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General idea
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(Quantum) Complexity theory studies decision problems: binary outputs.

Physicists want quantum problems: quantum outputs.
(Also some computer science interest.)

Very recent approach [Aar16, RY21].

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: from quantum money to black holes.
arXiv preprint arXiv:1607.05256, 2016

[RY21] Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum states and unitaries.
arXiv preprint arXiv:2108.07192, 2021
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Classical functional complexity classes



Classical decision complexity classes Classical classes
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Decision classes are sets of languages L ⊆ Σ ∗ .

P (P olynomial)Definition

L ∈ P iff ∃ a PTTMM s.t. ∀x ∈ Σ ∗ , x ∈ L ⇐⇒ M (x) accepts.

NP (N ondeterministic P olynomial)Definition

L ∈ NP iff ∃ a PTTMM s.t.
▷ ∀x ∈ L, ∃w ∈ Σ ∗ , M (x, w) accepts.
▷ ∀x /∈ L, ∀w ∈ Σ ∗ , M (x, w) rejects.



Example: CircuitSAT Classical classes
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CircuitSAT is the language of satisfiable boolean circuits.

CircuitSAT circuitExample

The following circuit is in CircuitSAT

∨

¬

¬

∨
∧

x0

x1

x2

CircuitSAT ∈ NP by running the circuit on a given valuation.
CircuitSAT ∈ P iff P = NP .



Functional complexity classes Classical classes
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Functional classes are defined on relations between input and output R ⊆ Σ ∗ × Σ ∗ .

xR denotes { y ∈ Σ ∗ | (x, y) ∈ R}.

FP (Functional P olynomial)Definition

R ∈ FP iff ∃ a PTTMM s.t. for x ∈ Σ ∗

▷ if xR ≠ ∅ then M (x) accepts and outputs some y ∈ xR .
▷ if xR = ∅ then M (x) rejects.

FNP (Functional N ondeterministic P olynomial)Definition

R ∈ FNP iff ∃ a PTTMM s.t. for x ∈ Σ ∗

▷ if xR ≠ ∅ then ∃w ∈ Σ ∗ , M (x, w) accepts and outputs some y ∈ xR .
▷ if xR = ∅ then ∀w ∈ Σ ∗ , M (x, w) rejects.



Example: FunctionalCircuitSAT Classical classes
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(C, u) ∈ FunctionalCircuitSATiff C(u) = 1

Example

(x0, x1, x2) = (0 , 0, 1) and (0, 0, 0) satisfy the circuit
∨

¬

¬

∨
∧

x0

x1

x2

So
�

∨

¬

¬

∨
∧

x0

x1

x2

, 001
�

,
�

∨

¬

¬

∨
∧

x0

x1

x2

, 000
�

∈ FunctionalCircuitSAT.

FunctionalCircuitSAT∈ FNP by checking the valuation and returning a copy of it.
FunctionalCircuitSAT∈ FP iff FP = FNP .



Equivalence between decision and search Classical classes
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Question

Are FP and FNP harder than P and NP ?

No.

Equivalence between decision and search [BG94]Proposition

FP = FNP iff P = NP

Proof.
Let M be a PTTM solvingFunctionalCircuitSAT.
The language L = { (x, w) | ∃w′, M (x, w · w′) accepts} is in NP .
So if P = NP there is a PTTMM ′ recognizing L .
Construct a witness w1...wk bit by bit with wi := 1 iff M ′(x, w1...wi − 1) accepts.

[BG94] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search.
SIAM Journal on Computing, 23(1):97–119, 1994
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The same but quantum

Quantum information
Quantum decision classes
State synthesis complexity classes



States and density matrices Quantum information Quantum classes
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Classical strings

u = b1...bn ∈ { 0, 1}nph
ys

ic
al

re
al

ity

Probabilistic strings

u = ( p1, ..., pn ) ∈ [0, 1]n

u is b1...bn w.p.
Q

|bi − pi |in
co

m
pl

et
e

kn
ow

le
dg

e

Quantum states

|ψ ⟩ =
X

b1 ...bn ∈{ 0,1}n

α b1 ...bn |b1...bn ⟩ ∈ C2n

P
|α b1 ...b n |2 = 1

Density matrices

ρ =
X

b1 ...bn ∈{ 0,1}n

β b1 ...bn |b1...bn ⟩⟨b1...bn |
P

β b1 ...b n = 1

ρ is |b1..bn ⟩⟨b1..bn | w.p. β b1 ...bn



Measure and density matrices Quantum information Quantum classes
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|ψ ⟩ =
P

α b1 ...bn |b1...bn ⟩ is measured and projected on |b1...bn ⟩ w.p. |α b1 ...bn |2.

MeasurementExample

Let |ψ ⟩ =
q

1
3 |001⟩ +

q
2
3 |010⟩ .

▷ projected on |001⟩ w.p. 1
3

▷ projected on |010⟩ w.p. 2
3

Density matricesExample

▷ complete knowledge of |ψ ⟩ is ρ = |ψ ⟩⟨ψ | = 1
3 |001⟩⟨001| + 2

3 |010⟩⟨010|

▷ knowledge on first two qubits of |ψ ⟩ is ρ = 1
3 |00⟩⟨00| + 2

3 |01⟩⟨01|

▷ if |001⟩ w.p. 1
3 and |010⟩ w.p. 2

3 , we manipulate ρ = 1
3 |001⟩⟨001| + 2

3 |010⟩⟨010|



Quantum computing Quantum information Quantum classes
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States are manipulated by circuits.

Quantum circuitExample

H
X

Fixed set of quantum gates are universal up to precision. E.g.
(

H,
)

is universal.



Trace distance Quantum information Quantum classes
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States are approximated so we use a distance to characterize it.

Trace distanceDefinition

td( ρ, σ ) := 1
2Tr

� q
(ρ − σ )†(ρ − σ )

�
∈ [0, 1]

The trace distance characterizes distinguishabilityProperty

ρ and σ can be distinguished w.p. td( ρ, σ ).



Some specificities Quantum information Quantum classes
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|ψ ⟩ =
X

b1 ...bn

α b1 ...bn |b1...bn ⟩ cannot be written |ψ 1⟩ ⊗ ... ⊗ | ψ n ⟩ , with |ψ i ⟩ on 1 qubit.

Operators are linear: C(α |ψ 1⟩ + β |ψ 2⟩ ) = αC |ψ 1⟩ + βC |ψ 2⟩ .

Quantum circuits (without measurement) are reversible.

No-cloning theorem [Par70]Theorem

There is no quantum circuit C s.t. ∀ |ψ ⟩ , C |ψ ⟩ | 0n ⟩ = |ψ ⟩ | ψ ⟩ .

[Par70] James L Park.The concept of transition in quantum mechanics.
Foundations of physics, 1:23–33, 1970



Computational model Decision classes Quantum classes
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No quantum TM, but quantum circuits generated by TM.

Circuits have fixed size so family of circuits (Cn )n∈ N.

Uniform family of circuitsDefinition

(Cn )n∈ N is uniform iff ∃M PTTM s.t.∀n ∈ N, M (1n ) = Cn .

Circuit with accepting bit and output stateExample

classical input |x ⟩

C|x |

acceptance bit

quantum input |ψ ⟩ quantum output

ancilla qubits
��0

�
garbage



Decision complexity classes Decision classes Quantum classes
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QMA (Quantum M erlin A rthur)Definition

L ∈ QMA [c, s] iff ∃(Cn )n∈ N uniform s.t.
– completeness: if x ∈ L then ∃ |ψ ⟩ , Pr(Cn (|x ⟩ | ψ ⟩ ) accepts) ⩾ c(x)
– soundness: if x /∈ L then ∀ |ψ ⟩ , Pr(Cn (|x ⟩ | ψ ⟩ ) accepts) ⩽ s(x)

BQP (B ounded-error Quantum Polynomial) no witness

QCMA (Quantum C lassical-M erlin A rthur) classical witness

QIP (Quantum I nteractive P rotocol) quantum prover

QCIP (Quantum C lassical I nteractive P rotocol) classical prover



Relation between classes Decision classes Quantum classes
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Relation between decision complexity classes [KSV02, JJUW11]Theorem

PBQP

NPQCMA

QMA

QIP = PSPACE = IP

[KSV02] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation.
Number 47. American Mathematical Soc., 2002

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous.QIP = PSPACE.
J. ACM, 58(6), dec 2011



General idea State synthesis Quantum classes
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FP FNP stateBQP stateQCMA stateQMA

Complexity PTTM Quantum circuit generated by PTTM

Witness ∅ String ∅ String Quantum state

Input Classical string

Output Acceptance bit Acceptance bit

String Quantum state (density matrix)



State synthesis complexity classes State synthesis Quantum classes
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New parameter: inaccuracy δ .

stateQMADefinition

R ⊆ Σ ∗ × Q is in stateQMA δ [c, s] iff ∃(Cn )n∈ N uniform s.t.

▷ if xR ≠ ∅ then
– ∃ |ψ ⟩ , Pr(Cn (|x ⟩ | ψ ⟩ ) accepts) ⩾ c(x).
– ∀ |ψ ⟩ , if td( Cn (|x ⟩ | ψ ⟩ ), xR ) > δ (x) then Pr(Cn (|x ⟩ | ψ ⟩ ) accepts) ⩽ s(x).

▷ if xR = ∅ then ∀ |ψ ⟩ , Pr(Cn (|x ⟩ | ψ ⟩ ) accepts) ⩽ s(x).

stateBQP , stateQCMA , stateQIP , stateQCIP are defined similarly.
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Previous results Results
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For decision: QIP = PSPACE [JJUW11]

stateQIP = statePSPACE [MY23]Theorem

stateQIP δ ⊆ statePSPACE δ +1 /poly and statePSPACE δ ⊆ stateQIP δ +1 /poly

For decision: QIP δ = QIP δ +1 /poly (3) [Wat03]

stateQIP has constant round protocols [Ros23]Theorem

stateQIP = stateQIP (6)

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous.QIP = PSPACE.
J. ACM, 58(6), dec 2011

[MY23] Tony Metger and Henry Yuen. stateqip= statepspace.
arXiv preprint arXiv:2301.07730, 2023

[Ros23] Gregory Rosenthal. Efficient quantum state synthesis with one query.
arXiv preprint arXiv:2306.01723, 2023

[Wat03] John Watrous. PSPACE has constant-round quantum interactive proof systems.
Theoretical Computer Science, 292(3):575–588, 2003



Our results Results
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Inaccuracy preversing error-reduction [DGLM23]Theorem

stateQMA δ [c, s] ⊆ stateQMA δ [1 − 2− poly( n) , 2− poly( n) ]

For decision: QCMA [c, s] = QCMA [1, 1
2 ] [JKNN12]

stateQCMA achieves perfect completeness [DGLM23]Theorem

stateQCMA δ [c, s] ⊆ stateQCMA δ +1 /exp[1, 1
2 ]

[DGLM23] Hugo Delavenne, Francois Le Gall, Yupan Liu, and Masayuki Miyamoto. Quantum merlin-arthur proof systems for
synthesizing quantum states.
arXiv preprint arXiv:2303.01877, 2023

[JKNN12] Stephen P. Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura.Achieving Perfect Completeness
in Classical-Witness Quantum Merlin-Arthur Proof Systems.
Quantum Info. Comput., 12(5–6):461–471, may 2012



Impossibility to improve the inaccuracy Results
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Impossibility to improve the inaccuracyTheorem

For 0 < " 6 � 6 1 � 2� n , stateBQP � 6� stateR � � " .

Proof idea for � (n) := 1 � 2� n .

There exists (un ) 2 � � s.t. no TM can generate un w.p. > 2� n .
With xR := f

�
�
�ujx j

E
g, R 2 stateBQP 1� 2� n [1; 0] by synthesizing 2� n P

j ih j.

If R 2 stateR 1� 2� n � " (n) then by simulation un is generated w.p. > 2� n .

Classes are de�ned as stateQMA :=
\

p=poly( n)

stateQMA 1=p.
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