal{C}^{\perp},$$

《口》《聞》《臣》《臣》

æ

where
$$C^{\perp} := \left\{ y \in \mathbb{F}_q^n : y \cdot x = 0 \quad \forall x \in C \right\}.$$

Definition

Given an $[n, k]_q$ linear code C over \mathbb{F}_q , the hull of C is

$$\mathcal{H}:=\mathcal{C}\cap\mathcal{C}^{\perp},$$

(日)

where
$$C^{\perp} := \left\{ y \in \mathbb{F}_q^n : y \cdot x = 0 \quad \forall x \in C \right\}.$$

Definition

Let $s \in \mathbb{R}^{\times}$, and let $L \subseteq \mathbb{R}^n$ be a lattice with basis B.

Definition

Given an $[n, k]_q$ linear code C over \mathbb{F}_q , the hull of C is

$$\mathcal{H}:=\mathcal{C}\cap\mathcal{C}^{\perp},$$

where
$$C^{\perp} := \left\{ y \in \mathbb{F}_q^n : y \cdot x = 0 \quad \forall x \in C \right\}.$$

Definition

Let $s \in \mathbb{R}^{\times}$, and let $L \subseteq \mathbb{R}^n$ be a lattice with basis B. The *s*-hull of L is the sublattice

$$H_{s}(L) = L \cap sL^{*},$$

< ロ > < 同 > < 三 > < 三 >

where $L^* := \{x \in \text{span}(L) : \langle x, L \rangle \subseteq \mathbb{Z}\}.$

Which Values of *s* are Relevant?

Let L be a lattice with basis B. The *s*-hull can be written as

$$H_{s} = \left\{ Bx : x \in \mathbb{Z}^{n}, B^{T}Bx \in s\mathbb{Z}^{n} \right\}.$$

Which Values of *s* are Relevant?

Let L be a lattice with basis B. The *s*-hull can be written as

$$H_{s} = \left\{ Bx : x \in \mathbb{Z}^{n}, B^{T}Bx \in s\mathbb{Z}^{n} \right\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

If *L* is integral, *i.e.* $B^T B \in \mathbb{Z}^{n \times n}$, then any *s*-hull is a scaling of one of a finite set of hulls.

▶ If
$$s \notin \mathbb{Q}$$
, then $H_s(L) = \{0\}$.

Which Values of *s* are Relevant?

Let L be a lattice with basis B. The *s*-hull can be written as

$$H_{s} = \left\{ Bx : x \in \mathbb{Z}^{n}, B^{T}Bx \in s\mathbb{Z}^{n} \right\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

If *L* is integral, *i.e.* $B^T B \in \mathbb{Z}^{n \times n}$, then any *s*-hull is a scaling of one of a finite set of hulls.

▶ If
$$s \notin \mathbb{Q}$$
, then $H_s(L) = \{0\}$.

• If
$$s = a/b \in \mathbb{Q}$$
, then $H_s(L) = H_a(L)$.

Which Values of *s* are Relevant?

Let L be a lattice with basis B. The s-hull can be written as

$$H_{s} = \left\{ Bx : x \in \mathbb{Z}^{n}, B^{T}Bx \in s\mathbb{Z}^{n} \right\}.$$

If *L* is integral, *i.e.* $B^T B \in \mathbb{Z}^{n \times n}$, then any *s*-hull is a scaling of one of a finite set of hulls.

▶ If
$$s \notin \mathbb{Q}$$
, then $H_s(L) = \{0\}$.

• If
$$s = a/b \in \mathbb{Q}$$
, then $H_s(L) = H_a(L)$.

▶ If $s = s's'' \in \mathbb{Z}$, where s'' is coprime to det $(B^T B)$, then $H_s(L) = s'' H_{s'}(L)$.

Which Values of *s* are Relevant?

Let L be a lattice with basis B. The *s*-hull can be written as

$$H_{s} = \left\{ Bx : x \in \mathbb{Z}^{n}, B^{T}Bx \in s\mathbb{Z}^{n} \right\}.$$

If *L* is integral, *i.e.* $B^T B \in \mathbb{Z}^{n \times n}$, then any *s*-hull is a scaling of one of a finite set of hulls.

▶ If
$$s \notin \mathbb{Q}$$
, then $H_s(L) = \{0\}$.

• If
$$s = a/b \in \mathbb{Q}$$
, then $H_s(L) = H_a(L)$.

- ▶ If $s = s's'' \in \mathbb{Z}$, where s'' is coprime to det $(B^T B)$, then $H_s(L) = s'' H_{s'}(L)$.
- If $s = qp^{k+r}$, where p^k is the largest power of p dividing $det(B^TB)$, then $H_s = p^r H_{qp^k}$.

Hull of Integral Lattices

0000

The hull can be expressed as

æ 《口》《聞》《臣》《臣》

Hull of Integral Lattices

The hull can be expressed as

$$H_s(L) = B \cdot \Lambda_s^{\perp}(B^T B) = B \cdot \left\{ x \in \mathbb{Z}^n : B^T B x = 0 \mod s \right\}.$$

æ

《口》《聞》《臣》《臣》

Hull of Integral Lattices

The hull can be expressed as

$$H_s(L) = B \cdot \Lambda_s^{\perp}(B^T B) = B \cdot \left\{ x \in \mathbb{Z}^n : B^T B x = 0 \mod s \right\}.$$

(日)

э

Furthermore, only $s \mid det(B^T B)$ can lead to unique hulls.

Construction A Lattices

Given a linear code C over \mathbb{F}_p , we can define the Construction A lattice

$$L = C + p\mathbb{Z}^n = \pi^{-1}[C],$$

where $\pi : \mathbb{Z}^n \to \mathbb{F}_p^n$ is reduction modulo p.

э

Construction A Lattices

Given a linear code C over \mathbb{F}_p , we can define the Construction A lattice

$$L = C + p\mathbb{Z}^n = \pi^{-1}[C],$$

where $\pi : \mathbb{Z}^n \to \mathbb{F}_p^n$ is reduction modulo p.

Figure: Construction A Lattice from a code over \mathbb{F}_{13}

- 4 同 1 4 三 1 4 三 1

Construction A Lattices

Given a linear code C over \mathbb{F}_p , we can define the Construction A lattice

$$L = C + p\mathbb{Z}^n = \pi^{-1}[C],$$

where $\pi : \mathbb{Z}^n \to \mathbb{F}_p^n$ is reduction modulo p.

Figure: Construction A Lattice from a code over \mathbb{F}_{13}
An integral with basis $B \in \mathbb{R}^{n \times m}$ lattice satisfies $Q := B^T B \in \mathbb{Z}^{m \times m}$.

An integral with basis $B \in \mathbb{R}^{n \times m}$ lattice satisfies $Q := B^T B \in \mathbb{Z}^{m \times m}$. The lattices generated by B, B' are isomorphic if there exists $U \in GL_m(\mathbb{Z})$ with

$$U^T B^T B U = {B'}^T B'.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

An integral with basis $B \in \mathbb{R}^{n \times m}$ lattice satisfies $Q := B^T B \in \mathbb{Z}^{m \times m}$. The lattices generated by B, B' are isomorphic if there exists $U \in GL_m(\mathbb{Z})$ with $U^T B^T B U = {B'}^T B'$

A more coarse equivalence class is the genus of a lattice/quadratic form.

An integral with basis $B \in \mathbb{R}^{n \times m}$ lattice satisfies $Q := B^T B \in \mathbb{Z}^{m \times m}$. The lattices generated by B, B' are isomorphic if there exists $U \in GL_m(\mathbb{Z})$ with $U^T B^T B U = {B'}^T B'$

Definition (Genus)

Two Quadratic forms are in the same genus if they are equivalent over \mathbb{R} and over the *p*-adic integers \mathbb{Z}_p for all primes *p*.

Diagonalise over \mathbb{Z}_p (Jordan Decomposition)

A (positive definite) quadratic form Q has a Jordan decomposition

Diagonalise over \mathbb{Z}_p (Jordan Decomposition)

A (positive definite) quadratic form Q has a Jordan decomposition

$$Q \sim U Q U^T =$$

ntroduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

Diagonalise over \mathbb{Z}_p (Jordan Decomposition)

A (positive definite) quadratic form Q has a Jordan decomposition

$$Q \sim UQU^{\mathsf{T}} = \begin{pmatrix} Q_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & pQ_p & 0 & \cdots & 0 & 0 \\ 0 & 0 & p^2Q_{p^2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p^{e-1}Q_{p^{e-1}} & 0 \\ 0 & 0 & 0 & \cdots & 0 & p^eQ_{p^e} \end{pmatrix}$$

with each Q_i invertible over \mathbb{Z}_p , i.e. $det(Q_i) \in \mathbb{Z}_p^*$

The Genus of the Hull

Proposition (Informal)

If L and L' admit quadratic forms Q, $Q' \in \mathbb{Z}^{m \times m}$ that are equivalent over \mathbb{Z}_p ,

(日)

The Genus of the Hull

Proposition (Informal)

If L and L' admit quadratic forms Q, $Q' \in \mathbb{Z}^{m \times m}$ that are equivalent over \mathbb{Z}_p , then any quadratic forms admitted by the *s*-hulls of these lattices, Q_H and $Q_{H'}$, are also equivalent over \mathbb{Z}_p .

- 4 日 1 - 4 日 1 - 4 日 1

The Genus of the Hull

Proposition (Informal)

If L and L' admit quadratic forms Q, $Q' \in \mathbb{Z}^{m \times m}$ that are equivalent over \mathbb{Z}_p , then any quadratic forms admitted by the *s*-hulls of these lattices, Q_H and $Q_{H'}$, are also equivalent over \mathbb{Z}_p . So the genus of the hull will not help solve Δ LIP, if the genus of the lattices cannot solve it.

Solve LIP via the Hull

Given a linear code *C* over \mathbb{F}_p with hull \mathcal{H} ,

 $H_p(C + p\mathbb{Z}^n) = \mathcal{H} + p\mathbb{Z}^n.$

Solve LIP via the Hull

Given a linear code *C* over \mathbb{F}_p with hull \mathcal{H} ,

$$H_p(C+p\mathbb{Z}^n)=\mathcal{H}+p\mathbb{Z}^n.$$

If $\mathcal{H} = \{0\}$:

Figure: Hull of a Lattice

Solve LIP via the Hull

Given a linear code *C* over \mathbb{F}_p with hull \mathcal{H} ,

$$H_p(C+p\mathbb{Z}^n)=\mathcal{H}+p\mathbb{Z}^n.$$

If $\mathcal{H} = \{0\}$:

Figure: Hull of a Lattice

(日)

 $H_p(C+p\mathbb{Z}^n)=\mathcal{H}+p\mathbb{Z}^n.$

Solve LIP via the Hull

Given a linear code *C* over \mathbb{F}_p with hull \mathcal{H} ,

Figure: Hull of a Lattice

(日)

Fix a rate 1/2 code *C* with trivial hull $\mathcal{H} = \{0\}$.

Fix a rate 1/2 code C with trivial hull $\mathcal{H} = \{0\}$. For $O_i \in \mathcal{O}_n(\mathbb{R})$, for i = 1, 2, consider LIP for lattices of the form $L_i = O_i(C + p\mathbb{Z}^n)$ that have hull $H_p(L_i) = O_i(p\mathbb{Z}^n)$.

Fix a rate 1/2 code C with trivial hull $\mathcal{H} = \{0\}$. For $O_i \in \mathcal{O}_n(\mathbb{R})$, for i = 1, 2, consider LIP for lattices of the form $L_i = O_i(C + p\mathbb{Z}^n)$ that have hull $H_p(L_i) = O_i(p\mathbb{Z}^n)$.

- 4 同 1 4 三 1 4 三 1

Figure: Isomorphism of Lattices

Fix a rate 1/2 code C with trivial hull $\mathcal{H} = \{0\}$. For $O_i \in \mathcal{O}_n(\mathbb{R})$, for i = 1, 2, consider LIP for lattices of the form $L_i = O_i(C + p\mathbb{Z}^n)$ that have hull $H_p(L_i) = O_i(p\mathbb{Z}^n)$.

Figure: Isomorphism of Lattices

Figure: Isomorphism of Hulls

< ロ > < 同 > < 三 > < 三 >

Introduction 00000	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull ○○●	LIP via Code Equivalence	Conclusion 000

We now have two instances of $\mathbb{Z}\mathsf{LIP}.$

Figure: Rotation of the Hull

э

Introduction 00000	Construction A Lattices	Genus of the Hull	Solve LIP via the Hull ○○●	LIP via Code Equivalence	Conclusion

We now have two instances of $\mathbb{Z}LIP$.

Figure: Rotation of the Hull

In each instance, we find O_i up to $\varphi_i \in \operatorname{Aut}(p\mathbb{Z}^n)$. An instance of \mathbb{Z} LIP takes $2^{0.292n/2+o(n)}$ [DPPW22].

Code Equivalence

We find this automorphism by solving a code equivalence problem between $\psi_1 O_1(L_1) \mod p$ and $\psi_2 O_2(L_2) \mod p$.

Code Equivalence

We find this automorphism by solving a code equivalence problem between $\psi_1 O_1(L_1) \mod p$ and $\psi_2 O_2(L_2) \mod p$.

Definition

(Linear Code Equivalence) Two linear $[n, k]_q$ codes $C, C' \subseteq \mathbb{F}_q^n$ are linearly equivalent if there exists a permutation matrix P and an $n \times n$ diagonal matrix D with non-zero diagonal entries such that

$$C' = DPC.$$

- 4 同 1 4 三 1 4 三 1

Code Equivalence

We find this automorphism by solving a code equivalence problem between $\psi_1 O_1(L_1) \mod p$ and $\psi_2 O_2(L_2) \mod p$.

Definition

(Linear Code Equivalence) Two linear $[n, k]_q$ codes $C, C' \subseteq \mathbb{F}_q^n$ are linearly equivalent if there exists a permutation matrix P and an $n \times n$ diagonal matrix D with non-zero diagonal entries such that

$$C' = DPC.$$

- 4 同 1 4 三 1 4 三 1

- Signed permutation equivalence (SPEP)
- Permutation equivalence (PEP)

Introduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

Signed Permutation Equivalence

Definition

Let $C \subseteq \mathbb{F}_q^n$ be a linear code of dimension k. The signed closure C^{\pm} of the code C is the linear code of length 2n and dimension k over \mathbb{F}_q given by:

$$C^{\pm} := \{(x_1, -x_1, x_2, -x_2, \dots, x_n, -x_n) : (x_i)_{i \in [n]} \in C\}.$$

< ロ > < 同 > < 三 > < 三 >

Introduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

Signed Permutation Equivalence

Definition

Let $C \subseteq \mathbb{F}_q^n$ be a linear code of dimension k. The signed closure C^{\pm} of the code C is the linear code of length 2n and dimension k over \mathbb{F}_q given by:

$$C^{\pm} := \{(x_1, -x_1, x_2, -x_2, \dots, x_n, -x_n) : (x_i)_{i \in [n]} \in C\}.$$

Lemma (Adapted from [SS13a]) Let $C, C' \subseteq \mathbb{F}_q^n$ be linear codes. Then C and C' are signed permutation equivalent if and only if C^{\pm} and C'^{\pm} are permutation equivalent.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Signed Permutation Equivalence

Definition

Let $C \subseteq \mathbb{F}_q^n$ be a linear code of dimension k. The signed closure C^{\pm} of the code C is the linear code of length 2n and dimension k over \mathbb{F}_q given by:

$$C^{\pm} := \left\{ (x_1, -x_1, x_2, -x_2, \dots, x_n, -x_n) : (x_i)_{i \in [n]} \in C \right\}.$$

Lemma (Adapted from [SS13a])

Let C, $C' \subseteq \mathbb{F}_q^n$ be linear codes. Then C and C' are signed permutation equivalent if and only if C^{\pm} and C'^{\pm} are permutation equivalent.

Any permutation from C^{\pm} to C'^{\pm} can be lifted to a signed permutation from C to C'

イロト イヨト イヨト イヨト

æ

PEP to Graph Isomorphism

Key difference from [SS13b]: if char(𝔽_q) ≠ 2, then ℋ(𝔅[±]) = (ℋ(𝔅))[±].

PEP to Graph Isomorphism

- Key difference from [SS13b]: if char(𝔽_q) ≠ 2, then ℋ(𝔅[±]) = (ℋ(𝔅))[±].
- If dim(H(C)) = 0, then dim(H(C[±])) = 0: an easy instance of permutation equivalence, via graph isomorphism.[BOST19]

(日)

PEP to Graph Isomorphism

- Key difference from [SS13b]: if char(𝔽_q) ≠ 2, then ℋ(𝔅[±]) = (ℋ(𝔅))[±].
- If dim(H(C)) = 0, then dim(H(C[±])) = 0: an easy instance of permutation equivalence, via graph isomorphism.[BOST19]
- Graph isomorphism can be solved in time 2^{O((log n)^c)} for some constant c [Bab15].

< ロ > < 同 > < 三 > < 三 >

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$.

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$. Given two orthonormal transformations of this Construction A lattice $O_1, O_2 \in \mathcal{O}_n(\mathbb{R})$, Δ LIP can be solved in time $2^{0.292n/2+o(n)}$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

▶ Take the *p*-hull of *L*₁ and *L*₂.

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$. Given two orthonormal transformations of this Construction A lattice $O_1, O_2 \in \mathcal{O}_n(\mathbb{R})$, Δ LIP can be solved in time $2^{0.292n/2+o(n)}$.

- Take the *p*-hull of L_1 and L_2 .
- Solve ℤLIP from both lattices hulls to pℤⁿ to find ψO₁, φO₂ for some ψ, φ ∈ Aut(ℤⁿ).

・ 同 ト ・ ヨ ト ・ ヨ ト

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$. Given two orthonormal transformations of this Construction A lattice $O_1, O_2 \in \mathcal{O}_n(\mathbb{R})$, Δ LIP can be solved in time $2^{0.292n/2+o(n)}$.

- Take the *p*-hull of L_1 and L_2 .
- Solve ℤLIP from both lattices hulls to pℤⁿ to find ψO₁, φO₂ for some ψ, φ ∈ Aut(ℤⁿ).

| 4 同 ト 4 ヨ ト 4 ヨ ト

Apply O_1^{-1} and O_2^{-1} to L_1 and L_2 , respectively, and then reduce modulo p.

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$. Given two orthonormal transformations of this Construction A lattice $O_1, O_2 \in \mathcal{O}_n(\mathbb{R})$, Δ LIP can be solved in time $2^{0.292n/2+o(n)}$.

- Take the *p*-hull of L_1 and L_2 .
- Solve ℤLIP from both lattices hulls to pℤⁿ to find ψO₁, φO₂ for some ψ, φ ∈ Aut(ℤⁿ).
- Apply O_1^{-1} and O_2^{-1} to L_1 and L_2 , respectively, and then reduce modulo *p*.
- Reduce from solving SPEP on the resulting codes to solving PEP on their closures.

Given an $[n, k]_p$ code C with hull of dimension 0, the Construction A lattice generated by this code $C + p\mathbb{Z}^n$ has p-hull given by $p\mathbb{Z}^n$. Given two orthonormal transformations of this Construction A lattice $O_1, O_2 \in \mathcal{O}_n(\mathbb{R})$, Δ LIP can be solved in time $2^{0.292n/2+o(n)}$.

- Take the *p*-hull of L_1 and L_2 .
- Solve ℤLIP from both lattices hulls to pℤⁿ to find ψO₁, φO₂ for some ψ, φ ∈ Aut(ℤⁿ).
- Apply O_1^{-1} and O_2^{-1} to L_1 and L_2 , respectively, and then reduce modulo *p*.
- Reduce from solving SPEP on the resulting codes to solving PEP on their closures.

(* E) * E)

э

Solve PEP on their closures via graph isomorphism.

Conclusion

We restate the conjecture from [DvW22]

Conjecture (informal)

The best attack against Δ LIP for lattices L, L' requires solving f-approx SVP in both lattices, where

 $f = \operatorname{hullgap}(L)$

where

$$\operatorname{hullgap}(L) := \max_{s \mid \det(B^{\mathsf{T}}B)} \left\{ \operatorname{gap}(H_s) \right\}.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Recommendaton:

Hull Attacks on the Lattice Isomorphism Problem

 Recommendaton: Use unimodular (i.e. self-dual) lattices for LIP, to avoid this or similar attacks.

< ロ > < 同 > < 三 > < 三 >

æ

 Recommendaton: Use unimodular (i.e. self-dual) lattices for LIP, to avoid this or similar attacks.

(日)

 Coincidentally, the lattices used in [DPPW22, BGPSD21] (rotations of Zⁿ) are unimodular.

 Recommendaton: Use unimodular (i.e. self-dual) lattices for LIP, to avoid this or similar attacks.

- 4 同 ト 4 ヨ ト 4 ヨ ト

 Coincidentally, the lattices used in [DPPW22, BGPSD21] (rotations of Zⁿ) are unimodular.

https://eprint.iacr.org/2023/194.pdf

References I

- László Babai, *Graph isomorphism in quasipolynomial time*, 2015, https://arxiv.org/abs/1512.03547.
- Anja Becker, Leo Ducas, Nicolas Gama, and Thijs Laarhoven, New directions in nearest neighbor searching with applications to lattice sieving, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 1, 2016, p. 10 – 24.
- Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz, Just how hard are rotations of Zⁿ? algorithms and cryptography with the simplest lattice, Cryptology ePrint Archive, Paper 2021/1548, 2021.

References II

- Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha, *Permutation code equivalence is not harder than graph isomorphism when hulls are trivial*, 2019 IEEE International Symposium on Information Theory (ISIT), IEEE, jul 2019.
- Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van Woerden, *Hawk: Module LIP makes lattice* signatures fast, compact and simple, Advances in Cryptology – ASIACRYPT 2022 (Cham) (Shweta Agrawal and Dongdai Lin, eds.), Springer Nature Switzerland, 2022, pp. 65–94.

▲ 伊 ▶ ▲ 三 ▶ .

References III

- Léo Ducas and Wessel van Woerden, *On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography*, Advances in Cryptology EUROCRYPT 2022 (Cham) (Orr Dunkelman and Stefan Dziembowski, eds.), Springer International Publishing, 2022, pp. 643–673.
- Nicolas Sendrier and Dimitris Simos, How easy is code equivalence over fq, International Workshop on Coding and Cryptography - WCC 2013, Apr 2013, Bergen, Norway, 2013, https://hal.inria.fr/hal-00790861v2.

References IV

Nicolas Sendrier and Dimitris E. Simos, The hardness of code equivalence over F_q and its application to code-based cryptography, Post-Quantum Cryptography (Berlin, Heidelberg) (Philippe Gaborit, ed.), Springer Berlin Heidelberg, 2013, pp. 203–216.

- 4 同 ト 4 ヨ ト 4 ヨ ト