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Overview

Question 1
For fixed n > k , what is the best possible minimum distance of an [n, k]q–code over Fq?

Some upper bounds exist, Singleton, Plotkin, Griesmer, Sphere packing, Bassalygo Elias,
etc...
Some databases of best known codes MinT, codetables.de;

Question 2 (And Asymptotically?)

For a sequence (Cs)s∈N of [ns , ks , ds ]q codes with ns → +∞ and ks
ns
→ R , ds

ns
→ δ; which pairs

(δ,R) are achievable?
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The unbelievable theorem...

Theorem 1 (Tsfasman, Vlăduţ, Zink 1982)

Let q = p2m for p prime. There exists a sequence of codes (Cs)s over Fq with parameters

[ns , ks , ds ]q such that R def
= lims→+∞

ks
ns
, δ

def
= lims→+∞

ds
ns

and

R + δ ⩾ 1− 1
√
q − 1

·

A. Couvreur April 18, 2023 5 / 63



The unbelievable picture (for q = 49)
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How was it possible?
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My advice
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Let us start

Definition 1
A code is a linear subspace C ⊆ Fn

q. Its parameters [n, k , d ]q are
its length n;

its dimension k
def
= dimFq C;

its minimum distance d
def
= minc∈C\{0}{wH(c)}, where wH(·) denotes the Hamming

weight.

It is well–known that any [n, k , d ]q–code satisfies

k + d ⩽ n + 1 (Singleton Bound)
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The Gilbert Varshamov bound

Theorem 2
Let n, d be positive integers, then there exists a (possibly nonlinear) code C ⊆ Fn

q with
minimum distance d such that

♯C ·

d−1∑
j=0

(
n

j

)
(q − 1)j


︸ ︷︷ ︸

Volume of a ball of radius d−1

⩾ qn.

Asymptotically we get the existence of sequences of codes with parameters (δ,R) such that

R = 1− Hq(δ),

where Hq(·) denotes the q–ary entropy function (see Lecture Notes p. 4)
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Facts

1 For a long time, Gilbert Varshamov bound was supposed to be optimal;
2 Actually, at least for large enough q, there is room for improvement.
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My advice if you wish to discover algebraic geometry
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Curves
In the sequel, K denotes a perfect field.

Definition 2
An affine curve X ⊆ A2(K) is the vanishing locus of a polynomial F ∈ K[x , y ]. If F is
irreducible over K, then the curve is said to be absolutely irreducible.

Definition 3
A rational point or K–point of X is an element of X ⊆ A2(K) whose coordinates lie in K.
For any extension L/K, an L–point is an element of X whose coordinates lie in L. The set of
K– (resp. L–) points is denoted X (K) (resp. X (L)).

Remark
In particular, X = X (K). Moreover X (K) is the subset of X invariant under the action of
Gal(K/K).
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Example I
Example 1

K = Q and F (x , y) = x2 + y2 − 1. The points (1, 0), (0, 1) are Q–points. The point (1
2 ,

√
3

2 ) is
a Q(
√

3)–point. The point (2,−i
√

3) is a C–point (actually also a Q(i
√

3)–point).
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Example II

Example 2
K = Q and F (x , y) = y2 − x(x − 1)(x + 1). The points (−1, 0), (0, 0) and (1, 0) are Q–points.
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Singularities

Definition 4
Let X ⊆ A2(K) be a curve defined as the vanishing locus of F ∈ K[x , y ]. A point P of X is
said to be singular if both ∂F

∂x and ∂F
∂y vanish at P . A curve with no singular points is said to be

smooth.

Example 3
The curve of equation y2 = x3 is singular at (0, 0).
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From now on...

From now on, any “curve” is smooth and absolutely irreducible.
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Regular and rational functions

Definition 5 (Regular functions)

Let X ⊆ A2(K) be a curve defined as the vanishing locus of F ∈ K[x , y ]. A regular function
on X is the restriction to X of an element of K[x , y ]. The ring of regular functions on X is
noting but

K[x , y ]/(F ).

Definition 6 (Rational functions)
A rational function on X is the restriction to X of an element of K(x , y) whose denominator
is prime to F . Since X is irreducible (i.e. F is irreducible), then the function field of X is
defined as

K(X )
def
= Frac (K[x , y ]/(F )) .

A. Couvreur April 18, 2023 20 / 63



Regular and rational maps

Definition 7
Let X ,Y be two curves. A regular (resp. rational) map from X to Y is a map

ϕ :

{
X −→ Y

(x , y) 7−→ (ϕ1(x , y), ϕ2(x , y))

where ϕ1, ϕ2 are regular (resp. rational) functions on X .
If there is ψ : Y →X such that ψ ◦ ϕ = IdX and ϕ ◦ ψ = IdY , then ϕ is said to be an
isomorphism (resp. a birational map).

Remark
Such a function might be defined only on X minus a finite number of points.
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Example

Example 4
The affine line A1 and the circle C of equation x2 + y2 = 1 are birational to each other via the
map: {

A1 −→ C

t 7−→
(

1−t2

1+t2
, 2t

1+t2

)

Remark
The map is undefined at {±i}.
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Link with function fields

Proposition 1
Given a rational map ϕ : X → Y , there is a field extension ϕ⋆ : K(Y ) ↪→ K(X ) given by

ϕ⋆f
def
= f ◦ ϕ.

A. Couvreur April 18, 2023 23 / 63



Divisors

Definition 8
On a curve X over K, a rational divisor is a finite formal sum

∑
aPP of K–points which is

globally invariant under the action of Gal(K/K). The degree of a divisor
∑

aPP is the integer∑
aP .

Example 5
On C of equation x2 + y2 = 1, the following object is a rational divisor:

3 · (1, 0)− 2 · (0, 1) + 4(2,−i
√

3) + 4(2, i
√

3)

and that one is not:

3 · (1, 0)− 2 · (0, 1) + 4

(
1
2
,−
√

3
2

)
+ 2

(
1
2
,

√
3

2

)
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Valuations

Definition 9 (Informal)

Let X be a curve. To any point P ∈X (K) we associate a map νP : K(X )× → Z called the
valuation at P describing the order of pole or zero of any function on X . A local parameter at
P is a function of valuation 1 at P .
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Principal divisors

Definition 10
To any function f ∈ K(X )× one associates a divisor called principal divisor and defined as

(f ) =
∑

P∈X (K)

νP(f ) · P.

Proposition 2
The degree of a principal divisor is always 0.

Example 6
On the blackboard.
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Riemann–Roch spaces

Definition 11
The divisor group on X is endowed with a partial order. Let A =

∑
aPP and B =

∑
bPP ,

A ⩾ B ⇐⇒ ∀P ∈X (K), aP ⩾ bP

Definition 12
Let X be a curve over K and G be a divisor on X , we define the space

L(G )
def
=
{
f ∈ K(X )× | (f ) + G ⩾ 0

}
∪ {0},

A. Couvreur April 18, 2023 27 / 63



Properties of Riemann–Roch spaces

Proposition 3
If G < 0, then L(G ) = {0}
For any G , the space L(G ) has finite dimension and dim L(G ) ⩽ degG + 1.

Definition 13 (Genus)
The genus of a curve X is defined as

g
def
= 1−min

D
{dim L(D)− degD}.

Theorem 3 (Riemann–Roch)
Let G be a divisor on a curve, then

dim L(G ) ⩾ degG + 1− g with equality if degG > 2g − 2.

A. Couvreur April 18, 2023 28 / 63
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Construction

Definition 14 (Goppa 1981, Vlăduţ–Manin 1984)
Let X be a curve over a finite field Fq, G be a divisor on X and P = (P1, . . . ,Pn) an n–tuple
of distinct rational points of X . We define

CL(X ,P,G )
def
= {(f (P1), . . . , f (Pn)) | f ∈ L(G )} .

Theorem 4
The code CL(X ,P,G ) as parameters

k ⩾ degG + 1− g
d ⩾ n − degG .

A. Couvreur April 18, 2023 30 / 63
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How to provide excellent codes from curves?

First we can construct [n, k, d ] codes with

n + 1− g ⩽ k + d

(⩽ n + 1, By Singleton bound)

Definition 15 (Ihara constant)

A(q)
def
= lim sup

g→+∞

(
max

X of genus g

♯X (Fq)

g

)
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How to provide excellent codes from curves?

Theorem 5 (Tsfasman–Vlăduţ–Zink 1982)

Let q = p2m for p prime.
A(q) ⩾

√
q − 1

Corollary 1
There exists a sequence of codes (Cs)s over Fq with parameters [ns , ks , ds ]q such that

R
def
= lims→+∞

ks
ns
, δ

def
= lims→+∞

ds
ns

and

R + δ ⩾ 1− 1
√
q − 1

·

Theorem 6 (Drinfeld Vlăduţ 1894)
For any prime power q, A(q) ⩽

√
q − 1. i.e. TVZ is optimal.
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How to get this?
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=
√
q − 1.
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Elliptic curves
Definition 16
Let K be a field of characteristic ̸= 2, 3. An elliptic curve E over K is a genus one curve with
one rationa point. Such a curve can be represented with an equation y2 = f (x) where f ∈ K[x ]
is squarefree of degree 3. In addition, it can be put in Weierstrass form

y2 = x3 + Ax + B for some A,B ∈ K.

Remark
Weierstrass form is not unique. For instance, a change of variables:

x 7→ u2x
y 7→ u3y

for some u ∈ K× provides an equation of an isomorphic curve with Weierstrass equation:

y2 = x3 + Au−4x + u−6B.
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The j–invariant

Definition 17
Let E be an elliptic curve with Weierstrass equation: y2 = x3 + Ax + B . The j–invariant of E
is defined as

j
def
= 1728

4A3

4A3 + 27B2 ·

Theorem 7
Two elliptic curves are isomorphic over K if and only if they have the same j–invariant.
Conversely, for any j0 ∈ K there is an elliptic curve defined over K(j0) with j–invariant j0.

K–isomorphism classes of elliptic curves are parameterised by A1(K).
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The group law

Theorem 8
Let E be an elliptic curve over K, then for any algebraic extension L/K, the set E (L) has an
abelian group structure.

The group structure is inherited from that of Pic0(E ) ≃ Div0
K(E )/Princ(E ).
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Torsion

Definition 7
Given an elliptic curve E over K and an integer m > 1, the m–torsion of E is defined as

E [m]
def
= {P ∈ E (K) | mP = 0}.

Remark
E [m] is not necessarily composed of rational points but is globally stable under the action of
Gal(K/K).

Proposition 4
For an elliptic curve E and m ∈ N

E [m] ≃
{

Z/mZ× Z/mZ if m is prime to Char(K);
0 or Z/mZ otherwise
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Isogenies
Definition 18
An isogeny between elliptic curves is a regular map E → E ′ sending OE onto OE ′ .

Proposition 5
An isogeny ϕ : E → E ′ induces a group morphism. Moreover, when ϕ is separable, then

♯kerϕ = deg ϕ

Conversely, for any finite subgroup K ⊆ E (K) which is globally invariant under Gal(K/K ),
there exists an isogeny ψ : E → E ′ defined over K with kernel K . We denote

E ′ def
= E /K .

Proposition 6

For any degree m isogeny ϕ : E → E ′, there exists a unique ϕ̂ : E ′ → E such that

ϕ̂ ◦ ϕ = [m]E :

{
E −→ E
P 7−→ mP

and ϕ ◦ ϕ̂ = [m]E ′ :

{
E ′ −→ E ′

P 7−→ mP.
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The idea behind dual isogenies

On a curve E , the map P 7→ mP induces an isomorphism E
∼−→ E /E [m];

Let K ⊆ E [m] of cadinality m and ϕ : E → E ′ = E /K the corresponding isogeny;
The dual isogeny is ϕ̂ : E ′ → E ′/ϕ(E [m]) ≃ E ′/(E [m]/K ) ≃ E

E
ϕ //

P 7→mP

@@E ′ ϕ̂ // E
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Lattices and Elliptic curves over C

Theorem 9
Let Λ = Zω1 ⊕ Zω2 be a lattice in C. Then, the quotient C/Λ is biholomorphic to a complex
elliptic curve. Conversely, for any elliptic curve E over C, there exists a lattice Λ ⊆ C such that
E is biholomorphic to C/Λ.

Sketch of proof for C/Λ→ E .
The connection is made by the Weierstrass ℘Λ–function:

∀z ∈ C \ Λ, ℘Λ(z)
def
=

1
z2 +

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1
ω2

)

together with the map
{

C/Λ −→ A2

z 7−→ (℘Λ(z), ℘
′
Λ(z))

(Λ being sent onto OE ).
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Lattices and Elliptic curves over C

Sketch of proof for C/Λ→ E .

The series ℘Λ(z)− 1
z2 =

∑
ω∈Λ\{0}

(
1

(z−ω)2
− 1

ω2

)
is even an vanishes at 0

℘Λ(z) =
1
z2 + O(z2)

℘′
Λ(z) = − 2

z3 + O(z)

℘′
Λ(z)

2 − 4℘Λ(z)
3 = O(

1
z2 )

℘′
Λ(z)

2 − 4℘Λ(z)
3 − g2℘Λ(z) = O(1) (for some g2 in C)

Liouville =⇒ ℘′
Λ(z)

2 = 4℘Λ(z)
3 + g2℘Λ(z) + g4 for some g2, g4 ∈ C.
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Things happen well!

Theorem 10

For any lattice Λ ⊂ C, The biholomorphic map C/Λ ∼−→ E is a group isomorphism from
(C/Λ,+) to (E ,+E ).

Remark
For any m > 0, the structure of E [m] can be understood from that of

( 1
mΛ
)
/Λ
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Isogenies regarded from tori

Theorem 11
Let Λ,Λ′ ⊂ C be two lattices and f : C/Λ→ C/Λ′ sending 0 to 0. Then, f lifts to a
holomorphic ma f0 : C→ C which is a similitude, i.e. there exists a ∈ C such that ∀z ∈ C,
f0(z) = az .

Remark
(Up to some similitude) For ℓ prime, a degree ℓ–isogeny between two tori corresponds to the
data of two lattices Λ,Λ′ such that Λ ⊆ Λ′ and ♯(Λ′/Λ) = ℓ.
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Complex elliptic curves with nontrival automorphisms

Theorem 12
Let C/Λ be a complex torus with an automorphism a 7→ az and |a| = 1, a ̸= ±1. Then, up to
a similitude, Λ equals either Z⊕ Zi or Z⊕ Zρ, where ρ = e

2iπ
6

The corresponding elliptic curves can be proved to have respective equations:

y2 = x3 + x for Λ = Z⊕ Zi (j–invariant 1728)
y2 = x3 + 1 for Λ = Z⊕ Zρ (j–invariant 0).

The corresponding automorphisms being respectively

(x , y) 7−→ (−x , iy)
(x , y) 7−→ (ρx ,−y).
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1 Linear codes

2 Algebraic geometry

3 Algebraic geometry codes

4 Elliptic curves

5 Modular curves

6 Tsfasman–Vlăduţ–Zink Theorem
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The Poincaré upper half plane

Question 3
How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?

Start with a basis Λ = Zω2 ⊕ Zω1;
after a possible swap, one can suppose the basis is “direct”, i.e. Im(ω2

ω1
) > 0.

for any A ∈ SL2(Z), (
ω′

1
ω′

2

)
def
= A ·

(
ω1
ω2

)
is another direct basis of the same lattice.
Rescale by the similitude z 7→ z

ω1
to get Z⊕ Zτ , where τ def

= ω2
ω1

is in the open upper half
plane (Im(τ) > 0).
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The poincaré upper half plane
Summary: lattices are classified by elements τ ∈ H up to this action of SL2(Z):

∀
(
a b
c d

)
∈ SL2(Z), A · τ =

aτ + b

cτ + d
·
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In summary

Elliptic curves Complex tori Lattices of C Points of H
up to ←→ up to ←→ up to ←→ modulo

isomorphism biholomorphic similitudes the action of
isomorphisms SL2(Z)
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The curve X0(1)

Theorem 13

The Riemann surface Y0(1)
def
= SL2(Z)\H is biholomorphic to A1 it can be made explicit via

the map τ 7→ Eτ 7→ j(Eτ ). It can be compactified as

X0(1)
def
= SL2(Z)\H∗ where H∗ def

= H ∪ P1(Q).

An the compactification is the Riemann sphere : X0(1) ≃ P1(C).

Remark
SL2(Z) acts transitively on P1(Q) as x 7→ ax+b

cx+d .
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The curve X0(ℓ)

Question 4
Let ℓ be a prime number. How to classify degree ℓ isogenies ϕ : E → E ′ up to isomorphism?

Remark
“up to ismomorphism” means that two isogenies ϕ1 : E1 → E ′

1 and ϕ2 : E2 → E ′
2 are isomorphic

if there exist two isomorphisms η : E1 → E2 and ν : E ′
1 → E ′

2 such that the following diagram
commutes.

E1

E ′
1

E2

E ′
2

η ν

ϕ1

ϕ2
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The curve X0(ℓ)

This leads to some “enhanced” version of X0(1) which is

X0(ℓ)
def
= Γ0(ℓ)\H∗,

where

Γ0(ℓ)
def
=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod ℓ

}
.
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The modular equation

Actually, modular curves are algebraic!

Theorem 8
There exists an irreducible polynomial Φℓ ∈ Z[x , y ] such that for any pair E ,E ′ of elliptic
curves related with a degree ℓ isogeny E → E ′, then Φℓ(j(E ), j(E ′)) = 0.

Remark
Unfortunately, such a plane representation of X0(ℓ) is highly singular...

But... reduction modulo p makes sense.
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The genus of X0(ℓ)

Theorem 9
For a prime number ℓ > 3, the genus gℓ of X0(ℓ) equals

gℓ =


ℓ−1
12 − 1 if ℓ ≡ 1 mod [12]
ℓ−5
12 if ℓ ≡ 5 mod [12]
ℓ−7
12 if ℓ ≡ 7 mod [12]
ℓ+1
12 if ℓ ≡ 11 mod [12].

The proof rests on the following well–known statement.

Theorem 14 (Riemann–Hurwitz formula (tame version))
Let ϕ : X → Y be a rational map between two curves over K of characteristic 0. Then, the
genera gX , gY of X ,Y are related by the following formula.

(2gX − 2) = degφ · (2gY − 2) +
∑

Q∈Y (K)

(eQ − 1).
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About Riemann–Hurwitz
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Sketch of proof 1/2
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Sketch of proof 2/2
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1 Linear codes

2 Algebraic geometry

3 Algebraic geometry codes

4 Elliptic curves

5 Modular curves

6 Tsfasman–Vlăduţ–Zink Theorem
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Supersingular elliptic curves
Theorem 10
Let E be an elliptic curve over Fq (of characteristic p), then

either E [p] ≃ Z/pZ or E [p] = {0}

In the latter case the curve is said to be supersingular.

Theorem 11
A supersingular curve defined over some extension of Fp is actually always defined over Fp2 and
the number of their Fp–isomorphism classes is

⌊ p

12

⌋
+


0 if p ≡ 1 mod 12
1 if p ≡ 5 mod 12
1 if p ≡ 7 mod 12
2 if p ≡ 11 mod 12.
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Why are supersingular curves always defined over Fp2?
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The main theorem

Theorem 15
The sequence of curves X0(ℓ) over Fp2 for ℓ ≡ 11 mod 12 satisfy

lim
ℓ→+∞

♯X0(ℓ)(Fp2)

gℓ
= p − 1.
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Sketch of proof 1/2
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Sketch of proof 2/2
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What else?

There are other approaches to provide good sequences of curves
Still in the modular world: Shimira curves, Drinfeld modular curves;
Recursive towers like Garcia Sticthenoth towers;
Class field towers.
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That’s all, thank you!
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