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Context and Motivation

Definition (Lattice Isomorphism)

Let L, L′ ⊆ Rn be lattices. Then L and L′ are isomorphic if there
exists an O ∈ On(R) such that

{Ox : x ∈ L} := O · L = L′.

Computationally, the instance of the problem is with bases, not
lattices.
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Definition (Lattice Isomorphism Problem)

Let m ≤ n. Let B,B ′ ∈ Rn×m be bases of lattices L, L′ that are
isomorphic. Find an invertible U ∈ GLm(Z) and orthonormal
O ∈ On(R) such that

OBU = B ′.

Definition (∆-Lattice Isomorphism Problem (Lattice Version))

Given two lattices L1, L2, and the promise that a third lattice L3 is
isomorphic to Lb where b ∈ {0, 1}, find b.

[BGPSD21, DvW22] propose using ∆LIP for cryptography, while
[DPPW22] propose LIP.
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Using the Gap to Conjecture Hardness

All known attacks against ∆LIP solve SVP.

SVP can be solved by lattice reduction. BKZ reduction with
blocksize β runs in time 20.292β+o(β) [BDGL16]. The parameter β
required for solving SVP (heuristically) depends on the length of
the shortest vector.
In a random lattice L of dimension n, we expect
λ1(L) ∼ gh(n) ≈ det(L)1/n

√
n

2πe .

Definition (Gap)

The ratio between λ1 and the Gaussian heuristic is called the gap:

gap := max

{
gh(L)

λ1(L)
,
gh(L∗)

λ1(L∗)

}
.
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Using the Gap to Conjecture Hardness

▶ For random lattices L, L′, we expect gap(L), gap(L′) = O(1).
We solve with BKZ, β = n.

▶ For the lattice Zn, gap(Zn) = O(
√
n), so we can solve with

β = n/2.

Conjecture ([DvW22] informal)

The best attack against ∆LIP for lattices L, L′ requires solving
f -approx SVP in both lattices, where

f = max{gap(L), gap(L′)}

Our result: a counterexample to this conjecture. We make the gap
larger, by extracting the sublattice Zn, then solving ZLIP.
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Plan

▶ Construction A Lattices and their Hulls

▶ The Genus of the Hull.

▶ Solving LIP via ZLIP and Code Equivalence

▶ Solving instances of Code Equivalence via Graph Isomorphism
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Hull of a Lattice

Definition
Given an [n, k]q linear code C over Fq, the hull of C is

H := C ∩ C⊥,

where C⊥ :=
{
y ∈ Fn

q : y · x = 0 ∀x ∈ C
}
.

Definition
Let s ∈ R×, and let L ⊆ Rn be a lattice with basis B. The s-hull
of L is the sublattice

Hs(L) = L ∩ sL∗,

where L∗ := {x ∈ span(L) : ⟨x , L⟩ ⊆ Z}.

Hull Attacks on the Lattice Isomorphism Problem
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Which Values of s are Relevant?

Let L be a lattice with basis B. The s-hull can be written as

Hs =
{
Bx : x ∈ Zn,BTBx ∈ sZn

}
.

If L is integral, i.e. BTB ∈ Zn×n, then any s-hull is a scaling of
one of a finite set of hulls.

▶ If s ̸∈ Q, then Hs(L) = {0}.
▶ If s = a/b ∈ Q, then Hs(L) = Ha(L).

▶ If s = s ′s ′′ ∈ Z, where s ′′ is coprime to det(BTB), then
Hs(L) = s ′′Hs′(L).

▶ If s = qpk+r , where pk is the largest power of p dividing
det(BTB), then Hs = prHqpk .

Hull Attacks on the Lattice Isomorphism Problem
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Hull of Integral Lattices

The hull can be expressed as

Hs(L) = B · Λ⊥
s (B

TB) = B ·
{
x ∈ Zn : BTBx = 0 mod s

}
.

Furthermore, only s | det(BTB) can lead to unique hulls.
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Construction A Lattices

Given a linear code C over Fp, we can define the Construction A
lattice

L = C + pZn = π−1[C ],

where π : Zn → Fn
p is reduction modulo p.

Figure: Construction A Lattice from a code over F13
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The Genus as a Potential Attack on ∆LIP

An integral with basis B ∈ Rn×m lattice satisfies
Q := BTB ∈ Zm×m.

The lattices generated by B, B ′ are isomorphic if there exists
U ∈ GLm(Z) with

UTBTBU = B ′TB ′.

A more coarse equivalence class is the genus of a lattice/quadratic
form.

Definition (Genus)

Two Quadratic forms are in the same genus if they are equivalent
over R and over the p-adic integers Zp for all primes p.

Hull Attacks on the Lattice Isomorphism Problem
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Diagonalise over Zp (Jordan Decomposition)

A (positive definite) quadratic form Q has a Jordan decomposition

Q ∼

UQUT =



Q1 0 0 · · · 0 0
0 pQp 0 · · · 0 0
0 0 p2Qp2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · pe−1Qpe−1 0
0 0 0 · · · 0 peQpe


with each Qi invertible over Zp, i.e. det(Qi ) ∈ Z∗

p

Hull Attacks on the Lattice Isomorphism Problem
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The Genus of the Hull

Proposition (Informal)

If L and L′ admit quadratic forms Q, Q ′ ∈ Zm×m that are
equivalent over Zp,

then any quadratic forms admitted by the
s-hulls of these lattices, QH and QH′ , are also equivalent over Zp.

So the genus of the hull will not help solve ∆LIP, if the genus of
the lattices cannot solve it.

Hull Attacks on the Lattice Isomorphism Problem
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Solve LIP via the Hull

Given a linear code C over Fp with hull H,

Hp(C + pZn) = H+ pZn.

If H = {0}:

Figure: Hull of a Lattice
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Rotation of the Hull

Fix a rate 1/2 code C with trivial hull H = {0}.

For Oi ∈ On(R),
for i = 1, 2, consider LIP for lattices of the form Li = Oi (C + pZn)
that have hull Hp(Li ) = Oi (pZn).

O
L1 L2

O1

C + pZn

O2

Figure: Isomorphism of Lattices

O ′
2O

′
1
−1

Hp(L1) Hp(L2)

O ′
1

pZn

O ′
2

Figure: Isomorphism of Hulls
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We now have two instances of ZLIP.

φiO
−1
i

Figure: Rotation of the Hull

In each instance, we find Oi up to φi ∈ Aut(pZn). An instance of
ZLIP takes 20.292n/2+o(n) [DPPW22].
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Code Equivalence

We find this automorphism by solving a code equivalence problem
between ψ1O1(L1) mod p and ψ2O2(L2) mod p.

Definition
(Linear Code Equivalence) Two linear [n, k]q codes C , C ′ ⊆ Fn

q are
linearly equivalent if there exists a permutation matrix P and an
n × n diagonal matrix D with non-zero diagonal entries such that

C ′ = DPC .

▶ Signed permutation equivalence (SPEP)

▶ Permutation equivalence (PEP)
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Signed Permutation Equivalence

Definition
Let C ⊆ Fn

q be a linear code of dimension k. The signed closure
C± of the code C is the linear code of length 2n and dimension k
over Fq given by:

C± :=
{
(x1,−x1, x2,−x2, . . . , xn,−xn) : (xi )i∈[n] ∈ C

}
.

Lemma (Adapted from [SS13a])

Let C , C ′ ⊆ Fn
q be linear codes. Then C and C ′ are signed

permutation equivalent if and only if C± and C ′± are permutation
equivalent.

Any permutation from C± to C ′± can be lifted to a signed
permutation from C to C ′

Hull Attacks on the Lattice Isomorphism Problem



Introduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

Signed Permutation Equivalence

Definition
Let C ⊆ Fn

q be a linear code of dimension k. The signed closure
C± of the code C is the linear code of length 2n and dimension k
over Fq given by:

C± :=
{
(x1,−x1, x2,−x2, . . . , xn,−xn) : (xi )i∈[n] ∈ C

}
.

Lemma (Adapted from [SS13a])

Let C , C ′ ⊆ Fn
q be linear codes. Then C and C ′ are signed

permutation equivalent if and only if C± and C ′± are permutation
equivalent.

Any permutation from C± to C ′± can be lifted to a signed
permutation from C to C ′

Hull Attacks on the Lattice Isomorphism Problem



Introduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

Signed Permutation Equivalence

Definition
Let C ⊆ Fn

q be a linear code of dimension k. The signed closure
C± of the code C is the linear code of length 2n and dimension k
over Fq given by:

C± :=
{
(x1,−x1, x2,−x2, . . . , xn,−xn) : (xi )i∈[n] ∈ C

}
.

Lemma (Adapted from [SS13a])

Let C , C ′ ⊆ Fn
q be linear codes. Then C and C ′ are signed

permutation equivalent if and only if C± and C ′± are permutation
equivalent.

Any permutation from C± to C ′± can be lifted to a signed
permutation from C to C ′

Hull Attacks on the Lattice Isomorphism Problem



Introduction Construction A Lattices Genus of the Hull Solve LIP via the Hull LIP via Code Equivalence Conclusion

PEP to Graph Isomorphism

▶ Key difference from [SS13b]: if char(Fq) ̸= 2, then
H(C±) = (H(C ))±.

▶ If dim(H(C )) = 0, then dim(H(C±)) = 0: an easy instance of
permutation equivalence, via graph isomorphism.[BOST19]

▶ Graph isomorphism can be solved in time 2O((log n)c ) for some
constant c [Bab15].

Hull Attacks on the Lattice Isomorphism Problem
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Summary of the Attack

Given an [n, k]p code C with hull of dimension 0, the Construction
A lattice generated by this code C + pZn has p-hull given by pZn.

Given two orthonormal transformations of this Construction A
lattice O1,O2 ∈ On(R), ∆LIP can be solved in time 20.292n/2+o(n).

▶ Take the p-hull of L1 and L2.

▶ Solve ZLIP from both lattices hulls to pZn to find ψO1, φO2

for some ψ,φ ∈ Aut(Zn).

▶ Apply O−1
1 and O−1

2 to L1 and L2, respectively, and then
reduce modulo p.

▶ Reduce from solving SPEP on the resulting codes to solving
PEP on their closures.

▶ Solve PEP on their closures via graph isomorphism.

Hull Attacks on the Lattice Isomorphism Problem
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Conclusion

We restate the conjecture from [DvW22]

Conjecture (informal)

The best attack against ∆LIP for lattices L, L′ requires solving
f -approx SVP in both lattices, where

f = hullgap(L)

where
hullgap(L) := max

s|det(BTB)
{gap(Hs)} .
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Conclusion

▶ Recommendaton:

Use unimodular (i.e. self-dual) lattices for
LIP, to avoid this or similar attacks.

▶ Coincidentally, the lattices used in [DPPW22, BGPSD21]
(rotations of Zn) are unimodular.

https://eprint.iacr.org/2023/194.pdf
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