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Overview

Question 1

For fixed n > k, what is the best possible minimum distance of an [n, k]q—code over Fq? J

@ Some upper bounds exist, Singleton, Plotkin, Griesmer, Sphere packing, Bassalygo Elias,
etc...

@ Some databases of best known codes MinT, codetables.de;

Question 2 (And Asymptotically?)

For a sequence (Cs),cy of [ns, ks, ds]q codes with ng — 400 and 5—2 — R, g—z — 0; which pairs
(6, R) are achievable?
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The unbelievable theorem...

Theorem 1 (Tsfasman, Vladut, Zink 1982)

Let g = p>™ for p prime. There exists a sequence of codes (Cs), over Fy with parameters

def . def .
[ns, ks, ds]q such that R = lims_ 400 %,5 = lims_y o0 % and

ns
1
Va1

R+0>1-
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The unbelievable picture (for g = 49)
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How was it possible?
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Let us start

Definition 1

A code is a linear subspace C C Fy. Its parameters [n, k, d], are
@ its length n;

. . . def .
e its dimension k = dimg, C;

@ its minimum distance d d:EfminCEc\{o}{wH(c)}, where wy(-) denotes the Hamming
weight.

It is well-known that any [n, k, d]q—code satisfies

k+d<n+1 (Singleton Bound)

Al 16, 2033 /T



The Gilbert Varshamov bound

Theorem 2

Let n, d be positive integers, then there exists a (possibly nonlinear) code C C Fy with
minimum distance d such that

ic - g(;)(q—l)j >q".

Jj=0

Volume of a b;ﬁ of radius d—1

P £, FPE)
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The Gilbert Varshamov bound

Theorem 2

Let n, d be positive integers, then there exists a (possibly nonlinear) code C C Fy with
minimum distance d such that

ic - S(D(q—l)j >q".

Jj=0

Volume of a b;ﬁ of radius d—1

Asymptotically we get the existence of sequences of codes with parameters (0, R) such that
R =1— Hy(9),

where Hy(+) denotes the g—ary entropy function (see Lecture Notes p. 4)
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Facts

@ For a long time, Gilbert Varshamov bound was supposed to be optimal;

@ Actually, at least for large enough g, there is room for improvement.
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My advice if you wish to discover algebraic geometry
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My advice if you wish to discover algebraic geometry

In nature, poisonous creatures
will develop bright colors to
warn others of their toxicity

Robin Hartshorne

Algebraic
Geometry
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Curves
In the sequel, K denotes a perfect field.

Definition 2

An affine curve 2" C A%(K) is the vanishing locus of a polynomial F € K[x,y]. If F is
irreducible over K, then the curve is said to be absolutely irreducible.

Definition 3

A rational point or K—point of 2" is an element of 2~ C A%(K) whose coordinates lie in K.
For any extension L/K, an L—point is an element of 2~ whose coordinates lie in L. The set of
K- (resp. L-) points is denoted 2 (K) (resp. 2 (L)).

’

Remark

In particular, 2 = % (K). Moreover 2 (K) is the subset of 2 invariant under the action of
Gal(K/K).
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Example |

Example 1

K = Q and F(x,y) = x?> + y? — 1. The points (1,0), (0,1) are Q-points. The point (%, ‘/75) is
a Q(v/3)-point. The point (2, —iv/3) is a C—point (actually also a Q(iv/3)-point).

e
7

A. Couvreur
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Example Il

Example 2
K =Q and F(x,y) = y? — x(x — 1)(x + 1). The points (—1,0),(0,0) and (1,0) are Q—points.J

1

\
o
>
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Singularities

Definition 4
Let 2 C A%(K) be a curve defined as the vanishing locus of F € K[x,y]. A point P of 2" is
said to be singular if both g—’; and % vanish at P. A curve with no singular points is said to be

smooth.

Aol 16, 2033 )



Singularities

Definition 4

Let 2 C A%(K) be a curve defined as the vanishing locus of F € K[x,y]. A point P of 2" is
said to be singular if both (?9_5 and % vanish at P. A curve with no singular points is said to be
smooth.

v

Example 3

3

The curve of equation y? = x3 is singular at (0, 0).
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From now on...

From now on, any “curve” is smooth and absolutely irreducible.

A. Couvreur



Regular and rational functions

Definition 5 (Regular functions)

Let 27 C A%(K) be a curve defined as the vanishing locus of F € K[x, y]. A regular function
on Z s the restriction to 2" of an element of K[x, y|. The ring of regular functions on 2" is
noting but

Klx;, y]/(F).

Definition 6 (Rational functions)

A rational function on 2" is the restriction to 2~ of an element of K(x, y) whose denominator
is prime to F. Since 2 is irreducible (i.e. F is irreducible), then the function field of 2 is
defined as

K(2) % Frac(K[x, y]/(F)).

Al 161 073 5763



Regular and rational maps

Definition 7
Let 2, % be two curves. A regular (resp. rational) map from 2 to % is a map

¢_{ r — @
' (X7y) = (¢1(X7y)7¢2(xay))

where ¢1, ¢ are regular (resp. rational) functions on 2.

If there is ) : % — 2 such that 1) o ¢ = Idy and ¢ o) = Idy, then ¢ is said to be an
isomorphism (resp. a birational map).

Remark

Such a function might be defined only on 2" minus a finite number of points.

Al 161 5073 51763



Example

Example 4
The affine line A! and the circle € of equation x?> + y2 = 1 are birational to each other via the
map:
Al — 4
1-t2 2t
t — <1+_t2’ 1+_t2)
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Example

Example 4
The affine line A! and the circle € of equation x?> + y2 = 1 are birational to each other via the
map:
Al — 4
1-t2 2t
t — <1+_t2’ 1+_t2)
Remark

The map is undefined at {+i}.
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Link with function fields

Proposition 1
Given a rational map ¢ : 2 — %, there is a field extension ¢* : K(%') — K(2Z") given by

def

¢*f = fod.

A. Couvreur



Divisors

Definition 8

On a curve 2 over K, a rational divisor is a finite formal sum > apP of K—points which is

globally invariant under the action of Gal(K/K). The degree of a divisor >~ apP is the integer
Z ap.

A. Couvreur
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Divisors

Definition 8

On a curve 2 over K, a rational divisor is a finite formal sum > apP of K—points which is
globally invariant under the action of Gal(K/K). The degree of a divisor >~ apP is the integer

Zap.

Example 5

On % of equation x? + y? = 1, the following object is a rational divisor:
3-(1,0) —2-(0,1) + 4(2, —iv/3) + 4(2, iV3)

and that one is not:

27 2

3-(1,0)—2-(0,1)+4<1 £)+2<1 ﬁ)
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Valuations

Definition 9 (Informal)

Let 2 be a curve. To any point P € 2°(K) we associate a map vp : K(2)* — Z called the
valuation at P describing the order of pole or zero of any function on % . A local parameter at
P is a function of valuation 1 at P.

Al 16, 2033 557763



Principal divisors

Definition 10

To any function f € IK(Z")* one associates a divisor called principal divisor and defined as

(=3 win)-P

Pe % (K)

Proposition 2

The degree of a principal divisor is always 0.
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Principal divisors

Definition 10

To any function f € IK(Z")* one associates a divisor called principal divisor and defined as

(A= Y wvp(f)-P.

Pe % (K)

Proposition 2

The degree of a principal divisor is always 0.

Example 6
On the blackboard.

P £, FPE)
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Riemann—Roch spaces

Definition 11
The divisor group on 2" is endowed with a partial order. Let A= apP and B =) bpP,

A>B < VPe Z(K),ap > bp

Definition 12

Let 2" be a curve over K and G be a divisor on 2, we define the space

L(G) E {f e K(Z)* | (f)+ G >0} u {0},

Al 16, 2033 77763



Properties of Riemann—Roch spaces

Proposition 3
e If G <0, then L(G) = {0}
@ For any G, the space L(G) has finite dimension and dim L(G) < deg G + 1.

Al 16, 2033 T



Properties of Riemann—Roch spaces

Proposition 3
e If G <0, then L(G) = {0}
@ For any G, the space L(G) has finite dimension and dim L(G) < deg G + 1.

Definition 13 (Genus)

The genus of a curve 2 is defined as

g 2y mEi)n{dim L(D) — deg D}.
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Properties of Riemann—Roch spaces

Proposition 3
e If G <0, then L(G) = {0}
@ For any G, the space L(G) has finite dimension and dim L(G) < deg G + 1.

Definition 13 (Genus)

The genus of a curve 2 is defined as

g 2y mEi)n{dim L(D) — deg D}.

Theorem 3 (Riemann—Roch)

Let G be a divisor on a curve, then

dimL(G) >degG+1—g with equality if deg G >2g — 2.
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Construction

Definition 14 (Goppa 1981, VI3dut—Manin 1984)

Let & be a curve over a finite field Fy, G be a divisor on & and P = (Px,. .., Ps) an n—tuple
of distinct rational points of . We define

CL(Z, P, G) B L(F(Py),... f(Py)) | f € L(G)}.

Al 16, 2033 SIS



Construction

Definition 14 (Goppa 1981, VI3dut—Manin 1984)

Let & be a curve over a finite field Fy, G be a divisor on & and P = (Px,. .., Ps) an n—tuple
of distinct rational points of . We define

CL(Z, P, G) B L(F(Py),... f(Py)) | f € L(G)}.

Theorem 4
The code C (£, P, G) as parameters

P £, FPE) 30/63



How to provide excellent codes from curves?

First we can construct [n, k, d] codes with

n+1-g<k+d
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How to provide excellent codes from curves?

First we can construct [n, k, d] codes with

n+1l—g<k+d (< n+1, By Singleton bound)

Definition 15 (lhara constant)

X(F
A(q) %f fim sup ( max M)
g—+oo \Zof genus g g

Al 16, 2033 58



How to provide excellent codes from curves?

Theorem 5 (Tsfasman-VIddut-Zink 1982)
Let g = p®>™ for p prime.

Alg) =2 Va—1
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How to provide excellent codes from curves?

Theorem 5 (Tsfasman-VIddut-Zink 1982)
Let g = p®™ for p prime.

Alg) =2 Va—1

Corollary 1

There exists a sequence of codes (Cs), over Fq with parameters [ns, ks, ds|q such that
def k

. def .
R S lims 100 2,6 S limey 400 = and

A. Couvreur
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How to provide excellent codes from curves?

Theorem 5 (Tsfasman-VIddut-Zink 1982)
Let g = p®™ for p prime.

Alg) =2 Va—1

Corollary 1

There exists a sequence of codes (Cs), over Fq with parameters [ns, ks, ds|q such that

def . def .
R S lims 100 2,6 S limey 400 = and

Theorem 6 (Drinfeld VIadut 1894)
For any prime power q, A(q) < \/q — 1. i.e. TVZ is optimal.

P £, FPE)
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How to get this?

1 T T T
GV bound
0.9 TVZ bound

0.8
0.7
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o 05
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0

0 01 02 03 04 05 06 07 08 09 1
S

Goal. Exhibit a family of curves (Z5),.y over Fy such that

. iIXs(Fg)
fmsup () — VI~ L
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Elliptic curves
Definition 16

Let K be a field of characteristic # 2,3. An elliptic curve & over K is a genus one curve with

one rationa point. Such a curve can be represented with an equation y? = f(x) where f € K[x]
is squarefree of degree 3. In addition, it can be put in Weierstrass form

v2=x3+Ax+B for some A, B € K.

A. Couvreur

April 18, 2023 35/63




Elliptic curves
Definition 16

Let K be a field of characteristic # 2,3. An elliptic curve & over K is a genus one curve with
one rationa point. Such a curve can be represented with an equation y? = f(x) where f € K[x]
is squarefree of degree 3. In addition, it can be put in Weierstrass form

v2=x3+Ax+B for some A, B € K.

Remark

Weierstrass form is not unique. For instance, a change of variables:

X U2X
y = udy

for some u € K* provides an equation of an isomorphic curve with Weierstrass equation:

y2=x3+ Au*x +u°B.
April 18, 2023 35/63




The j—invariant

Definition 17

Let & be an elliptic curve with Weierstrass equation: y? = x3 + Ax + B. The j—invariant of &
is defined as

. def 4A3
def 1708 "2
/ 473 + 2782

Al 16, 2033 T



The j—invariant

Definition 17

Let & be an elliptic curve with Weierstrass equation: y?> = x> + Ax + B. The j—invariant of &
is defined as

. def 4A3
def 1708 "2
/ 473 + 2782

Theorem 7

Two elliptic curves are isomorphic over K if and only if they have the same j—invariant.
Conversely, for any jo € K there is an elliptic curve defined over K(jo) with j—invariant jy.

P £, FPE) 36 /63



The j—invariant

Definition 17

Let & be an elliptic curve with Weierstrass equation: y?> = x> + Ax + B. The j—invariant of &
is defined as

. def 4A3
def 1706 "0 .
/ 4A3 1 27B2

Theorem 7

Two elliptic curves are isomorphic over K if and only if they have the same j—invariant.
Conversely, for any jo € K there is an elliptic curve defined over K(jo) with j—invariant jy.

K-isomorphism classes of elliptic curves are parameterised by Al(K).

R 515, 0 36 /63



The group law

Theorem 8

Let & be an elliptic curve over K, then for any algebraic extension L/K, the set &(IL) has an
abelian group structure.

A. Couvreur



The group law

Theorem 8

Let & be an elliptic curve over K, then for any algebraic extension L/K, the set &(IL) has an
abelian group structure.

/PP x
L R=P+Q

The group structure is inherited from that of Pic%(&) ~ Div(&)/Princ(&).

A. Couvreur April 18, 2023 37/63



Torsion

Definition 7
Given an elliptic curve & over K and an integer m > 1, the m—torsion of & is defined as

Elm L (P e &®) | mP = 0}.
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Torsion

Definition 7
Given an elliptic curve & over K and an integer m > 1, the m—torsion of & is defined as

&lml € (P e &(®) | mP = 0}.

Remark

& [m]_is not necessarily composed of rational points but is globally stable under the action of
Gal(K/K).

Al 16, 2033 ST



Torsion

Definition 7
Given an elliptic curve & over K and an integer m > 1, the m—torsion of & is defined as

&lml € (P e &(®) | mP = 0}.

Remark

& [m]_is not necessarily composed of rational points but is globally stable under the action of
Gal(K/K).

Proposition 4

For an elliptic curve & and m € N

&lm] ~ Z/mZ x Z/mZ if mis prime to Char(K);
o 0orZ/mZ  otherwise

P £, FPE) 38/63



Isogenies

An isogeny between elliptic curves is a regular map & — &' sending Og onto Og.

Definition 18 J
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Isogenies
Definition 18

An isogeny between elliptic curves is a regular map & — &' sending Og onto Og:.

Proposition 5

An isogeny ¢ : & — &' induces a group morphism. Moreover, when ¢ is separable, then
fkerp = deg @

Conversely, for any finite subgroup K C &(K) which is globally invariant under Gal(K/K),
there exists an isogeny ¢ : & — &' defined over K with kernel K. We denote

& ek

P 515, 0 30 /63



Isogenies
Proposition 5

An isogeny ¢ : & — &' induces a group morphism. Moreover, when ¢ is separable, then
fkerp = deg @

Conversely, for any finite subgroup K C &(K) which is globally invariant under Gal(K/K),
there exists an isogeny ¢ : & — &' defined over K with kernel K. We denote

& * ek

Proposition 6
For any degree m isogeny ¢ : & — &', there exists a unique ¢ : & — & such that

E — &

ngﬁb:[m]g:{P Y mP and ¢o$:[m]g/:{g — @

P +— mP.

P 515, 0 30 /63



The idea behind dual isogenies

@ On a curve &, the map P +— mP induces an isomorphism & = & /&[ml;
e Let K C &[m] of cadinality m and ¢ : & — & = & /K the corresponding isogeny;
o The dual isogeny is ¢ : & — &' /p(E[m]) ~ &' /(E[m]/K) ~ &

Aol 16, 2033 40763



The idea behind dual isogenies

@ On a curve &, the map P +— mP induces an isomorphism & = & /&[ml;
e Let K C &[m] of cadinality m and ¢ : & — & = & /K the corresponding isogeny;
o The dual isogeny is ¢ : & — &' /p(E[m]) ~ &' /(E[m]/K) ~ &

¢ é

E——8 ——=&

NS

P—mP

A. Couvreur April 18, 2023 40 /63



Lattices and Elliptic curves over C

Theorem 9

Let N = Zw;i @ Zw, be a lattice in C. Then, the quotient C/A is biholomorphic to a complex

elliptic curve. Conversely, for any elliptic curve & over C, there exists a lattice N C C such that
& is biholomorphic to C/A.

A. Couvreur
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Lattices and Elliptic curves over C

Theorem 9

Let A = Zwi @® Zwy be a lattice in C. Then, the quotient C/N\ is biholomorphic to a complex
elliptic curve. Conversely, for any elliptic curve & over C, there exists a lattice N C C such that
& is biholomorphic to C/A.

.

Sketch of proof for C/A — &.

The connection is made by the Weierstrass oa—function:

1 1 1
veeC\A p@¥ 5+ Y (2 )

_ 2
weA\{0} (z w) v

C/N — A?

together with the ma
gether p{ z — (pa2), p(2))

(A being sent onto Og). O

Al 161 073 7763



Lattices and Elliptic curves over C

Sketch of proof for C/A — &.

1

The series pp(z) — Z% =D wen{o} (m - w%) is even an vanishes at 0

on2) = = +0()

Al 16, 2033 B



Lattices and Elliptic curves over C

Sketch of proof for C/A — &.

The series pp(z) — z% =D wen{o} (ﬁ - w%) is even an vanishes at 0

oNz) = —+0()

bhiz) = —=+0(2)
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Lattices and Elliptic curves over C

Sketch of proof for C/A — &.

The series pp(z) — z% =D wen{o} (ﬁ - w%) is even an vanishes at 0

oNz) = —+0()

bhiz) = —=+0(2)

(= a2 = O()
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Lattices and Elliptic curves over C

Sketch of proof for C/A — &.

The series pp(z) — z% =D wen{o} (# - w%) is even an vanishes at 0

on(z) = =+ 0(2)
bhiz) = —=+0(2)

(= a2 = O()

o (2)? = 4pn(2)% — g2pa(z) = O(1) (for some gz in C)

Al 16, 2033 42763



Lattices and Elliptic curves over C

Sketch of proof for C/A — &.

The series pp(z) — z% =D wen{o} (# - w%) is even an vanishes at 0

pn(z) = ;+O(22)
bhiz) = —=+0(2)
(= a2 = O()
oh(2)° = 4on(2)* — g2p(2) = O(1) (for some g, in C)

Liouville = pj\(z)2 = 4pp(2) + 2200(2) + & for some g2, g4 € C. O

Al 16, 2033 42763



Things happen welll

Theorem 10

For any lattice N C C, The biholomorphic map C/\ — & is a group isomorphism from
((C/A7 +) to ((5‘77 +é’)
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Things happen welll

Theorem 10

For any lattice N C C, The biholomorphic map C/\ — & is a group isomorphism from
((C/Av +) to (éaa +é’)

Remark

For any m > 0, the structure of &|m] can be understood from that of (LA) /A

A. Couvreur
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Isogenies regarded from tori

Theorem 11

Let A,N C C be two lattices and f : C/N — C/N sending 0 to 0. Then, f lifts to a

holomorphic ma fy : C — C which is a similitude, i.e. there exists a € C such that Vz € C,
fo(z) = az.

Aol 16, 2033 oy



Isogenies regarded from tori

Theorem 11

Let A,N' C C be two lattices and f : C/N — C/N sending 0 to 0. Then, f lifts to a

holomorphic ma fy : C — C which is a similitude, i.e. there exists a € C such that Vz € C,
fo(z) = az.

Remark

(Up to some similitude) For ¢ prime, a degree {—isogeny between two tori corresponds to the
data of two lattices N, N' such that N C N and §(N'/\) = £.

Al 16, 2033 763



Complex elliptic curves with nontrival automorphisms

Theorem 12

Let C/\ be a complex torus with an automorphism a — az and |a| = 1, a # +1. Then, up to
a similitude, \ equals either 7. & Zi or 7. ® Zp, where p = eZITTr

Al 16, 2033 )



Complex elliptic curves with nontrival automorphisms

Theorem 12

Let C/\ be a complex torus with an automorphism a — az and |a| = 1, a # +1. Then, up to
a similitude, \ equals either 7. & Zi or 7. ® Zp, where p = eZITTr

The corresponding elliptic curves can be proved to have respective equations:

y2 = xX3+4x for N = Z®Zi (j-invariant 1728)
2

y2 = X341 for N = Z&Zp (j-invariant 0).
The corresponding automorphisms being respectively

(X7y) — (_Xaiy)
(x,y) — (px,~y).

A. Couvreur
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e Modular curves
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The Poincaré upper half plane

Question 3

How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?
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The Poincaré upper half plane

Question 3

How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?

@ Start with a basis A = Zwo @ Zwn;
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The Poincaré upper half plane

Question 3

How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?

@ Start with a basis A = Zwo @ Zwn;

o after a possible swap, one can suppose the basis is “direct”, i.e. Im(£2) > 0.
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The Poincaré upper half plane

Question 3

How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?

@ Start with a basis A = Zwo @ Zwn;

o after a possible swap, one can suppose the basis is “direct”, i.e. Im(£2) > 0.

e for any A € SLy(Z),
Wi\ def A (@1
wh) o w?

is another direct basis of the same lattice.
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The Poincaré upper half plane

Question 3

How to classify complex elliptic curves up to isogeny? Equivalently, how to classify lattices up
to similitude?

@ Start with a basis A = Zwo @ Zwn;

o after a possible swap, one can suppose the basis is “direct”, i.e. Im(£2) > 0.

e for any A € SL»(Z),
Wi\ def A (@1
wh) o wo

is another direct basis of the same lattice.

@ Rescale by the similitude z — wil to get Z @ Zt, where T def % is in the open upper half
plane (Im(7) > 0).
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The poincaré upper half plane
Summary: lattices are classified by elements 7 € H up to this action of SL»(Z):

v(i b) €Sla(z), A.r—TTh

d cr+d
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The poincaré upper half plane
Summary: lattices are classified by elements 7 € H up to this action of SL»(Z):

v(i b) €Sla(z), A.r—TTh

d cr+d
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In summary

Elliptic curves Complex tori Lattices of C Points of H
up to — up to — up to — modulo

isomorphism biholomorphic similitudes the action of
isomorphisms SLy(Z)
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The curve Xp(1)

Theorem 13

The Riemann surface Yy(1) d:efSLg(Z)\IHI is biholomorphic to A it can be made explicit via
the map 7 +— &, — j(&;). It can be compactified as

Xo(1) & SLy(Z)\H*  where H* % HUPH(Q).

An the compactification is the Riemann sphere : Xo(1) ~ P*(C).
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The curve Xp(1)

Theorem 13

The Riemann surface Yy(1) d:efSLg(Z)\IHI is biholomorphic to A it can be made explicit via
the map 7 +— &, — j(&;). It can be compactified as

Xo(1) & SLy(Z)\H*  where H* % HUPH(Q).

An the compactification is the Riemann sphere : Xo(1) ~ P*(C).

Remark

ax+b
ox+d-

SLo(Z) acts transitively on P}(Q) as x
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The curve Xo(¢)

Question 4

Let ¢ be a prime number. How to classify degree ¢ isogenies ¢ : & — &' up to isomorphism?

v

Remark

“up to ismomorphism” means that two isogenies ¢1 : &1 — & and ¢, : & — & are isomorphic
if there exist two isomorphisms 1 : & — &3 and v : & — &, such that the following diagram
commutes.

& ¢1 &
n 1%
&l 02 &
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The curve Xp(¢)

This leads to some “enhanced” version of Xp(1) which is

Xo(0) % ro(0)\H,

where

o0 {(2 5) et

c=0 modé}.
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The modular equation

Actually, modular curves are algebraic!
Theorem 8

There exists an irreducible polynomial &, € Z[x, y| such that for any pair &,&" of elliptic
curves related with a degree { isogeny & — &', then ®4(j(&),j(&")) = 0.

A. Couvreur
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Actually, modular curves are algebraic!
Theorem 8

There exists an irreducible polynomial &, € Z[x, y| such that for any pair &,&" of elliptic
curves related with a degree { isogeny & — &', then ®4(j(&),j(&")) = 0.

Remark

Unfortunately, such a plane representation of Xo(¢) is highly singular...
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The modular equation

Actually, modular curves are algebraic!
Theorem 8

There exists an irreducible polynomial &, € Z[x, y| such that for any pair &,&" of elliptic
curves related with a degree { isogeny & — &', then ®4(j(&),j(&")) = 0.

Remark

Unfortunately, such a plane representation of Xo(¢) is highly singular...

But... reduction modulo p makes sense.

P £, FPE) 53/63



The genus of Xo(¢)

Theorem 9
For a prime number ¢ > 3, the genus gy of Xo(¢) equals

~

L1 if 1=1 mod [12]

12
_ £ f =5 mod [12]
&7 L1 if t=7  mod [12]
Gl jf (=11  mod [12].

fay
N
A\

Aol 16, 2053 Sy



The genus of Xy(¢)

Theorem 9
For a prime number ¢ > 3, the genus gy of Xo(¢) equals

-1 if ¢=1 mod [12]
5 jf (=5 mod [12]

&7 L1 if t=7  mod [12]
Ll jf £=11  mod [12].
v

The proof rests on the following well-known statement.

Theorem 14 (Riemann—Hurwitz formula (tame version))

Let ¢ : & — % be a rational map between two curves over K of characteristic 0. Then, the
genera go-, g of X', % are related by the following formula.

(282 —2) =degp- (289 —2)+ > (eg—1).
Qe (K)




About Riemann—Hurwitz
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Sketch of proof 1/2



Sketch of proof 2/2



@ Tsfasman-Viidut-Zink Theorem

A. Couvreur



Supersingular elliptic curves
Theorem 10

Let & be an elliptic curve over Fq (of characteristic p), then

either &p| ~7/pZ or &[p] = {0}

In the latter case the curve is said to be supersingular.
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Supersingular elliptic curves
Theorem 10

Let & be an elliptic curve over F (of characteristic p), then

either &p| ~7/pZ or &[p] = {0}

In the latter case the curve is said to be supersingular.

Theorem 11

A supersingular curve defined over some extension of F, is actually always defined over F > and

the number of their F ,—isomorphism classes is

0 if p
P 1 if p
L12J+ 1 if p

2 if

~N o1 =

—
=

mod 12
mod 12
mod 12

mod 12.

A. Couvreur
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Why are supersingular curves always defined over IF 27

A. Couvreur



The main theorem

Theorem 15
The sequence of curves Zo({) over F2 for £ =11 mod 12 satisfy
o BXo(O(F2)
lim 1.
{—+00 8v

A. Couvreur



Sketch of proof 1/2



Sketch of proof 2/2



What else?

There are other approaches to provide good sequences of curves
o Still in the modular world: Shimira curves, Drinfeld modular curves;
@ Recursive towers like Garcia Sticthenoth towers:

o Class field towers.

Al 16, 2033 54763



That's all, thank you!
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