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Reed-Solomon codes

Let IF be a finite field.
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Sender:

® has message f € Flz]<k

* computes codeword ¢ = (f(Py),..., f(Pn)) €F™, Py,...,P, €F, n>k,
Channel:

® unknown error e = (ey,...,e,) € F”, many e; =0

® received word r =c+e € F"

Receiver:

® | Find the list containing all codewords within radius 7 from = |.
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Decoding beyond half the minimum distance

Half minimum distance
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Beyond half minimum distance
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Guruswami-Sudan for RS codes

Theorem
Let s,4,7 € Zso with s < 2. If Q € F[z, 2] with deg, Q < ¢ satisfies
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@ Q has zero of multiplicity s at every (P;,7;), Q=2 iv>s Quo(®—Pj)"(z —15)" Quu €F

Adeg; ;1 Q <s(n—1),

then Q(z, f(x)) = 0 whenever d(r,cf) < 7.

Q(f) = 0 if we think Q € F[z][2]

y
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Guruswami-Sudan for RS codes
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Theorem
Let 5,4, 7 € Zso with s < L. If Q € F[z, 2] with deg, Q < ¢ satisfies

@ Q has zero of multiplicity s at every (P;,7;),

Adeg; ;1 Q <s(n—1),

then Q(z, f(x)) = 0 whenever d(r,cf) < 7.

Proof: If P; is not an error position, then Q(P;, f(P;)) = Q(P;},r;).

So Q(z) := Q(z, f(z)) € F[z] has a root of multiplicity at least s at P;, i.e. at least s(n — 7) roots in
total.

But deg Q(x) < s(n — ), since deg f(z) < k — 1, hence Q(z) = 0.
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AG codes

AG codes

RS codes
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Function fields

® F(z) = {a/b| a,b € F[z] with b # 0} = rational function field
® F' = finite extension of F(z) ~ multivariate polynomial fractions on an algebraic curve

® g = genus = number of unattainable pole orders at any point/place
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Function fields

® F(z) = {a/b| a,b € F[z] with b # 0} = rational function field
® F' = finite extension of F(z) ~ multivariate polynomial fractions on an algebraic curve

® g = genus = number of unattainable pole orders at any point/place

Example 1 (Hermitian function field)
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F =Fp(z,y) with y? + y = 291!
¢> + 1 rational places

g=13%q(g—1)
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AG codes

)
=

i

Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code

Ce(D,G) ={(f(Pr),...,f(Pn)) €F™ | f € L(G)} |

(d>d* :==n—degQ)

v
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P={z—a)p~a«

v



AG codes

)
=

i

Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D, G) = {(f(P1),..., f(Pn)) € F" | f € L(G)}|.

(d>d* :==n—degQ)

® Place = point on the curve

® Divisor = a formal sum of places

P={z—a)p~a«

P, — 2P, +3P;
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Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D,G) = {(f(P1),..., f(P)) €F™ | f € L(G)} .

(d>d* :==n—degQ)

v

® Place = point on the curve

® Divisor = a formal sum of places

® deg A =Y m; for any divisor A = Y m;A; (for rational places A;)

P={z—a)p~a«

P, — 2P, + 3P,

deg(Pl - QPQ +3P;) =2
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Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D,G) = {(f(P1),..., f(P)) €F™ | f € L(G)} . (d>d*:=n—degQ)

® Place = point on the curve P=(z—a)po~a

P, — 2P, + 3P;
® deg A =Y m; for any divisor A = Y m;A; (for rational places A;) deg(Py — 2P, +3P5) =2

® vp(a) = valuation of function a € F at place P (zero multiplicity)

® Divisor = a formal sum of places

UP(o) ( (:I:idl)3 ) =2

v



)
=

AG codes

Definition

i

Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D,G) = {(f(P1),..., f(P)) €F™ | f € L(G)} . (d>d*:=n—degQ)

® Place = point on the curve P={z—a)p~a«
® Divisor = a formal sum of places P, — 2P, +3P;
® deg A =Y m; for any divisor A = Y m;A; (for rational places A;) deg(Py — 2P, +3P5) =2

® vp(a) = valuation of function a € F at place P (zero multiplicity) VP, ((Ifiw) =2

® (a) = > pvp(a)P = principal divisor of a (ﬁ) = 2P) —3Pu) + P
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Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D,G) = {(f(P1),..., f(P)) €F™ | f € L(G)} . (d>d*:=n—degQ)

® Place = point on the curve P={z—a)p~a«

® Divisor = a formal sum of places P, — 2P, +3P;
® deg A =Y m; for any divisor A = Y m;A; (for rational places A;) deg(Py — 2P, +3P5) =2
® vp(a) = valuation of function a € F at place P (zero multiplicity) VP, ((Ifiw) =2
® (a) = > pvp(a)P = principal divisor of a (ﬁ) = 2P) —3Pu) + P

* L(A) ={a € F\{0} | (a) > —A} U{0} = Riemann-Roch space L(3F..—2F)) = (z°F[z])dcs<s
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Given

e divisor D = P, +---+ P,, where P,..., P, are rational places (points over F),

e divisor G with supp G Nsupp D = 0,

define the code | C.(D,G) = {(f(P1),..., f(P)) €F™ | f € L(G)} . (d>d*:=n—degQ)

® Place = point on the curve P={z—a)p~a«

® Divisor = a formal sum of places P, — 2P, +3P;
® deg A =Y m; for any divisor A = Y m;A; (for rational places A;) deg(Py — 2P, +3P5) =2
® vp(a) = valuation of function a € F at place P (zero multiplicity) VP, ((Ifiw) =2
® (a) = > pvp(a)P = principal divisor of a (ﬁ) = 2P) —3Pu) + P

* L(A) ={a € F\{0} | (a) > —A} U{0} = Riemann-Roch space L(3F..—2F)) = (z°F[z])dcs<s
® [(A) := dimy L(A) > deg A — g + 1 (Riemann’s theorem) [(3Px — 2P)) =2

v
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Intuition

® Holomorphy rings: Fz] = L(0c0oPy), F[1/x] = L(coPg)), -.-

® |ike Riemann-Roch spaces, but with unrestricted pole orders.

® |nfinite dimension over F.
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Generalizing deg(-) to §(+)

Let:
® fixed rational place P, & supp D,

® S1(A) = L(00Ps + A) = Umn__ oo L(MPs + A) for any divisor A, £ := §1(0) = L(c0Ps),

e for any a € 4(A), da(a) = —vp_(a) —vp_(A) = smallest m such that a € L(mPy + A),
d(a) := dp(a) = —vp_(a).

12 DTU Compute

)
—
[

i

8.3.2022



Generalizing deg(-) to §(+)

Let:
® fixed rational place P, & supp D,

® S1(A) = L(00Ps + A) = Umn__ oo L(MPs + A) for any divisor A, £ := §1(0) = L(c0Ps),

e for any a € 4(A), da(a) = —vp_(a) —vp_(A) = smallest m such that a € L(mPy + A),
d(a) := dp(a) = —vp_(a).

Note:

® d4yp(ab) =da(a)+ dp(b) for any a € f(A) and b € £1(B),

e if F = F(z), then §(a) = dega for any a € g = F[z].
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Guruswami-Sudan for AG codes
Theorem (special case)
Let 5,4, 7 € Zso with s < £. If Q € F|[z] satisfies
° Qe M, (D,G) = {Q =3¢ QW | QW e sI(—tG),
Q has a zero of multiplicity at least s at each (Pj,'rj)},
* 5c(Q) := max; 6_sc(Q®) < s(n — 1),
then Q(f) =0.

i
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Guruswami-Sudan for AG codes

Theorem (special case)
Let 5,4, 7 € Zso with s < £. If Q € F|[z] satisfies

* Qe M(D,G) = {Q = X1, QW2 | QW € sA(—tG),
@ has a zero of multiplicity at least s at each (Pj,'rj)},

® 56(Q) := max; 6_;c(Q®) < s(n —7),
then Q(f) = 0.

i

Proof: Since f* € L(tG) C A(tG), then Q(f) = ¥i_, QW ft € 4.
Moreover, §(Q(f)) < max;{d_;c(Q®) + §(f*)} = 6c(Q) < s(n — 7).

But then Q(f) € z:( Q)P —5Y P ) = {0}.
Jg€€

negative degree

[\
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Computer representation
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Computer representation
Fix z € 51 = L(00Px) such that p := é§(x) > 0 is minimal.
Then £(A) is fI-module and an F[z]-module.
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Computer representation
Fix z € 51 = L(00Px) such that p := é§(x) > 0 is minimal.
Then £I(A) is fI-module and an F[z]-module.

Definition
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For any divisor Aand i =0,...,u—1, let

ygA) €{a€fI(A)|da(a) =i mod u}

be such that 5A(y§A)) is minimal. Also define y; := ygo).
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Computer representation
Fix z € 51 = L(00Px) such that p := é§(x) > 0 is minimal.
Then £I(A) is fI-module and an F[z]-module.

Definition

For any divisor Aand i =0,...,u—1, let
A e{aes(A)|6a(a) =i mod p}

be such that 04 (y; (4 )) is minimal. Also define y; := yz(o)

| N

Lemma

Gy(()A) ,yft Y, is an Flz]-basis of 5I(A),

Bifa=)"", azyzA) € 51(A) with a; € F[z], then dega; < %(6A(a) + deg A).

v
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Outline

e A fast decoding algorithm
e Previous work
e Our strategy
e Interpolation step
e Root-finding
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Previous work

1997 Sudan — Decoding RS codes beyond the error-correction bound

1998 Guruswami, Sudan - Improved decoding of RS codes and AG codes

2010 Beelen, Brander - Efficient list decoding of a class of AG codes
Complexity: O(£2u(n + g))

2015 Rosenkilde, Beelen—Sub-quadratic decoding on one-point Hermitian codes
Complexity: ‘ O(st = (n + g)) ‘ = O(ston(wt2)/3)

2015 Chowdhury, Jeannerod, Neiger, Schost, Villard — Faster algorithms for

multivariate interpolation with multiplicities and simultaneous polynomial
approximations ~ Complexity: O(s20“~1n)
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1995 Sakata, Jensen, Hgholdt — Generalized Berlekamp-Massey decoding of AG
codes up to half the Feng-Rao bound (one-point codes)
Complexity: O(un?).

2014 Sakata, Fujisawa— Fast decoding of multi-point codes from algebraic curves
Complexity: O(un?).



Strategy

Interpolation

Root-finding
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Strategy

Interpolation

@ Compute a generating set of M, (D, G) as a fI-module.

Root-finding
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Strategy

Interpolation

@ Compute a generating set of M, (D, G) as a fI-module.
® Compute a generating set of M, (D, G) as an F[z]-module.

© Find Q as a “small” element in M, ,(D,G).

Root-finding
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@ Compute a generating set of M, (D, G) as a fI-module.
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Strategy

Interpolation
@ Compute a generating set of M, (D, G) as a fI-module.

® Compute a generating set of M, (D, G) as an F[z]-module.

© Find Q as a “small” element in M, ,(D,G).

Root-finding
@ Compute F[z]-representation of the coefficients of Q € F|z].

@® Use an existing algorithm to compute F[z]-roots of @ € F[x][z].
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Strategy

Interpolation
@ Compute a generating set of M, (D, G) as a fI-module.

® Compute a generating set of M, (D, G) as an F[z]-module.

© Find Q as a “small” element in M, ,(D,G).

Root-finding
@ Compute F[z]-representation of the coefficients of Q € F|z].

@® Use an existing algorithm to compute F[z]-roots of @ € F[x][z].

© Convert the roots to 7(G) and filter out those that are not in £(G).
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Module structure of M, ,(D,G)

Let R € 4(G) such that R(P;) =r; for j =1,...,n.
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Module structure of M, ,(D,G)
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Let R € 4(G) such that R(P;) =r; for j =1,...
O M, ((D,G) = ({BS}4=5) 1, where B

= (z

— R)"gf,u) and (g ()

, g3

)5t

= A(G.),
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Let R € 4(G) such that R(P;) =r; for j =1,...
O M, ((D,G) = ({BS}4=5) 1, where B

QMS,E(Dva) = Dy fy—1.9 1

= (z

— R)"gf,u) and (g ()

, g3

)5t

= A(G.),
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Module structure of M, ,(D,G)

Let R € 4(G) such that R(P;) =r; for j=1,...,n
@ M, (D, G) = ({BS}=05%) 51, where BS" = (2 — R)*¢{") and (g™, g{))ar = A(G..),

O M, .(D,G) = ({5 B8 Y25 i e )Flal-

Computation

@ Compute B = = (2 — R)"gy () = =Y, (H)2(-R)* " ¢ using MPE and interpolation.

@ Compute {yzB(u)}Z ?’2 i=0,...u—1 Using simultaneous Hermite-Padé approximations.

© Construct a matrix in F[z]2#(+1)xe(+1) and compute a “small” basis (need only one small vector).

v
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Module structure of M, ,(D,G)

Let R € 4(G) such that R(P;) =r; for j=1,...,n
@ M, (D, G) = ({BS}=05%) 51, where BS" = (2 — R)*¢{") and (g™, g{))ar = A(G..),

O M, .(D,G) = ({5 B8 Y25 i e )Flal-

Computation

@ Compute B = = (2 — R)"gy () = =Y, (H)2(-R)* " ¢ using MPE and interpolation.

@ Compute {yzB(u)}Z ?’2 i=0,...u—1 Using simultaneous Hermite-Padé approximations.

© Construct a matrix in F[z]2#(+1)xe(+1) and compute a “small” basis (need only one small vector).

v

Simultaneous Hermite-Padé: Rosenkilde, Storjohann (2018)
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Multi-point evaluation
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Algorithm Complexity: (5(;1,N +d4(a) +degA)

Input:
e divisors A and E = E; + - -- + Ey such that supp E N (supp AU {Px}) = 0,

* a function a = Y4 aiyz(A) € 4(A), where a; € F[z].

Output:

® evaluations a(E1),...,a(En) € F.
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Multi-point evaluation =
Algorithm Complexity: (5(;1,N +d4(a) +degA)
Input:

e divisors A and E = E; +--- + Ey such that supp E N (supp AU {Py}) = 0,

® a function a = Ei:ol aiyEA) € S1(A), where a; € F[z].

Output:

® evaluations a(E1),...,a(En) € F.

© Compute a;(z(E1)),...,a;(x(En)) fori=0,...,pu— 1. > dega; < (d4(a) + deg A)
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Multi-point evaluation =
Algorithm Complexity: (5(;1,N +d4(a) +degA)
Input:

e divisors A and E = E; +--- + Ey such that supp E N (supp AU {Py}) = 0,

* a function a = Y4 aiyEA) € 4(A), where a; € F[z].

Output:

® evaluations a(E1),...,a(En) € F.

© Compute a;(z(E1)),...,a;(x(En)) fori=0,...,pu— 1. > dega; < (d4(a) + deg A)
@ Return a(E;) = 4 ai(m(Ej))yl(A) (Ej) forj=1,...,N.
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Interpolation =
Algorithm Complexity: O(u“~1(N + g))

Input:

e divisors A and E = E; + - -- + Ex such that supp E N (supp AU {Px}) =0, wy,...,wy € F.
Output:

® a € 5I(A) such that a(E;) =w; for j=1,...,N and §4(a) < N +2g — 1 — deg A is minimal.
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Interpolation =
Algorithm Complexity: O(u“~1(N + g))
Input:

e divisors A and E = E; + - -- + Ex such that supp E N (supp AU {Px}) =0, wy,...,wy € F.
Output:
® a € 5I(A) such that a(E;) =w; for j=1,...,N and §4(a) < N +2g — 1 — deg A is minimal.

@ Partition E into equally sized Uy, ...,U, such that z-coordinates don't repeat within each Uy
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Interpolation =
Algorithm Complexity: O(u“~1(N + g))
Input:

e divisors A and E = E; + - -- + Ex such that supp E N (supp AU {Px}) =0, wy,...,wy € F.
Output:
® a € 5I(A) such that a(E;) =w; for j=1,...,N and §4(a) < N +2g — 1 — deg A is minimal.

@ Partition E into equally sized Uy, ...,U, such that z-coordinates don't repeat within each Uy

@ For k=1,...,u, compute Wy,Y; ;, € Flz] for i =0,...,u — 1 such that for each E; € Uy
Wi(@(E;)) = w; and Yix(@(E;)) =y (E;)
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Interpolation =
Algorithm Complexity: O(u“~1(N + g))
Input:

e divisors A and E = E; + - -- + Ex such that supp E N (supp AU {Px}) =0, wy,...,wy € F.
Output:
® a € 5I(A) such that a(E;) =w; for j=1,...,N and §4(a) < N +2g — 1 — deg A is minimal.

@ Partition E into equally sized Uy, ...,U, such that z-coordinates don't repeat within each Uy

@ For k=1,...,u, compute Wy,Y; ;, € Flz] for i =0,...,u — 1 such that for each E; € Uy
Wi(z(E))) = w; and Yi x(z(E))) = y{* (E))

© Compute ay, . ..,a,—1 € F[z] with certain degree constraints such that for k =1,...,pu
Zﬁ:ol a;Y; x = Wy mod HEjeUk (z — z(E;)).
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Interpolation =
Algorithm Complexity: O(u“~1(N + g))
Input:

e divisors A and E = E; + - -- + Ex such that supp E N (supp AU {Px}) =0, wy,...,wy € F.
Output:
® a € 5I(A) such that a(E;) =w; for j=1,...,N and §4(a) < N +2g — 1 — deg A is minimal.

@ Partition E into equally sized Uy, ...,U, such that z-coordinates don't repeat within each Uy

@ For k=1,...,u, compute Wy,Y; ;, € Flz] for i =0,...,u — 1 such that for each E; € Uy
Wi(z(E))) = w; and Yi x(z(E))) = y{* (E))

© Compute ay, . ..,a,—1 € F[z] with certain degree constraints such that for k =1,...,pu
Zﬁ:ol a;Y; x = Wy mod HEjeUk (z — z(E;)).

O Return a = Zé:ol aiygA).




Basis products -

Algorithm Complexity: O(u“~1(N + | deg A|))

Input:
e divisors A and E = E; + - -- + E such that supp E N (supp AU {Px}) =0, a € d(A).
Output:

® products yoa,...,yu—1a € f(a). F[x]-basis of {(a)s or (z — a)q
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Basis products =
Algorithm Complexity: O(u“~1(N + | deg A|))
Input:

e divisors A and E = E; + - -- + Ey such that supp E N (supp AU {Px}) =0, a € 5I(A).

Output:

® products yoa,...,yu—1a € f(a). F[x]-basis of {(a)s or (z — a)q

@ Partition E into equally sized Uy, ..., U, such that z-coordinates don't repeat within each Uy.
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Basis products 8
Algorithm Complexity: O(u“~1(N + | deg A|))
Input:

e divisors A and E = E; + - -- + Ey such that supp E N (supp AU {Px}) =0, a € 5I(A).

Output:

® products yoa,...,yu—1a € f(a). F[x]-basis of {(a)s or (z — a)q

@ Partition E into equally sized Uy, ..., U, such that z-coordinates don't repeat within each Uy.

@Fork=1,...,u, compute Y; s, A; € Flz] for i =0,...,u — 1 such that for each E; € Uy
A
Yir(@(Ey)) = yi™ (By) and Aix(a(E;)) = a(E;)yi(E;).
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Basis products 8
Algorithm Complexity: O(u“~1(N + | deg A|))
Input:

e divisors A and E = E; + - -- + Ey such that supp E N (supp AU {Px}) =0, a € 5I(A).

Output:

® products yoa,...,yu—1a € f(a). F[x]-basis of {(a)s or (z — a)q

@ Partition E into equally sized Uy, ..., U, such that z-coordinates don't repeat within each Uy.

@Fork=1,...,u, compute Y; s, A; € Flz] for i =0,...,u — 1 such that for each E; € Uy
A
Yir(@(Ey)) = yi™ (By) and Aix(a(E;)) = a(E;)yi(E;).

© Compute a (shifted) Popov basis P = [P;|P3] € Flz]?#*2* of
{(For- s fum1,ho, s hymn) € Flal | TS5 fi¥ie = Y050 hidige mod [T, ey, (= — 2(E)))}
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Basis products 8
Algorithm Complexity: O(u“~1(N + | deg A|))
Input:

e divisors A and E = E; + - -- + Ey such that supp E N (supp AU {Px}) =0, a € 5I(A).

Output:

® products yoa,...,yu—1a € f(a). [F[z]-basis of (a)s or (z — a)s

@ Partition E into equally sized Uy, ..., U, such that z-coordinates don't repeat within each Uy.

@Fork=1,...,u, compute Y; s, A; € Flz] for i =0,...,u — 1 such that for each E; € Uy
A
Yir(@(Ey)) = yi™ (By) and Aix(a(E;)) = a(E;)yi(E;).

© Compute a (shifted) Popov basis P = [P;|P3] € Flz]?#*2* of
{(For- s fum1,ho, s hymn) € Flal | TS5 fi¥ie = Y050 hidige mod [T, ey, (= — 2(E)))}

O Return ypa = Y47} fi(m)ygA), where (fém), ey ;ST)l is the m-th of the p smallest rows in P;.




Root-finding step

Given Q € M, ¢(D,G), compute all f € L(G) such that Q(f) = 0.
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Root-finding step

Given Q € M, (D, G), compute all f € £L(G) such that Q(f) = 0.
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Let:

® fixed rational place Py ¢ supp G U { P} having z as a local parameter,

e for any a € fA(A) with vp, (a) > 0, let @ € F[[z] be the Py-adic power series expansion of a at Py,
e for any Q = Zf=0 QWz2t € M, (D, G), let Q = Zf:o QW) 2.
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Root-finding step

Given Q € M, ¢(D,@Q), compute all f € L(G) such that Q(f) = 0.

Let:
® fixed rational place Py ¢ supp G U { P} having z as a local parameter,

e for any a € fA(A) with vp, (a) > 0, let @ € F[[z] be the Py-adic power series expansion of a at Py,
oforany Q =Y, QW2 € M, o(D,G), let @ = 3;_, Q2"

Strategy Complexity: O(£2u“~1(n + g))

@ Compute Q@ = 3°4_ QW zt. Writing Q) = - QWy {9, then QW = TF_ Q7).
® Compute F[z]-roots of Q to precision 8 > 2¢ degG + s(n — 7).
© Convert these roots back to fI(G) and discard those that are not in £(G). (dominates)
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Root-finding step

Given Q € M, ¢(D,@Q), compute all f € L(G) such that Q(f) = 0.

Let:

® fixed rational place Py ¢ supp G U { P} having z as a local parameter,

e for any a € fA(A) with vp, (a) > 0, let @ € F[[z] be the Py-adic power series expansion of a at Py,
o forany Q =i, QWz* € M, (D,G), let @ = Y i, QW2

Strategy Complexity: O(£2u“~1(n + g))

® Compute Q = Zf:o Q®zt. Writing Q® = Zf;ol Q(t)yfat), then (,5(?) = Ef:o Q(t)@fG‘).
® Compute F[z]-roots of Q to precision 8 > 2¢ degG + s(n — 7).
© Convert these roots back to fI(G) and discard those that are not in £(G). (dominates)

Root-finding over F[z]: Neiger, Rosenkilde, Schost (2017)



Converting F[z]-roots to L(G)-roots

Lemma
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For any a > deg G, if

e feL(G),

° Zf;ol ij}gG) =f (mod z*) for some f; € Flz] with deg f; < —ﬁég(ng)),

then Zf;ol fiyz(G) = f.

23 DTU Compute

8.3.2022
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Converting F[z]-roots to L(G)-roots

Lemma
For any a > deg G, if

e feL(G),

Zz—O A(G) =f (mod z*) for some f; € Flz] with deg f; < —ﬁég(ng)),

then Y0 fiy@ = f.

Proof: Since h:= Y4 fiy'? € £(G) N (F+ 2°F[z]), then h— f € L(G — aPy) = {0}.

23 DTU Compute 8.3.2022
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Complete decoder

Algorithm Complexity: O(st*pu~1(n + g))

@ Compute B{") = Yo ()2 (- —R)* g\ foru=0,...,0and v =1,2

@® Compute {yzB(U)}Z—(l)YZ; =0,...,u—1

© Construct a matrix in F[z]2#(¢+1)x#E+1) and compute its shifted Popov form P € F[z]#(¢+1)xu(é+1)
O Extract Q € M, (D, G) with 6¢(Q) < s(n — 7) from P

© Compute Q € F[z][2] and its F[z]-roots

@ Convert the roots to 4(G), discarding those that are not in £(G) or are far from r

24 DTU Compute 8.3.2022



Conclusion

Results:
e Can list decode any AG code with cost O(s“u“~1(n + g)).
® Faster than any other general list decoding algorithm.

® At least as fast as any specialized algorithm.

Future:

® Can we get O(s20~ 1= 1(n + g))?

2015 Chowdhury, Jeannerod, Neiger, Schost, Villard - Faster algorithms for multivariate
interpolation with multiplicities and simultaneous polynomial approximations
Complexity: O(s*“~1n)
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25 DTU Compute 8.3.2022
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Popov forms of matrices over [[z]

i

Definition

® Pivot of a row: rightmost entry of maximal degree.

® Popov form: all pivots lie on the diagonal, are monic and dominate their colums.

%
w
8
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8
o
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8 8
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8
3,
Haaa
= o o o

8 8 8
'S
o
%
=~

Properties:

e for any M € F[z]™*™ there is a unique P € F[z]™*™ in Popov form with the same row space,
® P has minimal row-degrees,

e can compute P with cost O(m® deg M). (2017 Neiger, Xuan)

26 DTU Compute 8.3.2022
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