Fast list decoding of algebraic geometry codes

Peter Beelen¹, Johan Rosenkilde² and Grigory Solomatov³ (grigorys93@gmail.com)

¹Technical University of Denmark

²GitHub

³Tel Aviv University

Inria 08.03.2022

DTU Compute Department of Applied Mathematics and Computer Science

Outline

• Preliminaries

- Reed-Solomon codes
- Guruswami-Sudan for RS codes
- Algebraic geometry codes

• Guruswami-Sudan through holomorphy rings

- Intuition
- Generalizing $\deg(\cdot)$ to $\delta(\cdot)$
- Guruswami-Sudan for AG codes
- Computer representation

• A fast decoding algorithm

- Previous work
- Our strategy
- Interpolation step
- Root-finding

Preliminaries Outline

• Preliminaries

- Reed-Solomon codes
- Guruswami-Sudan for RS codes
- Algebraic geometry codes

• Guruswami-Sudan through holomorphy rings

- Intuition
- Generalizing $\deg(\cdot)$ to $\delta(\cdot)$
- Guruswami-Sudan for AG codes
- Computer representation

• A fast decoding algorithm

- Previous work
- Our strategy
- Interpolation step
- Root-finding

Preliminaries Reed-Solomon codes

Let ${\mathbb F}$ be a finite field.

Setting

Sender:

- has message $f \in \mathbb{F}[x]_{< k}$
- computes codeword $m{c} = ig(f(P_1),\ldots,f(P_n)ig) \in \mathbb{F}^n$, $P_1,\ldots,P_n \in \mathbb{F}$, $n \geq k$,

Channel:

- unknown error $oldsymbol{e}=(e_1,\ldots,e_n)\in\mathbb{F}^n$, many $e_j=0$
- ullet received word $oldsymbol{r}=oldsymbol{c}+oldsymbol{e}\in\mathbb{F}^n$

Receiver:

• Find the list containing all codewords within radius au from $m{r}$.

Preliminaries Decoding beyond half the minimum distance

Half minimum distance

Beyond half minimum distance

Preliminaries Guruswami-Sudan for RS codes

Theorem

Let $s, \ell, \tau \in \mathbb{Z}_{>0}$ with $s \leq \ell$. If $Q \in \mathbb{F}[x, z]$ with $\deg_z Q \leq \ell$ satisfies

1 Q has zero of multiplicity s at every (P_j, r_j) , $Q = \sum_{u+v \ge s} Q_{u,v} (x - P_j)^u (z - r_j)^v$, $Q_{u,v} \in \mathbb{F}$

 $\mathbf{2} \deg_{1,k-1} Q < s(n-\tau),$

then Q(x, f(x)) = 0 whenever $d(\mathbf{r}, \mathbf{c}_f) \leq \tau$.

Q(f)=0 if we think $Q\in \mathbb{F}[x][z]$

Preliminaries Guruswami-Sudan for RS codes

Theorem

Let $s, \ell, \tau \in \mathbb{Z}_{>0}$ with $s \leq \ell$. If $Q \in \mathbb{F}[x, z]$ with $\deg_z Q \leq \ell$ satisfies

1 Q has zero of multiplicity s at every (P_j, r_j) , $Q = \sum_{u+v \ge s} Q_{u,v} (x - P_j)^u (z - r_j)^v$, $Q_{u,v} \in \mathbb{F}$

 $\mathbf{2} \deg_{1,k-1} Q < s(n-\tau),$

then Q(x, f(x)) = 0 whenever $d(\boldsymbol{r}, \boldsymbol{c}_f) \leq \tau$.

Q(f)=0 if we think $Q\in \mathbb{F}[x][z]$

Proof: If P_j is not an error position, then $Q(P_j, f(P_j)) = Q(P_j, r_j)$.

So $\widehat{Q}(x) := Q(x, f(x)) \in \mathbb{F}[x]$ has a root of multiplicity at least s at P_j , i.e. at least $s(n - \tau)$ roots in total.

But $\deg \widehat{Q}(x) < s(n-\tau)$, since $\deg f(x) \le k-1$, hence $\widehat{Q}(x) = 0$.

6 DTU Compute

RS codes

Preliminaries Function fields

- $\mathbb{F}(x) = \{a/b \mid a, b \in \mathbb{F}[x] \text{ with } b \neq 0\} = rational function field$
- F = finite extension of $\mathbb{F}(x) \approx$ multivariate polynomial fractions on an algebraic curve
- g = genus = number of unattainable pole orders at any point/place

Preliminaries Function fields

- $\mathbb{F}(x) = \{a/b \mid a, b \in \mathbb{F}[x] \text{ with } b \neq 0\} = rational function field$
- F = finite extension of $\mathbb{F}(x) \approx$ multivariate polynomial fractions on an algebraic curve
- g = genus = number of unattainable pole orders at any point/place

Example 1 (Hermitian function field)

$$F = \mathbb{F}_{q^2}(x,y)$$
 with $y^q + y = x^{q+1}$

 $q^3 + 1$ rational places

$$g = \frac{1}{2}q(q-1)$$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

• Place pprox point on the curve

 $P = \langle x - \alpha \rangle_{\mathcal{O}} \approx \alpha$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

 $(d \ge d^* := n - \deg G)$

- Place pprox point on the curve
- Divisor = a formal sum of places

 $P = \langle x - \alpha \rangle_{\mathcal{O}} \approx \alpha$ $P_1 - 2P_2 + 3P_3$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

 $P_1 - 2P_2 + 3P_3$

• Place
$$\approx$$
 point on the curve $P = \langle x - \alpha \rangle_{\mathcal{O}} \approx \alpha$

- Divisor = a formal sum of places
- $\deg A = \sum m_i$ for any divisor $A = \sum m_i A_i$ (for *rational* places A_i) $\deg(P_1 2P_2 + 3P_3) = 2$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

 $(d \ge d^* := n - \deg G)$

 $P = \langle x - \alpha \rangle_{\mathcal{O}} \approx \alpha$

 $\deg(P_1 - 2P_2 + 3P_3) = 2$

 $P_1 - 2P_2 + 3P_3$

 $v_{P_{(0)}}\left(\frac{x^2}{(x-1)^3}\right) = 2$

- ullet Place pprox point on the curve
 - Divisor = a formal sum of places
 - deg $A = \sum m_i$ for any divisor $A = \sum m_i A_i$ (for *rational* places A_i)
 - $v_P(a) = valuation$ of function $a \in F$ at place P (zero multiplicity)

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

 $P_1 - 2P_2 + 3P_3$

 $v_{P_{(0)}}\left(\frac{x^2}{(x-1)^3}\right) = 2$

- Place \approx point on the curve $P = \langle x \alpha \rangle_{\mathcal{O}} \approx \alpha$
- Divisor = a formal sum of places
- deg $A = \sum m_i$ for any divisor $A = \sum m_i A_i$ (for *rational* places A_i)
- $v_P(a) =$ valuation of function $a \in F$ at place P (zero multiplicity)
- $(a) = \sum_P v_P(a)P =$ principal divisor of a

 $\left(\frac{x^2}{(x-1)^3}\right) = 2P_{(0)} - 3P_{(1)} + P_{\infty}$

 $\deg(P_1 - 2P_2 + 3P_3) = 2$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

 $\deg(P_1 - 2P_2 + 3P_3) = 2$

 $v_{P_{(0)}}\left(\frac{x^2}{(x-1)^3}\right) = 2$

DTU

- Place \approx point on the curve $P = \langle x \alpha \rangle_{\mathcal{O}} \approx \alpha$
- Divisor = a formal sum of places $P_1 2P_2 + 3P_3$
- $\deg A = \sum m_i$ for any divisor $A = \sum m_i A_i$ (for *rational* places A_i)
- $v_P(a) =$ valuation of function $a \in F$ at place P (zero multiplicity)
- $(a) = \sum_P v_P(a)P$ = principal divisor of a $(\frac{x^2}{(x-1)^3}) = 2P_{(0)} 3P_{(1)} + P_{\infty}$

 $\bullet \ \mathcal{L}(A) = \{a \in F \setminus \{0\} \mid (a) \geq -A\} \cup \{0\} = \textit{Riemann-Roch space} \quad \mathcal{L}(3P_{\infty} - 2P_{(0)}) = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} \mid (a) \geq -A\} \cup \{0\} = \textit{Riemann-Roch space} \quad \mathcal{L}(3P_{\infty} - 2P_{(0)}) = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} \mid (a) \geq -A\} \cup \{0\} = \textit{Riemann-Roch space} \quad \mathcal{L}(3P_{\infty} - 2P_{(0)}) = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} = (x^2 \mathbb{F}[x])_{\deg \leq 3} \in \mathbb{F} \setminus \{0\} \in \mathbb{F}$

Definition

Given

- divisor $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are rational places (points over \mathbb{F}),
- divisor G with $\operatorname{supp} G \cap \operatorname{supp} D = \emptyset$,

define the code $\mathcal{C}_{\mathcal{L}}(D,G) = \{ (f(P_1),\ldots,f(P_n)) \in \mathbb{F}^n \mid f \in \mathcal{L}(G) \}$.

$$(d \ge d^* := n - \deg G)$$

 $\deg(P_1 - 2P_2 + 3P_3) = 2$

 $P_1 - 2P_2 + 3P_3$

 $v_{P(0)}(\frac{x^2}{(x-1)^3}) = 2$

DTU

- Place \approx point on the curve $P = \langle x \alpha \rangle_{\mathcal{O}} \approx \alpha$
- Divisor = a formal sum of places
- deg $A = \sum m_i$ for any divisor $A = \sum m_i A_i$ (for *rational* places A_i)
- $v_P(a) =$ valuation of function $a \in F$ at place P (zero multiplicity)
- $(a) = \sum_P v_P(a)P$ = principal divisor of a $(\frac{x^2}{(x-1)^3}) = 2P_{(0)} 3P_{(1)} + P_{\infty}$

Guruswami-Sudan through holomorphy rings **Outline**

- Preliminaries
 - Reed-Solomon codes
 - Guruswami-Sudan for RS codes
 - Algebraic geometry codes

• Guruswami-Sudan through holomorphy rings

- Intuition
- Generalizing $\deg(\cdot)$ to $\delta(\cdot)$
- Guruswami-Sudan for AG codes
- Computer representation

• A fast decoding algorithm

- Previous work
- Our strategy
- Interpolation step
- Root-finding

Guruswami-Sudan through holomorphy rings Intuition

- Holomorphy rings: $\mathbb{F}[x] = \mathcal{L}(\infty P_{\infty})$, $\mathbb{F}[1/x] = \mathcal{L}(\infty P_{(0)})$, ... for $F = \mathbb{F}(x)$
- Like Riemann-Roch spaces, but with unrestricted pole orders.
- Infinite dimension over \mathbb{F} .

Guruswami-Sudan through holomorphy rings Generalizing $\deg(\cdot)$ to $\delta(\cdot)$

Let:

• fixed rational place $P_{\infty} \not\in \operatorname{supp} D$,

(not restrictive)

DTU

=

- $\mathfrak{A}(A) = \mathcal{L}(\infty P_{\infty} + A) = \bigcup_{m=-\infty}^{\infty} \mathcal{L}(mP_{\infty} + A)$ for any divisor $A, \ \mathfrak{A} := \mathfrak{A}(0) = \mathcal{L}(\infty P_{\infty}),$
- for any $a \in \mathfrak{A}(A)$, $\delta_A(a) = -v_{P_{\infty}}(a) v_{P_{\infty}}(A) = \text{smallest } m \text{ such that } a \in \mathcal{L}(mP_{\infty} + A)$, $\delta(a) := \delta_0(a) = -v_{P_{\infty}}(a).$

Guruswami-Sudan through holomorphy rings Generalizing $\deg(\cdot)$ to $\delta(\cdot)$

Let:

• fixed rational place $P_{\infty} \not\in \operatorname{supp} D$,

(not restrictive)

- $\mathfrak{A}(A) = \mathcal{L}(\infty P_{\infty} + A) = \bigcup_{m=-\infty}^{\infty} \mathcal{L}(mP_{\infty} + A)$ for any divisor $A, \ \mathfrak{A} := \mathfrak{A}(0) = \mathcal{L}(\infty P_{\infty}),$
- for any $a \in \mathfrak{A}(A)$, $\delta_A(a) = -v_{P_{\infty}}(a) v_{P_{\infty}}(A) = \text{smallest } m \text{ such that } a \in \mathcal{L}(mP_{\infty} + A)$, $\delta(a) := \delta_0(a) = -v_{P_{\infty}}(a).$

Note:

• $\delta_{A+B}(ab) = \delta_A(a) + \delta_B(b)$ for any $a \in \mathfrak{A}(A)$ and $b \in \mathfrak{A}(B)$,

• if
$$F = \mathbb{F}(x)$$
, then $\delta(a) = \deg a$ for any $a \in \mathfrak{R} = \mathbb{F}[x]$.

Guruswami-Sudan through holomorphy rings Guruswami-Sudan for AG codes

Theorem (special case)

Let $s, \ell, \tau \in \mathbb{Z}_{>0}$ with $s \leq \ell$. If $Q \in F[z]$ satisfies

•
$$Q \in \mathcal{M}_{s,\ell}(D,G) := \left\{ Q = \sum_{t=0}^{\ell} Q^{(t)} z^t \mid Q^{(t)} \in \mathfrak{R}(-tG), \right\}$$

Q has a zero of multiplicity at least s at each (P_j, r_j) ,

•
$$\delta_G(Q) := \max_t \delta_{-tG}(Q^{(t)}) < s(n-\tau),$$

then Q(f) = 0.

Guruswami-Sudan through holomorphy rings Guruswami-Sudan for AG codes

Theorem (special case)

Let $s, \ell, \tau \in \mathbb{Z}_{>0}$ with $s \leq \ell$. If $Q \in F[z]$ satisfies

•
$$Q \in \mathcal{M}_{s,\ell}(D,G) := \left\{ Q = \sum_{t=0}^{\ell} Q^{(t)} z^t \mid Q^{(t)} \in \mathfrak{K}(-tG), \right.$$

Q has a zero of multiplicity at least s at each (P_j, r_j) ,

•
$$\delta_G(Q) := \max_t \delta_{-tG}(Q^{(t)}) < s(n-\tau),$$

then Q(f) = 0.

Proof: Since
$$f^t \in \mathcal{L}(tG) \subset \mathfrak{K}(tG)$$
, then $Q(f) = \sum_{t=0}^{\ell} Q^{(t)} f^t \in \mathfrak{K}$.

 $\text{Moreover, } \delta(Q(f)) \leq \max_t \{ \delta_{-tG}(Q^{(t)}) + \delta(f^t) \} = \delta_G(Q) < s(n-\tau).$

But then
$$Q(f) \in \mathcal{L}\left(\underbrace{\delta(Q(f))P_{\infty} - s\sum_{j \notin \mathcal{E}} P_j}_{\text{negative degree}} \right) = \{0\}.$$

DTU

☱

Guruswami-Sudan through holomorphy rings Computer representation

Guruswami-Sudan through holomorphy rings

Computer representation

Fix $x \in \mathfrak{A} = \mathcal{L}(\infty P_{\infty})$ such that $\mu := \delta(x) > 0$ is minimal.

Then $\mathfrak{R}(A)$ is \mathfrak{R} -module and an $\mathbb{F}[x]$ -module.

Guruswami-Sudan through holomorphy rings

Computer representation

Fix $x \in \mathfrak{A} = \mathcal{L}(\infty P_{\infty})$ such that $\mu := \delta(x) > 0$ is minimal.

Then $\mathfrak{R}(A)$ is \mathfrak{R} -module and an $\mathbb{F}[x]$ -module.

Definition

For any divisor A and $i = 0, \ldots, \mu - 1$, let

$$y_i^{(A)} \in \{a \in \mathfrak{R}(A) \mid \delta_A(a) \equiv i \mod \mu\}$$

be such that $\delta_A(y_i^{(A)})$ is minimal. Also define $y_i := y_i^{(0)}$.

Guruswami-Sudan through holomorphy rings

Computer representation

Fix $x \in \mathfrak{A} = \mathcal{L}(\infty P_{\infty})$ such that $\mu := \delta(x) > 0$ is minimal.

Then $\mathfrak{R}(A)$ is \mathfrak{R} -module and an $\mathbb{F}[x]$ -module.

Definition

For any divisor A and $i = 0, \ldots, \mu - 1$, let

$$y_i^{(A)} \in \{a \in \mathfrak{R}(A) \mid \delta_A(a) \equiv i \mod \mu\}$$

be such that $\delta_A(y_i^{(A)})$ is minimal. Also define $y_i := y_i^{(0)}$.

Lemma

$$oldsymbol{0} y_0^{(A)},\ldots,y_{\mu-1}^{(A)}$$
 is an $\mathbb{F}[x] ext{-basis}$ of $\mathfrak{R}(A)$,

$$\mathbf{O}$$
 if $a = \sum_{i=0}^{\mu-1} a_i y_i^{(A)} \in \mathcal{A}(A)$ with $a_i \in \mathbb{F}[x]$, then $\deg a_i \leq \frac{1}{\mu} (\delta_A(a) + \deg A)$.

A fast decoding algorithm **Outline**

- Preliminaries
 - Reed-Solomon codes
 - Guruswami-Sudan for RS codes
 - Algebraic geometry codes

• Guruswami-Sudan through holomorphy rings

- Intuition
- Generalizing $\deg(\cdot)$ to $\delta(\cdot)$
- Guruswami-Sudan for AG codes
- Computer representation

• A fast decoding algorithm

- Previous work
- Our strategy
- Interpolation step
- Root-finding

A fast decoding algorithm

Previous work

1997 Sudan - Decoding RS codes beyond the error-correction bound

1998 Guruswami, Sudan – Improved decoding of RS codes and AG codes

- **2010 Beelen, Brander** Efficient list decoding of a class of AG codes Complexity: $\widetilde{O}(\ell^5 \mu^3 (n+g))$
- 2015 Rosenkilde, Beelen–Sub-quadratic decoding on one-point Hermitian codes Complexity: $\widetilde{\mathcal{O}}(s\ell^{\omega}\mu^{\omega-1}(n+g)) = \widetilde{\mathcal{O}}(s\ell^{\omega}n^{(\omega+2)/3})$

DTU

2015 Chowdhury, Jeannerod, Neiger, Schost, Villard – Faster algorithms for multivariate interpolation with multiplicities and simultaneous polynomial approximations Complexity: $\tilde{O}(s^2 \ell^{\omega-1} n)$

- **1995 Sakata, Jensen, Høholdt** Generalized Berlekamp-Massey decoding of AG codes up to half the Feng-Rao bound (one-point codes) Complexity: $\mathcal{O}(\mu n^2)$.
- 2014 Sakata, Fujisawa Fast decoding of multi-point codes from algebraic curves Complexity: $\mathcal{O}(\mu n^2)$.

Interpolation

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a \mathfrak{R} -module.

Root-finding

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a $\operatorname{R-module}$.

2 Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as an $\mathbb{F}[x]$ -module.

Root-finding

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a $\operatorname{R-module}$.

2 Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as an $\mathbb{F}[x]$ -module.

③ Find Q as a "small" element in $\mathcal{M}_{s,\ell}(D,G)$.

Root-finding

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a $\operatorname{R-module}$.

2 Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as an $\mathbb{F}[x]$ -module.

③ Find Q as a "small" element in $\mathcal{M}_{s,\ell}(D,G)$.

Root-finding

() Compute $\mathbb{F}[\![x]\!]$ -representation of the coefficients of $Q \in F[z]$.

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a $\operatorname{R-module}$.

2 Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as an $\mathbb{F}[x]$ -module.

③ Find Q as a "small" element in $\mathcal{M}_{s,\ell}(D,G)$.

Root-finding

() Compute $\mathbb{F}[\![x]\!]$ -representation of the coefficients of $Q \in F[z]$.

2 Use an existing algorithm to compute $\mathbb{F}[\![x]\!]$ -roots of $Q \in \mathbb{F}[\![x]\!][z]$.

Interpolation

() Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as a $\operatorname{R-module}$.

2 Compute a generating set of $\mathcal{M}_{s,\ell}(D,G)$ as an $\mathbb{F}[x]$ -module.

③ Find Q as a "small" element in $\mathcal{M}_{s,\ell}(D,G)$.

Root-finding

() Compute $\mathbb{F}[\![x]\!]$ -representation of the coefficients of $Q \in F[z]$.

2 Use an existing algorithm to compute $\mathbb{F}[x]$ -roots of $Q \in \mathbb{F}[x][z]$.

③ Convert the roots to $\mathcal{H}(G)$ and filter out those that are not in $\mathcal{L}(G)$.

Theorem

Let $R \in \mathfrak{A}(G)$ such that $R(P_j) = r_j$ for $j = 1, \ldots, n$.

Theorem

Let $R \in \mathfrak{A}(G)$ such that $R(P_j) = r_j$ for $j = 1, \ldots, n$.

$$\textbf{1} \mathcal{M}_{s,\ell}(D,G) = \langle \{B_v^{(u)}\}_{v=1,2}^{u=0,\dots,\ell} \rangle_{\mathrm{H}}, \text{ where } B_v^{(u)} = (z-R)^u g_v^{(u)} \text{ and } \langle g_1^{(u)}, g_2^{(u)} \rangle_{\mathrm{H}} = \mathrm{H}(G_u),$$

Theorem

Let $R \in \mathfrak{A}(G)$ such that $R(P_j) = r_j$ for $j = 1, \ldots, n$.

$$\bullet \mathcal{M}_{s,\ell}(D,G) = \langle \{B_v^{(u)}\}_{v=1,2}^{u=0,\dots,\ell} \rangle_{\mathfrak{K}}, \text{ where } B_v^{(u)} = (z-R)^u g_v^{(u)} \text{ and } \langle g_1^{(u)}, g_2^{(u)} \rangle_{\mathfrak{K}} = \mathfrak{K}(G_u),$$

 $\mathbf{2} \,\mathcal{M}_{s,\ell}(D,G) = \langle \{y_i B_v^{(u)}\}_{v=1,2}^{u=0,\ldots,\ell} \rangle_{\mathbb{F}[x]}.$

Theorem

Let $R \in \mathfrak{A}(G)$ such that $R(P_j) = r_j$ for $j = 1, \ldots, n$.

$$\textbf{1} \mathcal{M}_{s,\ell}(D,G) = \langle \{B_v^{(u)}\}_{v=1,2}^{u=0,\dots,\ell} \rangle_{\mathrm{FI}}, \text{ where } B_v^{(u)} = (z-R)^u g_v^{(u)} \text{ and } \langle g_1^{(u)}, g_2^{(u)} \rangle_{\mathrm{FI}} = \mathrm{FI}(G_u), \mathbf{1} \in \mathrm{FI}(G_u),$$

$$\mathbf{Q} \,\mathcal{M}_{s,\ell}(D,G) = \langle \{y_i B_v^{(u)}\}_{v=1,2}^{u=0,\ldots,\ell} \rangle_{\mathbb{F}[x]}.$$

Computation

1 Compute
$$B_v^{(u)}=(z-R)^ug_v^{(u)}=\sum_{t=0}^u{u \choose t}z^t(-R)^{u-r}g_v^{(u)}$$
 using MPE and interpolation.

2 Compute $\{y_i B_v^{(u)}\}_{v=1,2}^{u=0,\ldots,\ell}$ using simultaneous Hermite-Padé approximations.

3 Construct a matrix in $\mathbb{F}[x]^{2\mu(\ell+1)\times\mu(\ell+1)}$ and compute a "small" basis (need only one small vector).

DTU

☱

Theorem

Let $R \in \mathfrak{A}(G)$ such that $R(P_j) = r_j$ for $j = 1, \ldots, n$.

$$\textbf{1} \mathcal{M}_{s,\ell}(D,G) = \langle \{B_v^{(u)}\}_{v=1,2}^{u=0,\dots,\ell} \rangle_{\mathrm{FI}}, \text{ where } B_v^{(u)} = (z-R)^u g_v^{(u)} \text{ and } \langle g_1^{(u)}, g_2^{(u)} \rangle_{\mathrm{FI}} = \mathrm{FI}(G_u), \mathbf{1} \in \mathrm{FI}(G_u),$$

$$\mathbf{Q} \mathcal{M}_{s,\ell}(D,G) = \langle \{y_i B_v^{(u)}\}_{v=1,2}^{u=0,\ldots,\ell} \rangle_{\mathbb{F}[x]}.$$

Computation

1 Compute
$$B_v^{(u)}=(z-R)^ug_v^{(u)}=\sum_{t=0}^u{u \choose t}z^t(-R)^{u-r}g_v^{(u)}$$
 using MPE and interpolation.

2 Compute $\{y_i B_v^{(u)}\}_{v=1,2}^{u=0,\dots,\ell} = 0, \dots, \mu-1$ using simultaneous Hermite-Padé approximations.

3 Construct a matrix in $\mathbb{F}[x]^{2\mu(\ell+1)\times\mu(\ell+1)}$ and compute a "small" basis (need only one small vector).

Simultaneous Hermite-Padé: Rosenkilde, Storjohann (2018)

18 DTU Compute

DTU

☵

A fast decoding algorithm Multi-point evaluation

Complexity: $\widetilde{\mathcal{O}}(\mu N + \delta_A(a) + \deg A)$

Algorithm

Input:

- divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$,
- a function $a = \sum_{i=0}^{\mu-1} a_i y_i^{(A)} \in \mathcal{A}(A)$, where $a_i \in \mathbb{F}[x]$.

Output:

• evaluations $a(E_1), \ldots, a(E_N) \in \mathbb{F}$.

Algorithm

A fast decoding algorithm

Multi-point evaluation

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$,

• a function
$$a = \sum_{i=0}^{\mu-1} a_i y_i^{(A)} \in \mathcal{A}(A)$$
, where $a_i \in \mathbb{F}[x]$.

Output:

• evaluations
$$a(E_1), \ldots, a(E_N) \in \mathbb{F}$$
.

1 Compute $a_i(x(E_1)), ..., a_i(x(E_N))$ for $i = 0, ..., \mu - 1$.

$$\triangleright \deg a_i \leq \frac{1}{\mu} (\delta_A(a) + \deg A)$$

Complexity: $\widetilde{\mathcal{O}}(\mu N + \delta_A(a) + \deg A)$

Complexity: $\widetilde{\mathcal{O}}(\mu N + \delta_A(a) + \deg A)$

Algorithm

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$,

• a function
$$a = \sum_{i=0}^{\mu-1} a_i y_i^{(A)} \in \mathcal{A}(A)$$
, where $a_i \in \mathbb{F}[x]$.

Output:

• evaluations
$$a(E_1), \ldots, a(E_N) \in \mathbb{F}$$
.

1 Compute
$$a_i(x(E_1)), \dots, a_i(x(E_N))$$
 for $i = 0, \dots, \mu - 1$.
2 Return $a(E_j) = \sum_{i=0}^{\mu-1} a_i(x(E_j)) y_i^{(A)}(E_j)$ for $j = 1, \dots, N$.

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+g))$

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $w_1, \dots, w_N \in \mathbb{F}$.

Output:

• $a \in \mathcal{A}(A)$ such that $a(E_j) = w_j$ for $j = 1, \dots, N$ and $\delta_A(a) \leq N + 2g - 1 - \deg A$ is minimal.

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+g))$

DTU

Ħ

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $w_1, \dots, w_N \in \mathbb{F}$.

Output:

- $a \in \mathfrak{A}(A)$ such that $a(E_j) = w_j$ for $j = 1, \dots, N$ and $\delta_A(a) \leq N + 2g 1 \deg A$ is minimal.
- 1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+g))$

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $w_1, \dots, w_N \in \mathbb{F}$.

Output:

• $a \in \mathfrak{A}(A)$ such that $a(E_j) = w_j$ for $j = 1, \dots, N$ and $\delta_A(a) \leq N + 2g - 1 - \deg A$ is minimal.

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k

2 For
$$k = 1, \ldots, \mu$$
, compute $W_k, Y_{i,k} \in \mathbb{F}[x]$ for $i = 0, \ldots, \mu - 1$ such that for each $E_j \in U_k$
 $W_k(x(E_j)) = w_j$ and $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+g))$

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $w_1, \dots, w_N \in \mathbb{F}$.

Output:

• $a \in \mathfrak{A}(A)$ such that $a(E_j) = w_j$ for $j = 1, \ldots, N$ and $\delta_A(a) \leq N + 2g - 1 - \deg A$ is minimal.

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k

2 For
$$k = 1, ..., \mu$$
, compute $W_k, Y_{i,k} \in \mathbb{F}[x]$ for $i = 0, ..., \mu - 1$ such that for each $E_j \in U_k$
 $W_k(x(E_j)) = w_j$ and $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$

3 Compute $a_0, \ldots, a_{\mu-1} \in \mathbb{F}[x]$ with certain degree constraints such that for $k = 1, \ldots, \mu$ $\sum_{i=0}^{\mu-1} a_i Y_{i,k} \equiv W_k \mod \prod_{E_j \in U_k} (x - x(E_j)).$

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+g))$

Input:

• divisors A and $E = E_1 + \dots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $w_1, \dots, w_N \in \mathbb{F}$.

Output:

• $a \in \mathfrak{A}(A)$ such that $a(E_j) = w_j$ for $j = 1, \ldots, N$ and $\delta_A(a) \leq N + 2g - 1 - \deg A$ is minimal.

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k

2 For
$$k = 1, ..., \mu$$
, compute $W_k, Y_{i,k} \in \mathbb{F}[x]$ for $i = 0, ..., \mu - 1$ such that for each $E_j \in U_k$
 $W_k(x(E_j)) = w_j$ and $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$

3 Compute $a_0, \ldots, a_{\mu-1} \in \mathbb{F}[x]$ with certain degree constraints such that for $k = 1, \ldots, \mu$ $\sum_{i=0}^{\mu-1} a_i Y_{i,k} \equiv W_k \mod \prod_{E_j \in U_k} (x - x(E_j)).$

4 Return $a = \sum_{i=0}^{\mu-1} a_i y_i^{(A)}$.

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+|\deg A|))$

Input:

• divisors A and $E = E_1 + \cdots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $a \in \mathfrak{R}(A)$.

Output:

• products $y_0 a, \ldots, y_{\mu-1} a \in \mathfrak{A}(a)$.

 $\mathbb{F}[x]$ -basis of $\langle a
angle_{\mathrm{S}}$ or $\langle z-a
angle_{\mathrm{S}}$

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+|\deg A|))$

Input:

• divisors A and $E = E_1 + \cdots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $a \in \mathfrak{A}(A)$.

Output:

• products $y_0 a, \ldots, y_{\mu-1} a \in \mathfrak{A}(a)$.

 $\mathbb{F}[x]$ -basis of $\langle a \rangle_{\mathrm{H}}$ or $\langle z - a \rangle_{\mathrm{H}}$

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k .

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+|\deg A|))$

Input:

• divisors A and $E = E_1 + \cdots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $a \in \mathfrak{A}(A)$.

Output:

• products $y_0 a, \ldots, y_{\mu-1} a \in \mathfrak{A}(a)$.

 $\mathbb{F}[x]$ -basis of $\langle a
angle_{\mathrm{S}}$ or $\langle z-a
angle_{\mathrm{S}}$

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k .

2 For
$$k = 1, \ldots, \mu$$
, compute $Y_{i,k}, A_{i,k} \in \mathbb{F}[x]$ for $i = 0, \ldots, \mu - 1$ such that for each $E_j \in U_k$
 $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$ and $A_{i,k}(x(E_j)) = a(E_j)y_i(E_j)$.

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+|\deg A|))$

Input:

• divisors A and $E = E_1 + \cdots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $a \in \mathfrak{A}(A)$.

Output:

• products $y_0 a, \ldots, y_{\mu-1} a \in \mathfrak{A}(a)$.

```
\mathbb{F}[x]-basis of \langle a \rangle_{\mathrm{F}} or \langle z - a \rangle_{\mathrm{F}}
```

1 Partition E into equally sized U_1, \ldots, U_{μ} such that x-coordinates don't repeat within each U_k .

2 For
$$k = 1, \ldots, \mu$$
, compute $Y_{i,k}, A_{i,k} \in \mathbb{F}[x]$ for $i = 0, \ldots, \mu - 1$ such that for each $E_j \in U_k$
 $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$ and $A_{i,k}(x(E_j)) = a(E_j)y_i(E_j)$.

3 Compute a (shifted) Popov basis $P = [P_1|P_2] \in \mathbb{F}[x]^{2\mu \times 2\mu}$ of $\{(f_0, \dots, f_{\mu-1}, h_0, \dots, h_{\mu-1}) \in \mathbb{F}[x]^{2\mu} \mid \sum_{i=0}^{\mu-1} f_i Y_{i,k} \equiv \sum_{i=0}^{\mu-1} h_i A_{i,k} \mod \prod_{E_j \in U_k} (x - x(E_j))\}$

Algorithm

Complexity: $\widetilde{\mathcal{O}}(\mu^{\omega-1}(N+|\deg A|))$

Input:

• divisors A and $E = E_1 + \cdots + E_N$ such that $\operatorname{supp} E \cap (\operatorname{supp} A \cup \{P_\infty\}) = \emptyset$, $a \in \mathfrak{A}(A)$.

Output:

• products $y_0 a, \ldots, y_{\mu-1} a \in \mathfrak{A}(a)$.

 $\mathbb{F}[x]$ -basis of $\langle a \rangle_{\mathfrak{A}}$ or $\langle z - a \rangle_{\mathfrak{A}}$

1 Partition E into equally sized U_1, \ldots, U_μ such that x-coordinates don't repeat within each U_k .

2 For
$$k = 1, \ldots, \mu$$
, compute $Y_{i,k}, A_{i,k} \in \mathbb{F}[x]$ for $i = 0, \ldots, \mu - 1$ such that for each $E_j \in U_k$
 $Y_{i,k}(x(E_j)) = y_i^{(A)}(E_j)$ and $A_{i,k}(x(E_j)) = a(E_j)y_i(E_j)$.

3 Compute a (shifted) Popov basis $P = [P_1|P_2] \in \mathbb{F}[x]^{2\mu \times 2\mu}$ of $\{(f_0, \dots, f_{\mu-1}, h_0, \dots, h_{\mu-1}) \in \mathbb{F}[x]^{2\mu} \mid \sum_{i=0}^{\mu-1} f_i Y_{i,k} \equiv \sum_{i=0}^{\mu-1} h_i A_{i,k} \mod \prod_{E_j \in U_k} (x - x(E_j))\}$

4 Return $y_m a = \sum_{i=0}^{\mu-1} f_i^{(m)} y_i^{(A)}$, where $(f_0^{(m)}, \ldots, f_{\mu-1}^{(m)})$ is the *m*-th of the μ smallest rows in P_1 .

Task

Given $Q \in \mathcal{M}_{s,\ell}(D,G)$, compute all $f \in \mathcal{L}(G)$ such that Q(f) = 0.

DTU

Task

Given $Q \in \mathcal{M}_{s,\ell}(D,G)$, compute all $f \in \mathcal{L}(G)$ such that Q(f) = 0.

Let:

- fixed rational place $P_0 \not\in \operatorname{supp} G \cup \{P_\infty\}$ having x as a local parameter,
- for any $a \in \mathfrak{K}(A)$ with $v_{P_0}(a) \ge 0$, let $\widehat{a} \in \mathbb{F}[\![x]\!]$ be the P_0 -adic power series expansion of a at P_0 ,
- for any $Q = \sum_{t=0}^{\ell} Q^{(t)} z^t \in \mathcal{M}_{s,\ell}(D,G)$, let $\widehat{Q} = \sum_{t=0}^{\ell} \widehat{Q}^{(t)} z^t$.

Task

Given $Q \in \mathcal{M}_{s,\ell}(D,G)$, compute all $f \in \mathcal{L}(G)$ such that Q(f) = 0.

Let:

- fixed rational place $P_0 \not\in \operatorname{supp} G \cup \{P_\infty\}$ having x as a local parameter,
- for any $a \in \mathfrak{K}(A)$ with $v_{P_0}(a) \ge 0$, let $\widehat{a} \in \mathbb{F}[\![x]\!]$ be the P_0 -adic power series expansion of a at P_0 ,
- for any $Q = \sum_{t=0}^{\ell} Q^{(t)} z^t \in \mathcal{M}_{s,\ell}(D,G)$, let $\widehat{Q} = \sum_{t=0}^{\ell} \widehat{Q}^{(t)} z^t$.

Strategy

Complexity: $\widetilde{\mathcal{O}}(\ell^2 \mu^{\omega-1}(n+g))$

1 Compute
$$\widehat{Q} = \sum_{t=0}^{\ell} \widehat{Q}^{(t)} z^t$$
. Writing $Q^{(t)} = \sum_{i=0}^{\mu-1} Q^{(t)} y_i^{(G_t)}$, then $\widehat{Q^{(t)}} = \sum_{t=0}^{\ell} Q^{(t)} \widehat{y}_i^{(G_t)}$.

2 Compute $\mathbb{F}[\![x]\!]$ -roots of \widehat{Q} to precision $\beta \geq 2\ell \deg G + s(n-\tau)$.

3 Convert these roots back to $\mathfrak{R}(G)$ and discard those that are not in $\mathcal{L}(G)$.

(dominates)

Task

Given $Q \in \mathcal{M}_{s,\ell}(D,G)$, compute all $f \in \mathcal{L}(G)$ such that Q(f) = 0.

Let:

- fixed rational place $P_0 \not\in \operatorname{supp} G \cup \{P_\infty\}$ having x as a local parameter,
- for any $a \in \mathfrak{K}(A)$ with $v_{P_0}(a) \ge 0$, let $\widehat{a} \in \mathbb{F}[\![x]\!]$ be the P_0 -adic power series expansion of a at P_0 ,
- for any $Q = \sum_{t=0}^{\ell} Q^{(t)} z^t \in \mathcal{M}_{s,\ell}(D,G)$, let $\widehat{Q} = \sum_{t=0}^{\ell} \widehat{Q}^{(t)} z^t$.

Strategy

Complexity: $\widetilde{\mathcal{O}}(\ell^2 \mu^{\omega-1}(n+g))$

(dominates)

1 Compute
$$\widehat{Q} = \sum_{t=0}^{\ell} \widehat{Q}^{(t)} z^t$$
. Writing $Q^{(t)} = \sum_{i=0}^{\mu-1} Q^{(t)} y_i^{(G_t)}$, then $\widehat{Q^{(t)}} = \sum_{t=0}^{\ell} Q^{(t)} \widehat{y}_i^{(G_t)}$.

2 Compute $\mathbb{F}[\![x]\!]$ -roots of \widehat{Q} to precision $\beta \geq 2\ell \deg G + s(n-\tau)$.

3 Convert these roots back to $\mathfrak{A}(G)$ and discard those that are not in $\mathcal{L}(G)$.

Root-finding over $\mathbb{F}[x]$: Neiger, Rosenkilde, Schost (2017)

A fast decoding algorithm Converting $\mathbb{F}[x]$ -roots to $\mathcal{L}(G)$ -roots

Lemma

For any $\alpha > \deg G$, if

• $f \in \mathcal{L}(G)$,

•
$$\sum_{i=0}^{\mu-1} f_i \widehat{y}_i^{(G)} \equiv \widehat{f} \pmod{x^{\alpha}}$$
 for some $f_i \in \mathbb{F}[x]$ with $\deg f_i \leq -\frac{1}{\mu} \delta_G(y_i^{(G)})$,

then $\sum_{i=0}^{\mu-1} f_i y_i^{(G)} = f$.

A fast decoding algorithm Converting $\mathbb{F}[\![x]\!]$ -roots to $\mathcal{L}(G)$ -roots

Lemma

For any $\alpha > \deg G$, if

• $f \in \mathcal{L}(G)$,

•
$$\sum_{i=0}^{\mu-1} f_i \widehat{y}_i^{(G)} \equiv \widehat{f} \pmod{x^{\alpha}}$$
 for some $f_i \in \mathbb{F}[x]$ with $\deg f_i \leq -\frac{1}{\mu} \delta_G(y_i^{(G)})$,

then $\sum_{i=0}^{\mu-1} f_i y_i^{(G)} = f$.

Proof: Since $h := \sum_{i=0}^{\mu-1} f_i y_i^{(G)} \in \mathcal{L}(G) \cap (\widehat{f} + x^{\alpha} \mathbb{F}\llbracket x \rrbracket)$, then $h - f \in \mathcal{L}(G - \alpha P_0) = \{0\}$.

A fast decoding algorithm Complete decoder

Algorithm

Complexity: $\widetilde{\mathcal{O}}(s\ell^{\omega}\mu^{\omega-1}(n+g))$

- **1** Compute $B_v^{(u)} = \sum_{t=0}^u {\binom{u}{t}} z^t (-R)^{u-r} g_v^{(u)}$ for $u = 0, \dots, \ell$ and v = 1, 2
- **2** Compute $\{y_i B_v^{(u)}\}_{v=1,2}^{u=0,...,\ell} = 0,...,\mu-1$

3 Construct a matrix in $\mathbb{F}[x]^{2\mu(\ell+1)\times\mu(\ell+1)}$ and compute its shifted Popov form $P \in \mathbb{F}[x]^{\mu(\ell+1)\times\mu(\ell+1)}$

- 4 Extract $Q \in \mathcal{M}_{s,\ell}(D,G)$ with $\delta_G(Q) < s(n-\tau)$ from \boldsymbol{P}
- **(5)** Compute $\widehat{Q} \in \mathbb{F}[\![x]\!][z]$ and its $\mathbb{F}[\![x]\!]$ -roots

6 Convert the roots to $\mathfrak{A}(G)$, discarding those that are not in $\mathcal{L}(G)$ or are far from r

A fast decoding algorithm Conclusion

Results:

- Can list decode any AG code with cost $\widetilde{\mathcal{O}}(s\ell^{\omega}\mu^{\omega-1}(n+g)).$
- Faster than any other general list decoding algorithm.
- At least as fast as any specialized algorithm.

(except for RS codes)

Future:

• Can we get $\widetilde{\mathcal{O}}(s^2\ell^{\omega-1}\mu^{\omega-1}(n+g))?$

2015 Chowdhury, Jeannerod, Neiger, Schost, Villard – Faster algorithms for multivariate interpolation with multiplicities and simultaneous polynomial approximations Complexity: $\tilde{\mathcal{O}}(s^2 \ell^{\omega-1} n)$

DTU

A fast decoding algorithm Popov forms of matrices over $\mathbb{F}[x]$

Definition

- Pivot of a row: rightmost entry of maximal degree.
- Popov form: all pivots lie on the diagonal, are monic and dominate their colums.

$$\begin{pmatrix} x^3 & x^1 & x^2 & x^0 \\ x^2 & x^2 & x^1 & x^0 \\ x^4 & x^1 & x^4 & x^0 \\ x^1 & x^1 & x^1 & x^1 \end{pmatrix}$$

Properties:

- for any $m{M}\in\mathbb{F}[x]^{m imes m}$ there is a unique $m{P}\in\mathbb{F}[x]^{m imes m}$ in Popov form with the same row space,
- P has minimal row-degrees,
- can compute ${m P}$ with cost $\widetilde{\mathcal{O}}(m^\omega \deg {m M}).$

8.3.2022

DTU

=