## Quantum state synthesis complexity classes

The quantum equivalent of functional classes

Hugo Delavenne
Quantum Algorithms and Complexity Group, Nagoya University, Japan
Under the supervision of François Le Gall
uctober 2022 - June 2023

## Research internship in Japan



## General idea

$2 \longdiv { 2 4 }$
(Quantum) Complexity theory studies decision problems: binary outputs.
Physicists want quantum problems: quantum outputs.
(Also some computer science interest.)
Very recent approach [Aar16, RY21].
[Aar16] Scott Aaronson. The complexity of quantum states and transformations: from quantum money to black holes. arXiv preprint arXiv:1607.05256, 2016
[RY21] Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum states and unitaries. arXiv preprint arXiv:2108.07192, 2021

## Summary

2
1 Classical functional complexity classes

2 The same but quantum

- Quantum information
- Quantum decision classes
- State synthesis complexity classes

3 Results

4 Conclusion

## Classical functional complexity classes



## Classical decision complexity classes

Decision classes are sets of languages $L \subseteq \Sigma^{*}$.
Definition P (Polynomial)
$L \in \mathbf{P}$ iff $\exists$ a PTTM $M$ s.t. $\forall x \in \Sigma^{*}, x \in L \Longleftrightarrow M(x)$ accepts.
Definition NP (Nondeterministic Polynomial)
$L \in$ NP iff $\exists$ a PTTM $M$ s.t.
$\triangleright \forall x \in L, \exists w \in \Sigma^{*}, M(x, w)$ accepts.
$\triangleright \forall x \notin L, \forall w \in \Sigma^{*}, M(x, w)$ rejects.

## Example: CircuitSAT

CircuitSAT is the language of satisfiable boolean circuits.

## Example CircuitSAT circuit

The following circuit is in CircuitSAT


CircuitSAT $\in \mathbf{N P}$ by running the circuit on a given valuation. CircuitSAT $\in \mathbf{P}$ iff $\mathbf{P}=\mathbf{N P}$.

## Functional complexity classes

Functional classes are defined on relations between input and output $R \subseteq \Sigma^{*} \times \Sigma^{*}$. $x R$ denotes $\left\{y \in \Sigma^{*} \mid(x, y) \in R\right\}$.

Definition FP (Functional Polynomial)
$R \in \mathbf{F P}$ iff $\exists$ a PTTM $M$ s.t. for $x \in \Sigma^{*}$
$\triangleright$ if $x R \neq \varnothing$ then $M(x)$ accepts and outputs some $y \in x R$.
$\triangleright$ if $x R=\varnothing$ then $M(x)$ rejects.
Definition FNP (Functional Nondeterministic Polynomial)
$R \in$ FNP iff $\exists$ a PTTM $M$ s.t. for $x \in \Sigma^{*}$
$\triangleright$ if $x R \neq \varnothing$ then $\exists w \in \Sigma^{*}, M(x, w)$ accepts and outputs some $y \in x R$.
$\triangleright$ if $x R=\varnothing$ then $\forall w \in \Sigma^{*}, M(x, w)$ rejects.

## Example: FunctionalCircuitSAT

$(C, u) \in$ FunctionalCircuitSAT iff $C(u)=1$

## Example



FunctionalCircuitSAT $\in$ FNP by checking the valuation and returning a copy of it. FunctionalCircuitSAT $\in \mathbf{F P}$ iff $\mathbf{F P}=\mathbf{F N P}$.

## Equivalence between decision and search

Question

## Are FP and FNP harder than $\mathbf{P}$ and NP?

No.

## Proposition Equivalence between decision and search [BG94]

$\mathbf{F P}=\mathbf{F N P}$ iff $\mathbf{P}=\mathbf{N P}$
Proof.
Let $M$ be a PTTM solving FunctionalCircuitSAT.
The language $L=\left\{(x, w) \mid \exists w^{\prime}, M\left(x, w \cdot w^{\prime}\right)\right.$ accepts $\}$ is in NP.
So if $\mathbf{P}=\mathbf{N P}$ there is a PTTM $M^{\prime}$ recognizing $L$.
Construct a witness $w_{1} \ldots w_{k}$ bit by bit with $w_{i}:=1$ iff $M^{\prime}\left(x, w_{1} \ldots w_{i-1}\right)$ accepts.

## The same but quantum




Quantum states

$$
|\psi\rangle=\sum_{b_{1} \ldots b_{n} \in\{0,1\}^{n}} \alpha_{b_{1} \ldots b_{n}}\left|b_{1} \ldots b_{n}\right\rangle \in \mathbb{C}^{2^{n}}
$$

Density matrices

$$
\begin{aligned}
& \rho= \sum_{b_{1} \ldots b_{n} \in\{0,1\}^{n}} \beta_{b_{1} \ldots b_{n}}\left|b_{1} \ldots b_{n}\right\rangle\left\langle b_{1} \ldots b_{n}\right| \\
& \rho \beta_{b_{1} \ldots b_{n}}=1 \\
& \underline{\text { is }}\left|b_{1} . . b_{n}\right\rangle\left\langle b_{1} . . b_{n}\right| \text { w.p. } \beta_{b_{1} \ldots b_{n}}
\end{aligned}
$$

$|\psi\rangle=\sum \alpha_{b_{1} \ldots b_{n}}\left|b_{1} \ldots b_{n}\right\rangle$ is measured and projected on $\left|b_{1} \ldots b_{n}\right\rangle$ w.p. $\left|\alpha_{b_{1} \ldots b_{n}}\right|^{2}$.

## Example Measurement

Let $|\psi\rangle=\sqrt{\frac{1}{3}}|001\rangle+\sqrt{\frac{2}{3}}|010\rangle$.
$\triangleright$ projected on $|001\rangle$ w.p. $\frac{1}{3}$
$\triangleright$ projected on $|010\rangle$ w.p. $\frac{2}{3}$

## Example Density matrices

$\triangleright$ complete knowledge of $|\psi\rangle$ is $\rho=|\psi\rangle\langle\psi|=\frac{1}{3}|001\rangle\langle 001|+\frac{2}{3}|010\rangle\langle 010|$
$\triangleright$ knowledge on first two qubits of $|\psi\rangle$ is $\rho=\frac{1}{3}|00\rangle\langle 00|+\frac{2}{3}|01\rangle\langle 01|$
$\triangleright$ if $|001\rangle$ w.p. $\frac{1}{3}$ and $|010\rangle$ w.p. $\frac{2}{3}$, we manipulate $\rho=\frac{1}{3}|001\rangle\langle 001|+\frac{2}{3}|010\rangle\langle 010|$

## Quantum computing

States are manipulated by circuits.

## Example Quantum circuit



Fixed set of quantum gates are universal up to precision. E.g. $\{H, \quad:\}$ is universal.

States are approximated so we use a distance to characterize it.
Definition Trace distance
$\operatorname{td}(\rho, \sigma):=\frac{1}{2} \operatorname{Tr}\left(\sqrt{(\rho-\sigma)^{\dagger}(\rho-\sigma)}\right) \in[0,1]$
Property The trace distance characterizes distinguishability
$\rho$ and $\sigma$ can be distinguished w.p. $\operatorname{td}(\rho, \sigma)$.
$|\psi\rangle=\sum_{b_{1} \ldots b_{n}} \alpha_{b_{1} \ldots b_{n}}\left|b_{1} \ldots b_{n}\right\rangle$ cannot be written $\left|\psi_{1}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$, with $\left|\psi_{i}\right\rangle$ on 1 qubit.
Operators are linear: $C\left(\alpha\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle\right)=\alpha C\left|\psi_{1}\right\rangle+\beta C\left|\psi_{2}\right\rangle$.
Quantum circuits (without measurement) are reversible.
Theorem No-cloning theorem [Par70]
There is no quantum circuit $C$ s.t. $\forall|\psi\rangle, C|\psi\rangle\left|0^{n}\right\rangle=|\psi\rangle|\psi\rangle$.
[Par70] James L Park. The concept of transition in quantum mechanics.
Foundations of physics, 1:23-33, 1970

## Computational model

No quantum TM, but quantum circuits generated by TM.
Circuits have fixed size so family of circuits $\left(C_{n}\right)_{n \in \mathbb{N}}$.
Definition Uniform family of circuits
$\left(C_{n}\right)_{n \in \mathbb{N}}$ is uniform iff $\exists M$ PTTM s.t. $\forall n \in \mathbb{N}, M\left(1^{n}\right)=C_{n}$.

## Example Circuit with accepting bit and output state



## Definition QMA (Quantum Merlin Arthur)

$L \in \mathbf{Q M A}[c, s]$ iff $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$ uniform s.t.

- completeness: if $x \in L$ then $\exists|\psi\rangle, \operatorname{Pr}\left(C_{n}(|x\rangle|\psi\rangle)\right.$ accepts $) \geqslant c(x)$
- soundness: if $x \notin L$ then $\forall|\psi\rangle, \operatorname{Pr}\left(C_{n}(|x\rangle|\psi\rangle)\right.$ accepts $) \leqslant s(x)$

BQP (Bounded-error Quantum Polynomial)
QCMA (Quantum Classical-Merlin Arthur)
QIP (Quantum Interactive Protocol)
QCIP (Quantum Classical Interactive Protocol)
no witness
classical witness
quantum prover
classical prover

Theorem Relation between decision complexity classes [KSV02, JJUW11]

[KSV02] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Soc., 2002
[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
J. ACM, 58(6), dec 2011

|  | FP | FNP | stateBQP | stateQCMA | stateQMA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Complexity | PTTM |  | Quantum circuit generated by PTTM |  |  |
| Witness | $\varnothing$ | String | $\varnothing$ | String | Quantum state |
| Input | Classical string |  |  |  |  |
| Output | Acceptance bit | Acceptance bit |  |  |  |
| String | Quantum state (density matrix) |  |  |  |  |

New parameter: inaccuracy $\delta$.
Definition stateQMA 台
$R \subseteq \Sigma^{*} \times \mathcal{Q}$ is in stateQMA ${ }_{\delta}[c, s]$ iff $\exists\left(C_{n}\right)_{n \in \mathbb{N}}$ uniform s.t.
$\triangleright$ if $x R \neq \varnothing$ then
$-\exists|\psi\rangle, \operatorname{Pr}\left(C_{n}(|x\rangle|\psi\rangle)\right.$ accepts $) \geqslant c(x)$.

- $\forall|\psi\rangle$, if $\operatorname{td}\left(C_{n}(|x\rangle|\psi\rangle), x R\right)>\delta(x)$ then $\operatorname{Pr}\left(C_{n}(|x\rangle|\psi\rangle)\right.$ accepts $) \leqslant s(x)$.
$\triangleright$ if $x R=\varnothing$ then $\forall|\psi\rangle, \operatorname{Pr}\left(C_{n}(|x\rangle|\psi\rangle)\right.$ accepts $) \leqslant s(x)$.
stateBQP, stateQCMA, stateQIP, stateQCIP are defined similarly.


## Results



## For decision: QIP = PSPACE [JJUW11]

Theorem stateQIP = statePSPACE [MY23]
$\operatorname{stateQIP}_{\delta} \subseteq$ statePSPACE $_{\delta+1 / \text { poly }}$ and statePSPACE ${ }_{\delta} \subseteq$ stateQIP $_{\delta+1 / \text { poly }}$
For decision: $\mathbf{Q I P}_{\delta}=\mathbf{Q I P}_{\delta+1 / \text { poly }}(3)$ [Wat03]
Theorem stateQIP has constant round protocols [Ros23]
stateQIP $=$ stateQIP $(6)$
[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.

$$
\text { J. ACM, 58(6), dec } 2011
$$

[MY23] Tony Metger and Henry Yuen. stateqip= statepspace. arXiv preprint arXiv:2301.07730, 2023
[Ros23] Gregory Rosenthal. Efficient quantum state synthesis with one query. arXiv preprint arXiv:2306.01723, 2023
[Wat03] John Watrous. PSPACE has constant-round quantum interactive proof systems.
Theoretical Computer Science, 292(3):575-588, 2003

## Theorem Inaccuracy preversing error-reduction [DGLM23]

state $\mathbf{Q M A}_{\delta}[c, s] \subseteq \operatorname{stateQMA}_{\boldsymbol{\delta}}\left[1-2^{-\operatorname{poly}(n)}, 2^{-\operatorname{poly}(n)}\right]$
For decision: QCMA $[c, s]=\mathbf{Q C M A}\left[1, \frac{1}{2}\right][J K N N 12]$
Theorem stateQCMA achieves perfect completeness [DGLM23]
stateQCMA $\mathbf{A}_{\delta}[c, s] \subseteq$ stateQCMA $\boldsymbol{s}_{\delta+1 / \exp }\left[1, \frac{1}{2}\right]$
[DGLM23] Hugo Delavenne, Francois Le Gall, Yupan Liu, and Masayuki Miyamoto. Quantum merlin-arthur proof systems for synthesizing quantum states.
arXiv preprint arXiv:2303.01877, 2023
[JKNN12] Stephen P. Jordan, Hirotada Kobayashi, Daniel Nagaj, and Harumichi Nishimura. Achieving Perfect Completeness in Classical-Witness Quantum Merlin-Arthur Proof Systems.
Quantum Info. Comput., 12(5-6):461-471, may 2012

Theorem Impossibility to improve the inaccuracy 合
For $0<\varepsilon \leqslant \delta \leqslant 1-2^{-n}$, state $\mathbf{B Q P}_{\delta} \not \subset$ state $^{\delta} \boldsymbol{R}_{\delta-\varepsilon}$.
Proof idea for $\delta(n):=1-2^{-n}$.
There exists $\left(u_{n}\right) \in \Sigma^{*}$ s.t. no TM can generate $u_{n}$ w.p. $>2^{-n}$.
With $x R:=\left\{\left|u_{|x|}\right\rangle\right\}, R \in \operatorname{stateBQP} \mathbf{1 - 2}^{-n}[1,0]$ by synthesizing $2^{-n} \sum|\psi\rangle\langle\psi|$.
If $R \in \operatorname{state}^{1-2^{-n}-\varepsilon(n)}$ then by simulation $u_{n}$ is generated w.p. $>2^{-n}$.
Classes are defined as stateQMA $:=\bigcap_{p=\operatorname{poly}(n)} \operatorname{stateQMA}_{1 / p}$.

## Link between decision and synthesis

## Proposition Equivalence with maximal inaccuracy 合

For any $R$ and $\mathbf{C}, L_{R} \in \mathbf{C}[c, s] \Longleftrightarrow R \in \operatorname{state}_{1-2^{-n}}[c, s]$.
Proof idea.
Generate a maximally mixed state $2^{-n} \sum\left|b_{1} \ldots b_{n}\right\rangle\left\langle b_{1} \ldots b_{n}\right|$. Use decision circuit for decision.

Can we do better?

## Generating a classical witness

Similarly to $\mathbf{P}=\mathbf{N P} \Longrightarrow \mathbf{F P}=\mathbf{F N P}$, we guess the QCMA witness bit by bit.
Only issue is probabilities so we use promises.
Lemma Guessing a witness bit is QCMA 合
Input: circuit $C$, input $x$, partial witness $w_{0}$
Output: $\exists w, \operatorname{Pr}\left(C\left(|x\rangle\left|w_{0} 1 w\right\rangle\right.\right.$ accepts $) \geqslant p_{0}\left(\left|w_{0}\right|\right)$
Promise: for $b=0$ or $1, \forall w, \operatorname{Pr}\left(C\left(|x\rangle\left|w_{0} b w\right\rangle\right) \leqslant p_{0}\left(\left|w_{0}\right|\right)-1 /|x|^{2}\right.$
is in QCMA for any $p_{0}$.
Proposition Generate a classical witness 台
If $\mathbf{B Q P}=\mathbf{Q C M A}$ then stateBQP ${ }_{\delta}=$ stateQCMA $_{\delta}$.

## Guessing a quantum witness?

## Conjecture Guessing a quantum state $\stackrel{\Delta}{\square}$

If $\mathbf{B Q P}=\mathbf{Q M A}$ then state $\mathrm{BQP}_{\delta}=$ stateQMA $_{\delta+1 / \mathrm{poly}}$.
If an oracle poly-size circuit can generate QMA witnesses then QCMA = QMA. However:

Conjecture Important conjecture in QCS
QCMA $\neq$ QMA

My approach of synthesis classes is an extension of functional and decision classes.
The inaccuracy $\delta$ is a strict bottleneck.
Very nontrivial to know if synthesis is equivalent to decision.

