[ERO-RATE THRESHOLDS & NEW GAPAGITY BOUNDS
FORLIST-DEGODING AND LIST-REGOVERY

Nicolas Resch Chen Yuan Yihan Zhang

CWI — University Shanghai Jiao Institute of Science and

of Amsterdam Tong University Technology Austria

[ERO-RATE THRESHOLDS & NEW GAPAGITY BOUNDS
FORLIST-DECODING A ! 1T nERNUEDY

AU LIOIFNMLUUYLII
Nicolas Resch Chen Yuan Yihan Zhang

CWI — University Shanghai Jiao Institute of Science and

of Amsterdam Tong University Technology Austria

LIST-DEGODABILITY

KEY DEFINITIONS

KEY DEFINITIONS

= A code is a subset ¢ C [g]" with [gq] = {0,1,...,g — 1}

KEY DEFINITIONS

= A code is a subset ¢ C [g]" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €'|)/n(so |€| = g~"): measures efficiency

KEY DEFINITIONS

= A code is a subset ¢ C [g]" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €'|)/n(so |€| = g~"): measures efficiency

= Distance is 6 := min{d(c,¢) : ¢ # ¢’ € &}: measures error-resilience

KEY DEFINITIONS

= A code is a subset ¢ C [g]|" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €|)/n(so |€| = g~"): measures efficiency

= Distance is § := min{d(c,¢’) : ¢ # ¢’ € €}: measures error-resilience

- Here, d(X,y) = |{i € [n] : x; # y;} |/nis (Hamming) distance

KEY DEFINITIONS

= A code is a subset ¢ C [g]|" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €|)/n(so |€| = g~"): measures efficiency

= Distance is § := min{d(c,¢’) : ¢ # ¢’ € €}: measures error-resilience
- Here, d(X,y) = |{i € [n] : x; # y;} |/nis (Hamming) distance
= Let wt(X) = d(X, 0) be its weight

KEY DEFINITIONS

= A code is a subset ¢ C [g]|" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €|)/n(so |€| = g~"): measures efficiency

= Distance is § := min{d(c,¢’) : ¢ # ¢’ € €}: measures error-resilience
- Here, d(X,y) = |{i € [n] : x; # y;} |/nis (Hamming) distance
= Let wt(X) = d(X, 0) be its weight

= Goal: design codes with large distance and large rate

KEY DEFINITIONS

= A code is a subset ¢ C [g]|" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €|)/n(so |€| = g~"): measures efficiency

= Distance is 6 := min{d(c,¢’) : ¢ #+ ¢’ € €}: measures error-resilience
- Here, d(X,y) = |{i € [n] : x; # y;} |/nis (Hamming) distance
= Let wt(X) = d(X, 0) be its weight

= Goal: design codes with large distance and large rate

= However, these desiderata are at odds

RATE-DISTANGE TRADEOFF

RATE-DISTANGE TRADEOFF

@
® = Larger rate: more points

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points

® = Larger distance: further apart points

RATE-DISTANGE TRADEOFF

5 = Larger rate: more points
/ = Larger distance: further apart points

RATE-DISTANGE TRADEOFF

® ¢ ¢
® = Larger rate: more points
7,
o = Larger distance: further apart points
® o ®
® o
@ @
@ @
® @
® °

RATE-DISTANGE TRADEOFF

® °
|
® ® o = Larger rate: more points
57 ® ° = Larger distance: further apart points
*—o ®
® o
| @
@ o @ e
¢ ®

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points

® = Larger distance: further apart points

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points
® = Larger distance: further apart points
|
o ¢ - Suppose channel corrupts p-fraction
® of symbols
@
@
@

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points
® = Larger distance: further apart points
@
o ¢ - Suppose channel corrupts p-fraction
® of symbols
® = < 0/2: can uniquely decode
@
®

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points
0@ = Larger distance: further apart points
|
° ¢ - Suppose channel corrupts p-fraction
® of symbols
® = < 0/2: can uniquely decode
@
@

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points

= Larger distance: further apart points

- Suppose channel corrupts p-fraction

® of symbols

@ = < 0/2: can uniquely decode

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points
® = Larger distance: further apart points
@
o ¢ - Suppose channel corrupts p-fraction
® of symbols
® = < 0/2: can uniquely decode
@
®

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points

® = Larger distance: further apart points

- Suppose channel corrupts p-fraction
® of symbols

@ = < 0/2: can uniquely decode

® = > 0/2: cannot uniquely decode

RATE-DISTANGE TRADEOFF

® @
® = Larger rate: more points

® = Larger distance: further apart points

- Suppose channel corrupts p-fraction
® of symbols

@ = < 0/2: can uniquely decode

® = > 0/2: cannot uniquely decode

RATE-DISTANGE TRADEOFF

® @

= Larger rate: more points

= Larger distance: further apart points
- Suppose channel corrupts p-fraction
® of symbols

@ = < 0/2: can uniquely decode

® = > 0/2: cannot uniquely decode

RATE-DISTANGE TRADEOFF

® @
= Larger rate: more points
= Larger distance: further apart points
- Suppose channel corrupts p-fraction
® of symbols
® = < 0/2: can uniquely decode

® = > 0/2: cannot uniquely decode

® = “Half-the-distance limit”

I_IST-DEGUI]ABII_ITY [Elias’57, Wozencraft’58]

I_IST-I]EGUDABII_ITY [Elias’57, Wozencraft'58]

I_IST-I]EGUDABII_ITY [Elias’57, Wozencraft'58]

I_IST-I]EGUDABII_ITY [Elias’57, Wozencraft'58]

I_IST-DEGUI]ABII_ITY [Elias’57, Wozencraft’58]

Hamming balls:
B(y,p) = 1x€[q]":dx,y) < p}

I_IST-DEGUI]ABII_ITY [Elias’57, Wozencraft’58]

Hamming balls:
B(y,p) = 1x€[q]":dx,y) < p}

I_IST-I]EGUDABII_ITY [Elias’57, Wozencraft’58]

€ C [q]"is (p, L)-list-decodable if Vy € [g]",
€ NB(y,p)| <L

Hamming balls:
B(y,p) = 1x€[q]":dx,y) < p}

I_IST-I]EGUDABII_ITY [Elias’57, Wozencraft’58]

€ C [q]"is (p, L)-list-decodable if Vy € [g]",
€ NB(y,p)| <L

Hamming balls:
B(y,p) = 1x€[q]":dx,y) < p}

Tradeoffs between R, p, L?

R.., = max rate of

(p, L)-list-dec. code

R.., = max rate of

(p, L)-list-dec. code

Rcap — 1 = hq(p) (GV)as L — o

R.., = max rate of

(p, L)-list-dec. code

Rcap — 1 = hq(p) (GV)as L — o

What about fixed L.? E.g., L = 10?

R.,, = max rate of

(p, L)-list-dec. code

Reap — | — hq(p) (AT

What about fixed L.? E.g., L = 10?

Describe this curve?

0 02 04 06 08
Decoding radius p

LET'S BE MORE MODESI..

LET'S BE MORE MODESI..

= g = 2, L = 2 (unique-decoding) case:

LET'S BE MORE MODESI..

= g =2, L =2 (unique-decoding) case:

GV < R <min{LP, EB}

1

LETSBEMOREMODEST.. ...

= g =2, L =2 (unique-decoding) case:

Rate R

GV < R < IIllIl{LP, EB} Yo = 102 01 015 02 025

Decoding radius p

1

LETSBEMORE MODEST.. ...
= g =2, L =2 (unique-decoding) case: m zz |
GV < R <min{LP,EB} Y0 50 01 015 02 0%

Decoding radius p

= qg=49,L = 2:

LET'S BE MORE MODESI..

= g =2, L =2 (unique-decoding) case:

GV < R <min{LP, EB}

= q=49,L = 2.
max{GV,AG} <R

LET'S BE MORE MODESI..

= g =2, L =2 (unique-decoding) case:

GV < R <min{LP, EB}

- qg=49,L = 2:
max{GV,AG} <R

Rate R

0.8 |

0 s5.10-2 01 015 02 025

Decoding radius p

0 0.1 02 03 04
Decoding radius p

LET'S BE MORE MODESI..

= g =2, L =2 (unique-decoding) case:

GV < R <min{LP, EB}

- qg=49,L = 2:
max{GV,AG} <R

= Larger L, g: seems very difficult...

Rate R

0 s5.10-2 01 015 02 025

Decoding radius p

0 0.1 02 03 04
Decoding radius p

[ERO-RATE THRESHOLD

[ERO-RATE THRESHOLD

t

; + :
0 0.2 0.4 0.6 0.8
Decoding radius p

[ERO-RATE THRESHOLD

0.8
e 0.6
@
= 0.4 Determine this
0.2 | point?
0 4 + ; 4
0 02 04 06 08

Decoding radius p

[ERO-RATE THRESHOLD

0.8
e 0.6
e
~ 04 Determine this
0.2 | point?
0 4 + + +
0 0.2 0.4 0.6 0.8 Zero-rate threshold

Decoding radius p p*(q) L)

PLOTKIN BOUND

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)

- Thus, p«(2,2) = 1/4

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)

- Thus, p«(2,2) = 1/4

qg— 1

= Similarly: p.(g,2) =
2q

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)

~ Thus, p.(2,2) = 1/4

g— 1 L = 2 case is solved!
2q

= Similarly: p.(g,2) =

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)

~ Thus, p.(2,2) = 1/4

g— 1 L = 2 case is solved!
2q

2k
” 7 _1 k
p+(2,)_5_22k+1’

= Similarly: p.(g,2) =

= Blinovsky '86:

Le (2k2k+ 1)

PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)
= Thus, p«(2,2) = 1/4

g— 1 L = 2 case is solved!
2q

= Blinovsky '86: g = 2 case is solved!
2k
1 (k)

pu2L) == — oo LE (2k2k +1)

= Similarly: p.(g,2) =

INTERPREIATION OF ZERO-RATE THRESHOLD

INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (Zk)
1 k
p*(Z,L) — 5 — 2kt] . L & {2k,2k + 1}

has the following probabilistic interpretation

INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (Zk)
1 k
,0>x<(2,L) — 5 — 2kt] . L & {2k,2k + 1}

has the following probabilistic interpretation

|
p+(2,L) =1 —— = lpl(Xy, ..., X;)]
L (X;,....X,))~Unif({0,1})-

INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (21<)
1 k
p*(Z,L) — 5 — 2kt] . L & {2k,2k + 1}

has the following probabilistic interpretation L indep. unif. bits

|
p+(2,L) =1 —— = lpl(Xy, ..., X;)]
L (X;,....X,))~Unif({0,1})-

INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (Zk)

|
p*(zaL) — 5 o 22k+1 5

L e {2k2k+ 1}

has the following probabilistic interpretation L indep. unif. bits

|
L (X;,....X,))~Unif({0,1})-

pl(xi, ..., x;) = # of times a

most popular bit appears

INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (Zk)
1 k
p*(Z,L) — 5 — 2kt] . L & {2k,2k + 1}

has the following probabilistic interpretation L indep. unif. bits

|
X 2,L — 1 —_— —
pr(&L) L (X;,....X,))~Unif({0,1})-

[pl(Xy, ..., X))

pl(xy, ..., x;) = # oftimesa WICE " N DIEE!

most popular bit appears

CONJECTURE FOR GENERAL .7

CONJECTURE FOR GENERAL .7

= [For general g, answer should be

|
p*(Q, L) =] — — = [pl(Xl, ’XL)]
L X,....X,)~Unif([¢g])*

CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

elements from [g]
[pl(Xy, ..., X))

|
p*(Q9 L) =1—-— —
L X.,....X,)~Unif([g])*

CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

elements from [g]
[pl(Xy, ..., X))

|
p*(Q9 L) =1—-— —
L X.,....X,)~Unif([g])*

pl(l I = W =4

CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

1 elements from [g]
p(q, L) =1—— - pl(X, ..., X;)]

L X.,....X,)~Unif([g])*
pl(H"'IN =W | W =4

= Blinovsky '05, '08 claims a proof... but it's flawed

OUR RESULT

OUR RESULT

= Forallg > 2 and L > 2, we prove the equality

|
p*(Q, L) =] —— = [pl(Xl, . '?XL)]
L X;.,....X,)~Unif([g])*

OUR RESULT

= Forallg > 2 and L > 2, we prove the equality

|
p*(Q, L) =] —— = [pl(Xl, . ‘?XL)]
L X;.,....X,)~Unif([g])*

= [wo parts:

OUR RESULT

= Forallg > 2 and L > 2, we prove the equality

|
p*(Q, L) =] —— = [pl(Xl, ,XL)]
L X;.,....X,)~Unif([g])*

= [wo parts:

Possibility Result: 1 positive
rate (p« — €, L)-list-dec.

codes (standard random
code argument)

OUR RESULT

= Forallg > 2 and L > 2, we prove the equality

|
p*(Q, L) =] —— = [pl(Xl, ,XL)]
L X;.,....X,)~Unif([g])*

= [wo parts:

Possibility Result: 1 positive Imbossibility Result: If
= et IMPOSSIDIIITY KeSUIt.
rate (ps — €, L)-list-dec. G C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

OUR RESULT

= Forallg > 2 and L > 2, we prove the equality

|
+\ Y, L — 1 - _ I X o oo oo X '
pq, L) L (Xl,...,XL)NUnif([q])L[p(: 2 Today's

= [wo parts: 10CUS

Possibility Result: 1 positive Imbossibility Result: If
= . Impossibility Result:
rate (ps — €, L)-list-dec. € C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

From this: derive

UUH HESUI.T new upper bounds

on rate of (p, L)-list-
decodable codes

= Forallg > 2 and L > 2, we prove the equality

1
+\ Y, L — 1 - _ I X o oo oo X '
P4, L) L (Xl,...,XL)NUnif([q])L[p(1 2 Today's

focus

= [wo parts:

Possibility Result: 1 positive Imbossibility Result: If
= . Impossibility Result:
rate (ps — €, L)-list-dec. € C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

From this: derive

Analogous result

UUH HESUI.T for list-recovery

= Forallg > 2 and L > 2, we prove the equality

new upper bounds

on rate of (p, L)-list-
decodable codes

1
+\ Y, L — 1 - _ I X o oo oo X '
P4, L) L (Xl,...,XL)NUnif([q])L[p(1 2 Today's

focus

= [wo parts:

Possibility Result: 1 positive Imbossibility Result: If
= . Impossibility Result:
rate (ps — €, L)-list-dec. € C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

HOW T0 BOUND A GODE

RADIUS

- Given vectors X;, ..., X; € [gq]", their radius is

rad(X,, ...,X;) = min maxd(Xx,y)
ve|qg]|” i€[L]

Radius of smallest ball

HAI]IUS containing {X, ..., X; |

- Given vectors X;, ..., X; € [gq]", their radius is

rad(X,, ...,X;) = min maxd(Xx,y)
yElql" i€[L]

AVERAGE-RADIUS

- Given vectors X;, ..., X; € |gq]", their average-radius is

rad(x;, ...,X;) = min — Z d(X;,y) = Z (1—%p|(x1,,-, ...,xL,i))

yelql" L Pt

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is

rad(x;, ...,X;) = min — Z d(X;,y) = 2 (1—%p|(x1,,-, ...,xL,i))

yelql" L Pt

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
1
rad(x;, ..., X;) = min — Z d(X;,y) = (l—zpl(xl,i, ...,xL,i))
yelql" L Pt

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
rad(X, ..., X;) = min — Z d(X,,y) = l—zpl(xl L Xp))
yelgl" L Pt

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
rad(X, ..., X;) = min — Z d(X,,y) = l—zpl(xl L Xp))
yelql" L Pt

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
rad(X, ..., X;) = min — Z d(X,,y) = l—zpl(xl L Xp))
yelql" L Pt

')\ () rad
1——p|()257557550

AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
rad(X, ..., X;) = min — Z d(X,,y) = l—zpl(xl L Xp))
yelql" L Pt

')\ () rad
1——p|()257557550 1.75

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

"too big" = OC],L’G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(independent of n!)

"too big" = OC],L,G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(independent of n!)

] _
O = D Z rad(x,, ..., X;)

(X1,...,X;)EG"

"too big" = OC],L,G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(independent of n!)

] _
O = D Z rad(x,, ..., X;)

(X1,...,X;)EG"

= After "preprocessing"*, may ensure

"too big" = OC],L,G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(independent of n!)

] _
O = D 2 rad(x,, ..., X;)

(X1,...,X;)EG"

= After "preprocessing"*, may ensure

() : d >
~ ﬁ Z rad(X;, ..., X;) = (p« + €)n

(X1,...,.X;) EG"

"too big" = OC],L,G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(iIndependent of n!)

] _
O = D Z rad(x,, ..., X;)

(Xy,.. .,XL)ECEL
*pass to "very symmetric"

= After "preprocessing"*, may ensure subcode of size Q(M)

O, : d >
Nﬁ Z ra (Xl”“’XL) - (p*+€)n
(Xl,...,XL)ECgL

"too big" = OC],L,G(I)

GENTRAL QUANTITY

= Suppose € C [gq]", | €| = M, is (p: + €, L)-list-dec with M "too big"

(iIndependent of n!)

| -
e ——— R -th 00
O = YD Z rad(x;, ..., X;) amsey-theory

(Xy,.. .,XL)ECEL
*pass to "very symmetric"

= After "preprocessing"*, may ensure subcode of size Q(M)

O, : d >
Nﬁ Z ra (Xl”“’XL) - (p*+€)n
(Xl,...,XL)ECgL

WENEED AN UPPER BOUND

q)z_ Z ﬁ(Xl,...,XL)
(X1,...,.X;)EEG"

WENEED AN UPPER BOUND

1 _
O = L Z rad(x, ..., X;)
(X1,...,.X;)EEG"

== Zn: 2 [ﬁPk(yj)

k=1 (yla-”’yL)E[Q]L .]=1

] (1—%P|()’1a ---a)’L))

WENEED AN UPPER BOUND

1 -
P — I Z rad(x;, ..., X;)
(Xl,...,XL)ECgL

- i D [ﬁPk(yj)

k=1 ()’1,- ' '?yL)E[q]L

j=1

] (1—%P|(Y1a °'°9yL))

WENEEDANUPPERBOUND |+ -+ !

1 -
@ = ﬁ Z rad(Xl, ...,XL) E
(Xl,...,XL)ECgL

= i Z [ﬁPk(yj)] (1—%pl(y1, ...,yL))

k=1 ()’1,- ' '?yL)E[q]L

J=1

WENEEDANUPPERBOUND |+ -+ !

1 .
’ ZE Z rad(xp ”.,XL) k E
(Xl,...,XL)ECgL

= i Z [ﬁPk(yj)] (1—%pl(y1, ...,yL))

k=1 ()’1,- ' '?yL)E[q]L

J=1

1

D =—
ML

(X{,...,X

> [HPk@,-)] (1-1Pi)
=PIy, - V)

k=1
()’1,- : '?yL)E[Q]L

j=1

P(W) = 3/13
P(M) = 5/13
P.(H) = 5/13

WENEED AN UPPER BOUND
D [ﬁPk(yj)] (1—%Pl(y1, ---,yL))

(V1>---yDElG)" \ Jj=1

WENEED AN UPPER BOUND
Z [ﬁPk(yj)

(V1>---yDElG)" \ Jj=1

(1—%P|()’1a °°'9yL))

WENEEDANUPPERBOUND (CES
» = Unif(g]), then

t
his equals p* !

Z [ﬁ P (y;)

(V1>---yDElG)" \ Jj=1

(1—%P|()’1» °°'9yL))

WENEEDANUPPERBOUND (CESIVAEZINT

this equals p™!

Z [ﬁ P (y;)

(1—%P|()’1» °°'9yL))

(yla---ayL)E[C]]L J=1
Suppose we = QUL [pl(y19 e -ayL)]
v)~ Py
can prove
this [E _ L[pl(yh 9yL)] — Px
,...,yL)NUmf([q])@

Inequality

WENEEDANUPPERBOUND (CESIVAEZINT

this equals p™!

L
> (117 |(1-tei0..

(Vis---ypElg)" \ j=1
Suppose we EE)N p
e V] k

can prove
this [E | L[pl(y19°-°9yL)] =p*
-y ~Unif([g])®

Inequality

WENEEDANUPPERBOUND (CES
» = Unif(g]), then

t
his equals p™!

2 [ﬁ P (y;)

(V1>---yDElG)" \ Jj=1

(1—%P|()’1» °°'9yL))

can proVe |]E [I
Veees poL p(y19 Co
» VI ntradiction!

this
inequality -
"“’YL)NUnif([q])@)L [pl(yl’ *° yL)] —
— p*

Suppose we

PROVING THAT INEQUALITY

INEQUALITY TO PROVE

L (V1se . yp) ~PE" : - L (V15 --y)~(Unif([g])®" : -

INEQUALITY TO PROVE

L (V1se . yp) ~PE" : - L (V15 --y)~(Unif([g])®" : -

= Define function on prob. dists. P € A([g]) = {Q e go : 2 Q; = 1}

f 1 (P) = E [pl(X,, ..., X;)]
(Xi,....X) ~P®"

] — —

L (ylw--ayL)NPk®L

INEQUALITY TO PROVE

1

[PI()’p 9yL)] S 1 T - . [pl(y19 9yL)]
L (y,....y)~(Unif([g])®"

= Define function on prob. dists. P € A([g]) = {Q e go : 2 Q; = 1}

fq,L(P) L= E [pl(X;, ..., X;)]

(Xi,....X) ~P®"

= Want to show: f is minimized on uniform distribution

SGHUR GONVEXITY

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A([n]) satisfyx <y if

k
le.l < yl.l Vk € [n]
1

=1 1=

where x' is X sorted in descending order

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

- X,y € A([n]) satisfy x <Yy if A y

k
le.l < yl.l Vk € [n]
1

=1 1=

where x' is X sorted in descending order

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Socfiwem X AT

l

=1

where x' is X sorted in descending order

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Socfiwem X AT

1 l 1/3 2/3 1 1/2 8/10 1
=

where x' is X sorted in descending order

SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Socfiwem X AT

1 l 1/3 2/3 1 1/2 8/10 1
l:

where X' is X sorted in descending order — X =< y

(1/q, ...,1/q) is majorized by
SGHUH GUNVEXITY every other probability vector
= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Zﬁ < \ yil Vk € [n] Xl yl
| 1

: , 1/3 2/3 1 1/2 8/10 1
=1 =

where X' is X sorted in descending order — X < y

SGHUR-OSTROWSKI GRITERION

SGHUR-OSTROWSKI GRITERION

. . of o L,
[is Schur-convex iff (x;, —x)| — —— | 20 Vi#]

axi a.x]

SGHUR-OSTROWSKI GRITERION

of of

[is Schur-convex iff (x;, —x)| — —— 20 Vi#]
o 0xl- ax]

= Can verify this holds for

L
P) = - (X4,X;)] = max{a,,,a ,_
fq’L() (Xl,...,XL)NP‘X’L[p(: 2 Z (ao,.. aq_1> g ! X H

(ag,. - .,aq_l)

where sum runs over all (ay, ..., aq_l) e N? s.t. Z a, =L

ELIAS-BASSALYGO-LIKE BOUND

RATE-DEGODING RADIUS TRADEQFFS =2ssevooss cies

RATE-DEGODING RADIUS TRADEQFFS =2ssevooss cies

RATE-DEGODING RADIUS TRADEQFFS =2ssevooss cies

= Use Plotkin bound
on each Hamming
ball subcode

RATE-DEGODING RADIUS TRADEQFFS =2ssevooss cies

= Use Plotkin bound
on each Hamming
ball subcode
- Use fact that you
don't need too
many Hamming
balls to cover [g]"

NEED TOUSE WEIGHT GONSTRAINT!

= Each subcode IS not only list-decodable, but is

(equivalent to) code with bounded weight

NEED TOUSE WEIGHT GONSTRAINT!

= Each subcode IS not only list-decodable, but is

(equivalent to) code with bounded weight

Want: Plotkin bound for list-decodable

G with weight constraint
witX) <w VX e 6

b=
M~ rad
) Z rad(x,
s+ X, JEGE S

> [HPk@,-)] (1-1Pi)
=PIy, - V)

k=1
()’1,- : '?yL)E[Q]L

j=1

P(W) = 3/13
P(M) = 5/13
P.(H) = 5/13

P(W) = 3/13
P(M) = 5/13
P.(H) = 5/13

USING WEIGHT GONSTRAINT

O = Z (1_%fq,L(Pk)>
k=1

USING WEIGHT GONSTRAINT

O = Z (1_%fq,L(Pk)>
k=1

- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

USING WEIGHT GONSTRAINT

O = 2 (1_%fq,L(Pk))
k=1

- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

— Define P, = (1 —u,ul(q—1),...,ul(qg—1));then P, < P,

USING WEIGHT GONSTRAINT
O = 2 (1-1£,uPD) < Z (1——qu())

- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

- Define P, = (1 —u,ul/(g—1),...,ul(qg — 1)); then P, <P

USING WEIGHT GONSTRAINT
O = Z (1-1£,uPD) < Z (1——qu())

- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

- Define P, = (1 —u,ul/(g—1),...,ul(qg — 1)); then P, <P

- Consider univariate function g(u) := fq,L(Pu), suppose its convex

USING WEIGHT GONSTRAINT
O = Z (1-1£,uPD) < Z (1——qu())

- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

- Define P, = (1 —u,ul/(g—1),...,ul(qg — 1)); then P, <P

- Consider univariate function g(u) := fq,L(Pu), suppose its convex

USING WEIGHT GONSTRAINT
O = Z (1-1£,uPD) < Z (1——qu())

<n 1—%gq,L(%Zwk) 1 (1=48,.00) = npu(g, L, w)

=1
- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

- Define P, = (1 —u,ul/(g—1),...,ul(qg — 1)); then P, <P

- Consider univariate function g(u) := fq,L(Pu), suppose its convex

SUMEPLOTS

g=3, L=73 g=3, L=4

l_ This work Theorelm 11, lowell' bound 03 —— This work ’fheorem 111, lower l[)ound

0.4 —— This work Theorem 13, upper bound | —— This work Theorem 13, upper bound
0.2 -

0.2 | =
0.1 -
O | | O | |
0 0.02 0.04 0.06 0.08 0.1 0 0.006 0.01 0.015 0.02 0.025 0.03

P P

GONGLUSION

From this: derive

Analogous result
new upper bounds

HEGAP for list-recovery

= Forallg > 2 and L > 2, we prove the equality

on rate of (p, L)-list-
decodable codes

|
p*(Q, L) =] —— = [pl(Xl, ,XL)]
L X;.,....X,)~Unif([g])*

= [wo parts:

Possibility Result: 1 positive Imbossibility Result: If
= . Impossibility Result:
rate (ps — €, L)-list-dec. € C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

From this: derive

Analogous result

HEGAP for list-recovery

= Forallg > 2 and L > 2, we prove the equality

new upper bounds

on rate of (p, L)-list-
decodable codes

plg, L) =1~ JA o amIE: Question: explicit bound a la
[Alon-Bukh-Polyanskiy'18]?

= [wo parts:

Possibility Result: 1 positive Imbossibility Resu'e: If
. IMPOSSIDIITY KeSU.L.
rate (ps — €, L)-list-dec. 6 C [ql"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;

List-decodable codes Average-Radius

List-decodable codes Average-Radius

“ y

THANK YOU! %Lrad(xl, s X7)
QUESTIONS?

ilygo Bound

