Quantum state synthesis complexity classes

The quantum equivalent of functional classes

Hugo Delavenne Quantum Algorithms and Complexity Group, Nagoya University, Japan Under the supervision of François Le Gall October 2022 – June 2023

Motosuko (Yamanashi)

Research internship in Japan

1 24

(Quantum) Complexity theory studies decision problems: binary outputs.

Physicists want quantum problems: quantum outputs.

(Also some computer science interest.)

Very recent approach [Aar16, RY21].

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: from quantum money to black holes. arXiv preprint arXiv:1607.05256, 2016

[RY21] Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum states and unitaries. arXiv preprint arXiv:2108.07192, 2021

Summary

2 24

1 Classical functional complexity classes

2 The same but quantum

- Quantum information
- Quantum decision classes
- State synthesis complexity classes

Conclusion

Classical functional complexity classes

Decision classes are sets of languages $L \subseteq \Sigma^*$.

Definition P (Polynomial)

 $L \in \mathbf{P}$ iff \exists a PTTM M s.t. $\forall x \in \Sigma^*, x \in L \iff M(x)$ accepts.

Definition NP (Nondeterministic Polynomial)

 $L \in \mathbf{NP}$ iff \exists a PTTM M s.t.

 $\triangleright \forall x \in L, \exists w \in \Sigma^*, M(x, w) \text{ accepts.}$

 $\triangleright \forall x \notin L, \forall w \in \Sigma^*, M(x, w)$ rejects.

Example: CircuitSAT Classical classes

4 24

CircuitSAT is the language of satisfiable boolean circuits.

Example CircuitSAT circuit

The following circuit is in CircuitSAT

 $\label{eq:circuitSAT} \mbox{CircuitSAT} \in \mathbf{NP} \mbox{ by running the circuit on a given valuation.} \\ \mbox{CircuitSAT} \in \mathbf{P} \mbox{ iff } \mathbf{P} = \mathbf{NP}. \\ \mbox{}$

Functional complexity classes Classical classes

5 24

Functional classes are defined on relations between input and output $R \subseteq \Sigma^* \times \Sigma^*$. xR denotes $\{y \in \Sigma^* \mid (x, y) \in R\}$.

Definition FP (Functional Polynomial)

 $R \in \mathbf{FP}$ iff \exists a PTTM M s.t. for $x \in \Sigma^*$

 \triangleright if $xR \neq \emptyset$ then M(x) accepts and outputs some $y \in xR$.

 \triangleright if $xR = \emptyset$ then M(x) rejects.

Definition FNP (Functional Nondeterministic Polynomial)

 $R \in \mathbf{FNP}$ iff \exists a PTTM M s.t. for $x \in \Sigma^*$

▷ if $xR \neq \emptyset$ then $\exists w \in \Sigma^*, M(x, w)$ accepts and outputs some $y \in xR$.

 \triangleright if $xR = \emptyset$ then $\forall w \in \Sigma^*, M(x, w)$ rejects.

Example: FunctionalCircuitSAT Classical classes

24

 $(C, u) \in \mathsf{FunctionalCircuitSAT} \text{ iff } C(u) = 1$

FunctionalCircuitSAT $\in \mathbf{FNP}$ by checking the valuation and returning a *copy* of it. FunctionalCircuitSAT $\in \mathbf{FP}$ iff $\mathbf{FP} = \mathbf{FNP}$.

Equivalence between decision and search

24

Question

Are **FP** and **FNP** harder than **P** and **NP**?

No.

Proposition Equivalence between decision and search [BG94]

 $\mathbf{FP}=\mathbf{FNP}$ iff $\mathbf{P}=\mathbf{NP}$

Proof.

```
Let M be a PTTM solving FunctionalCircuitSAT.
The language L = \{(x, w) \mid \exists w', M(x, w \cdot w') \text{ accepts}\} is in NP.
So if \mathbf{P} = \mathbf{NP} there is a PTTM M' recognizing L.
Construct a witness w_1...w_k bit by bit with w_i := 1 iff M'(x, w_1...w_{i-1}) accepts.
```

[BG94] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM Journal on Computing, 23(1):97-119, 1994

The same but quantum

Quantum information Quantum decision classes State synthesis complexity classes

States and density matrices

Quantum information

8 24

ical ty	Classical strings	Quantum states		
phys realit	$u = b_1 \dots b_n \in \{0, 1\}^n$	$ \psi\rangle = \sum_{b_1b_n \in \{0,1\}^n} \alpha_{b_1b_n} b_1b_n\rangle \in \mathbb{C}^{2^n}$ $\sum \alpha_{b_1b_n} ^2 = 1$		
incomplete knowledge	Probabilistic strings	Density matrices		
	$u=(p_1,,p_n)\in [0,1]^n$ u is b_1b_n w.p. $\prod b_i-p_i $	$\rho = \sum_{b_1 \dots b_n \in \{0,1\}^n} \beta_{b_1 \dots b_n} b_1 \dots b_n\rangle \langle b_1 \dots b_n $		
		ρ <u>IS</u> $ b_1b_n\rangle\langle b_1b_n $ W.P. $\beta_{b_1b_n}$		

 $|\psi\rangle = \sum \alpha_{b_1...b_n} |b_1...b_n\rangle$ is measured and projected on $|b_1...b_n\rangle$ w.p. $|\alpha_{b_1...b_n}|^2$.

Example Measurement

Let
$$|\psi\rangle = \sqrt{\frac{1}{3}} |001\rangle + \sqrt{\frac{2}{3}} |010\rangle$$
.
 \triangleright projected on $|001\rangle$ w.p. $\frac{1}{3}$
 \triangleright projected on $|010\rangle$ w.p. $\frac{2}{3}$

Example Density matrices

- \triangleright complete knowledge of $|\psi\rangle$ is $ho = |\psi\rangle\langle\psi| = \frac{1}{3} |001\rangle\langle001| + \frac{2}{3} |010\rangle\langle010|$
- ightarrow knowledge on first two qubits of $|\psi
 angle$ is $ho=rac{1}{3}\,|00
 angle\!\langle00|+rac{2}{3}\,|01
 angle\!\langle01|$

▷ if $|001\rangle$ w.p. $\frac{1}{3}$ and $|010\rangle$ w.p. $\frac{2}{3}$, we manipulate $\rho = \frac{1}{3} |001\rangle\langle 001| + \frac{2}{3} |010\rangle\langle 010|$

Quantum computing

Quantum information

Quantum classes

10 24

States are manipulated by circuits.

Fixed set of quantum gates are universal <u>up to precision</u>. E.g. $\left\{H, \frac{1}{\Phi}\right\}$ is universal.

States are approximated so we use a distance to characterize it.

Definition Trace distance

$$\operatorname{td}(\rho,\sigma) := \frac{1}{2}\operatorname{Tr}\left(\sqrt{(\rho-\sigma)^{\dagger}(\rho-\sigma)}\right) \in [0,1]$$

Property The trace distance characterizes distinguishability

 ρ and σ can be distinguished w.p. $td(\rho, \sigma)$.

 $|\psi\rangle = \sum_{b_1...b_n} lpha_{b_1...b_n} |b_1...b_n\rangle$ cannot be written $|\psi_1\rangle \otimes ... \otimes |\psi_n\rangle$, with $|\psi_i\rangle$ on 1 qubit.

Operators are linear: $C(\alpha |\psi_1\rangle + \beta |\psi_2\rangle) = \alpha C |\psi_1\rangle + \beta C |\psi_2\rangle.$

Quantum circuits (without measurement) are reversible.

Theorem No-cloning theorem [Par70]

There is no quantum circuit *C* s.t. $\forall |\psi\rangle$, $C |\psi\rangle |0^n\rangle = |\psi\rangle |\psi\rangle$.

[Par70] James L Park. The concept of transition in quantum mechanics. <u>Foundations of physics</u>, 1:23-33, 1970

No quantum TM, but quantum circuits generated by TM.

Circuits have fixed size so family of circuits $(C_n)_{n \in \mathbb{N}}$.

Definition Uniform family of circuits

 $(C_n)_{n\in\mathbb{N}}$ is uniform iff $\exists M$ PTTM s.t. $\forall n\in\mathbb{N}, M(1^n)=C_n$.

Decision classes

14

Quantum classes

24

Definition QMA (Quantum Merlin Arthur)

 $L \in \mathbf{QMA}[c,s]$ iff $\exists (C_n)_{n \in \mathbb{N}}$ uniform s.t.

- completeness: if $x \in L$ then $\exists |\psi\rangle$, $\Pr(C_n(|x\rangle |\psi\rangle)$ accepts) $\geq c(x)$
- soundness: if $x \notin L$ then $\forall |\psi\rangle$, $\Pr(C_n(|x\rangle |\psi\rangle)$ accepts) $\leq s(x)$

${f BQP}$ (Bounded-error Quantum Polynomial)	no witness
\mathbf{QCMA} (Quantum Classical-Merlin Arthur)	classical witness
${f QIP}$ (Quantum Interactive Protocol)	quantum prover
QCIP (Quantum Classical Interactive Protocol)	classical prover

Decision classes

Quantum classes

15 24

Theorem Relation between decision complexity classes [KSV02, JJUW11]

[KSV02] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. <u>Classical and quantum computation</u>. Number 47. American Mathematical Soc., 2002

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE. J. ACM, 58(6), dec 2011 **General idea** State synthesis

Quantum classes

16 24

	\mathbf{FP}	FNP	stateBQP	stateQCMA	${\color{black}{state}} \mathbf{QMA}$
Complexity	PTTM		Quantum circuit generated by PTTM		
Witness	Ø	String	Ø	String	Quantum state
Input	Classical string				
Output	Acceptance bit		Acceptance bit		
	String		Quantum state (density matrix)		

New parameter: inaccuracy δ .

Definition stateQMA 씁

 $R \subseteq \Sigma^* \times \mathcal{Q}$ is in stateQMA_{δ}[c, s] iff $\exists (C_n)_{n \in \mathbb{N}}$ uniform s.t.

- \triangleright if $xR \neq \emptyset$ then
 - $\exists |\psi\rangle, \Pr(C_n(|x\rangle |\psi\rangle) \text{ accepts}) \ge c(x).$
 - $\forall |\psi\rangle$, if $td(C_n(|x\rangle |\psi\rangle), xR) > \delta(x)$ then $Pr(C_n(|x\rangle |\psi\rangle)$ accepts) $\leq s(x)$.

 \triangleright if $xR = \emptyset$ then $\forall |\psi\rangle$, $\Pr(C_n(|x\rangle |\psi\rangle)$ accepts) $\leqslant s(x)$.

${\it state} {\bf BQP}, {\it state} {\bf QCMA}, {\it state} {\bf QIP}, {\it state} {\bf QCIP}$ are defined similarly.

Results

Previous results Results

18 24

For decision: QIP = PSPACE [JJUW11]

Theorem stateQIP = statePSPACE [MY23]

 $\mathbf{stateQIP}_{\delta} \subseteq \mathbf{statePSPACE}_{\delta+1/\mathrm{poly}} \text{ and } \mathbf{statePSPACE}_{\delta} \subseteq \mathbf{stateQIP}_{\delta+1/\mathrm{poly}}$

For decision: $\mathbf{QIP}_{\delta} = \mathbf{QIP}_{\delta+1/\text{poly}}(3)$ [Wat03]

Theorem stateQIP has constant round protocols [Ros23]

stateQIP = stateQIP(6)

- [JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE. J. ACM, 58(6), dec 2011
- [MY23] Tony Metger and Henry Yuen. stateqip= statepspace. arXiv preprint arXiv:2301.07730, 2023
- [Ros23] Gregory Rosenthal. Efficient quantum state synthesis with one query. arXiv preprint arXiv:2306.01723, 2023
- [Wat03] John Watrous. PSPACE has constant-round quantum interactive proof systems. <u>Theoretical Computer Science</u>, 292(3):575-588, 2003

.9 24

Theorem Inaccuracy preversing error-reduction [DGLM23]

stateQMA_{$$\delta$$}[c, s] \subseteq stateQMA _{δ} [$1 - 2^{-\text{poly}(n)}, 2^{-\text{poly}(n)}$]

For decision: $\mathbf{QCMA}[c, s] = \mathbf{QCMA}[1, \frac{1}{2}]$ [JKNN12]

Theorem stateQCMA achieves perfect completeness [DGLM23]

stateQCMA_{δ}[c, s] \subseteq stateQCMA_{$\delta+1/\exp[1, \frac{1}{2}]$}

[DGLM23] Hugo Delavenne, Francois Le Gall, Yupan Liu, and Masayuki Miyamoto. Quantum merlin-arthur proof systems for synthesizing quantum states. <u>arXiv preprint arXiv:2303.01877</u>, 2023

[JKNN12] Stephen P. Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura. Achieving Perfect Completeness in Classical-Witness Quantum Merlin-Arthur Proof Systems. <u>Quantum Info. Comput.</u>, 12(5-6):461-471, may 2012

Results

Theorem Impossibility to improve the inaccuracy 🐣

For $0 < \varepsilon \leq \delta \leq 1 - 2^{-n}$, stateBQP $_{\delta} \not\subset \text{stateR}_{\delta - \varepsilon}$.

Proof idea for $\delta(n) := 1 - 2^{-n}$. There exists $(u_n) \in \Sigma^*$ s.t. no TM can generate u_n w.p. $> 2^{-n}$. With $xR := \{ |u_{|x|} \rangle \}$, $R \in \mathbf{stateBQP}_{1-2^{-n}}[1,0]$ by synthesizing $2^{-n} \sum |\psi\rangle\langle\psi|$. If $R \in \mathbf{stateR}_{1-2^{-n}-\varepsilon(n)}$ then by simulation u_n is generated w.p. $> 2^{-n}$.

 ${\sf Classes \ are \ defined \ as \ state} {\bf QMA}:=\bigcap_{p={\rm poly}(n)}{\bf state} {\bf QMA}_{1/p}.$

Results

21 24

Proposition Equivalence with maximal inaccuracy 🐣

For any R and \mathbf{C} , $L_R \in \mathbf{C}[c,s] \iff R \in \mathbf{stateC}_{1-2^{-n}}[c,s].$

Proof idea.

Generate a maximally mixed state $2^{-n} \sum |b_1...b_n\rangle\langle b_1...b_n|$. Use decision circuit for decision.

Can we do better?

Similarly to $\mathbf{P} = \mathbf{NP} \Longrightarrow \mathbf{FP} = \mathbf{FNP}$, we guess the \mathbf{QCMA} witness bit by bit.

Results

Only issue is probabilities so we use promises.

Lemma Guessing a witness bit is QCMA 🐣

```
Input: circuit C, input x, partial witness w_0
```

```
Output: \exists w, \Pr(C(|x\rangle | w_0 1 w) | accepts) \ge p_0(|w_0|)
```

```
Promise: for b = 0 or 1, \forall w, \Pr(C(|x\rangle |w_0 b w)) \leq p_0(|w_0|) - 1/|x|^2
```

is in **QCMA** for any p_0 .

Proposition Generate a classical witness 🐣

If $\mathbf{BQP} = \mathbf{QCMA}$ then $\mathbf{stateBQP}_{\delta} = \mathbf{stateQCMA}_{\delta}$.

Conjecture Guessing a quantum state 🐣

If $\mathbf{BQP} = \mathbf{QMA}$ then $\mathbf{stateBQP}_{\delta} = \mathbf{stateQMA}_{\delta+1/\text{poly}}$.

If an oracle poly-size circuit can generate \mathbf{QMA} witnesses then $\mathbf{QCMA} = \mathbf{QMA}$.

Results

24

However:

Conjecture Important conjecture in QCS

 $\mathbf{QCMA} \neq \mathbf{QMA}$

My approach of synthesis classes is an extension of functional and decision classes.

The inaccuracy δ is a strict bottleneck.

Very nontrivial to know if synthesis is equivalent to decision.