ZERO-RATE THRESHOLDS & NEW CAPACITY BOUNDS FOR LIST-DECODING AND LIST-RECOVERY

Nicolas Resch

CWI → **University**

of Amsterdam

Chen Yuan

Shanghai Jiao

Tong University

Yihan Zhang

Institute of Science and

Technology Austria

ZERO-RATE THRESHOLDS & NEW CAPACITY BOUNDS FOR LIST-DECODING AND LIST-DECOVERY

Nicolas Resch

CWI → **University**

of Amsterdam

Chen Yuan

Shanghai Jiao

Tong University

Yihan Zhang

Institute of Science and

Technology Austria

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R := \log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}| = q^{Rn}$): measures efficiency

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R := \log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}| = q^{Rn}$): measures efficiency
- **■** Distance is $\delta := \min\{d(\mathbf{c}, \mathbf{c}') : \mathbf{c} \neq \overrightarrow{\mathbf{c}}' \in \mathscr{C}\}$: measures error-resilience

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R := \log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}| = q^{Rn}$): measures efficiency
- **■** Distance is $\delta := \min\{d(\mathbf{c}, \mathbf{c}') : \mathbf{c} \neq \overrightarrow{\mathbf{c}}' \in \mathscr{C}\}$: measures error-resilience
 - Here, $d(\mathbf{x}, \mathbf{y}) = |\{i \in [n] : x_i \neq y_i\}| / n$ is (Hamming) distance

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R:=\log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}|=q^{Rn}$): measures efficiency
- Distance is $\delta := \min\{d(\mathbf{c}, \mathbf{c}') : \mathbf{c} \neq \overrightarrow{\mathbf{c}}' \in \mathscr{C}\}$: measures error-resilience
 - Here, $d(\mathbf{x}, \mathbf{y}) = |\{i \in [n] : x_i \neq y_i\}| / n$ is (Hamming) distance
 - Let wt(x) = d(x, 0) be its weight

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R:=\log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}|=q^{Rn}$): measures efficiency
- **■** Distance is $\delta := \min\{d(\mathbf{c}, \mathbf{c}') : \mathbf{c} \neq \overrightarrow{\mathbf{c}}' \in \mathscr{C}\}$: measures error-resilience
 - Here, $d(\mathbf{x}, \mathbf{y}) = |\{i \in [n] : x_i \neq y_i\}|/n$ is (Hamming) distance
 - Let wt(x) = d(x, 0) be its weight
- Goal: design codes with large distance and large rate

- A code is a subset $\mathscr{C} \subseteq [q]^n$ with $[q] = \{0,1,\ldots,q-1\}$
- Rate is $R:=\log_q(|\mathscr{C}|)/n$ (so $|\mathscr{C}|=q^{Rn}$): measures efficiency
- **■** Distance is $\delta := \min\{d(\mathbf{c}, \mathbf{c}') : \mathbf{c} \neq \overrightarrow{\mathbf{c}}' \in \mathscr{C}\}$: measures error-resilience
 - Here, $d(\mathbf{x}, \mathbf{y}) = |\{i \in [n] : x_i \neq y_i\}| / n$ is (Hamming) distance
 - Let wt(x) = d(x, 0) be its weight
- Goal: design codes with large distance and large rate
- However, these desiderata are at odds

Larger rate: more points

- Larger rate: more points
- Larger distance: further apart points

- Larger rate: more points
- Larger distance: further apart points

- Larger rate: more points
- Larger distance: further apart points

- Larger rate: more points
- Larger distance: further apart points

- Larger rate: more points
- Larger distance: further apart points

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode
 - $-\rho \ge \delta/2$: cannot uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode
 - $-\rho \ge \delta/2$: cannot uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode
 - $-\rho \ge \delta/2$: cannot uniquely decode

- Larger rate: more points
- Larger distance: further apart points
- Suppose channel corrupts ρ -fraction of symbols
 - $-\rho < \delta/2$: can uniquely decode
 - $-\rho \ge \delta/2$: cannot uniquely decode
- "Half-the-distance limit"

$$\mathscr{C}\subseteq [q]^n \text{ is } (\rho,L)\text{-list-decodable if } \forall \mathbf{y}\in [q]^n,$$

$$|\mathscr{C}\cap B(\mathbf{y},\rho)|< L$$

Hamming balls:

$$B(\mathbf{y}, \rho) = \{\mathbf{x} \in [q]^n : d(\mathbf{x}, \mathbf{y}) \le \rho\}$$

$$\mathscr{C}\subseteq [q]^n \text{ is } (\rho,L)\text{-list-decodable if } \forall \mathbf{y}\in [q]^n,$$

$$|\mathscr{C}\cap B(\mathbf{y},\rho)|< L$$

Hamming balls:

$$B(\mathbf{y}, \rho) = \{\mathbf{x} \in [q]^n : d(\mathbf{x}, \mathbf{y}) \le \rho\}$$

Tradeoffs between R, ρ, L ?

DREAM

DREAM

 $R_{\rm cap} = {\rm max\ rate\ of}$ (
ho, L)-list-dec. code

DREAM

$$R_{\mathrm{cap}}
ightarrow 1 - h_q(
ho)$$
 (GV) as $L
ightarrow \infty$

 $R_{\rm cap} = {\rm max\ rate\ of}$ (
ho, L)-list-dec. code

$$R_{\mathrm{cap}}
ightarrow 1 - h_q(
ho)$$
 (GV) as $L
ightarrow \infty$

$$R_{\rm cap} = {\rm max \ rate \ of}$$
 $(
ho, L)$ -list-dec. code

What about fixed L? E.g., L=10?

DREAM

$$R_{\mathrm{cap}}
ightarrow 1 - h_q(
ho)$$
 (GV) as $L
ightarrow \infty$

 $R_{\rm cap} = {\rm max\ rate\ of}$ (
ho, L)-list-dec. code

What about fixed L? E.g., L=10?

Describe this curve?

q=2, L=2 (unique-decoding) case:

q=2, L=2 (unique-decoding) case:

$$GV \le R \le \min\{LP, EB\}$$

q=2, L=2 (unique-decoding) case:

 $GV \le R \le \min\{LP, EB\}$

q=2, L=2 (unique-decoding) case:

$$GV \le R \le \min\{LP, EB\}$$

q = 49, L = 2:

q=2, L=2 (unique-decoding) case:

$$GV \le R \le \min\{LP, EB\}$$

q = 49, L = 2:

 $\max\{GV, AG\} \leq R$

q=2, L=2 (unique-decoding) case:

$$GV \le R \le \min\{LP, EB\}$$

q = 49, L = 2:

 $\max\{GV, AG\} \leq R$

q=2, L=2 (unique-decoding) case:

$$GV \le R \le \min\{LP, EB\}$$

$$q = 49, L = 2$$
:

$$\max\{GV, AG\} \leq R$$

Larger L, q: seems very difficult...

Determine this point?

Zero-rate threshold $\rho_*(q,L)$

Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$

- Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$
 - Thus, $\rho_*(2,2) = 1/4$

- Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$
 - Thus, $\rho_*(2,2) = 1/4$
- Similarly: $\rho_*(q,2) = \frac{q-1}{2q}$

- Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$
 - Thus, $\rho_*(2,2) = 1/4$
- Similarly: $\rho_*(q,2) = \frac{q-1}{2q}$

L=2 case is solved!

- Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$
 - Thus, $\rho_*(2,2) = 1/4$
- Similarly: $\rho_*(q,2) = \frac{q-1}{2q}$

L=2 case is solved!

Blinovsky '86:

$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, L \in \{2k, 2k+1\}$$

- Plotkin '60's proved that if $\mathscr{C} \subseteq \{0,1\}^n$ is uniquely-decodable from $(1/4+\epsilon)n$ errors then $|\mathscr{C}| \leq O(1/\epsilon)$
 - Thus, $\rho_*(2,2) = 1/4$
- Similarly: $\rho_*(q,2) = \frac{q-1}{2q}$
- Blinovsky '86:

L=2 case is solved!

q = 2 case is solved!

$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, L \in \{2k, 2k+1\}$$

- The expression
$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, \ L \in \{2k,2k+1\}$$

has the following probabilistic interpretation

- The expression
$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, \ L \in \{2k,2k+1\}$$

has the following probabilistic interpretation

$$\rho_*(2,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}(\{0,1\})^L} [\mathsf{pl}(X_1,...,X_L)]$$

- The expression
$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, \ L \in \{2k,2k+1\}$$

has the following probabilistic interpretation

L indep. unif. bits

$$\rho_*(2,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}(\{0,1\})^L} [\mathsf{pl}(X_1,...,X_L)]$$

The expression

$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, L \in \{2k, 2k+1\}$$

has the following probabilistic interpretation

L indep. unif. bits

$$\rho_*(2,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}(\{0,1\})^L} [\mathsf{pl}(X_1,...,X_L)]$$

 $p|(x_1, ..., x_L) = \# \text{ of times a}$ most popular bit appears

- The expression
$$\rho_*(2,L) = \frac{1}{2} - \frac{\binom{2k}{k}}{2^{2k+1}}, \ L \in \{2k,2k+1\}$$

has the following probabilistic interpretation

L indep. unif. bits

$$\rho_*(2,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}(\{0,1\})^L} [\mathsf{pl}(X_1,...,X_L)]$$

$$pl(x_1, ..., x_L) = \# \text{ of times a}$$

most popular bit appears

 \blacksquare For general q, answer should be

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

 \blacksquare For general q, answer should be

 $\rho_*(q,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$

L indep. unif. elements from [q]

 \blacksquare For general q, answer should be

$$\rho_*(q,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

L indep. unif. elements from [q]

 \blacksquare For general q, answer should be

elements from [q]

$$\rho_*(q,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_I) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

L indep. unif.

Blinovsky '05, '08 claims a proof... but it's flawed

OUR RESULT

OUR RESULT

- For all $q \ge 2$ and $L \ge 2$, we prove the equality

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

- For all $q \ge 2$ and $L \ge 2$, we prove the equality

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

- For all $q \ge 2$ and $L \ge 2$, we prove the equality

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

Possibility Result: \exists positive rate $(\rho_* - \varepsilon, L)$ -list-dec. codes (standard random code argument)

- For all $q \ge 2$ and $L \ge 2$, we prove the equality

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

Possibility Result: \exists positive rate $(\rho_* - \epsilon, L)$ -list-dec. codes (standard random code argument)

- For all $q \ge 2$ and $L \ge 2$, we prove the equality

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

Today's focus

Possibility Result: \exists positive rate $(\rho_* - \varepsilon, L)$ -list-dec. codes (standard random code argument)

For all $q \ge 2$ and $L \ge 2$, we prove the equality

From this: derive new upper bounds on rate of (ρ, L) -list-decodable codes

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

Today's focus

Possibility Result: \exists positive rate $(\rho_* - \varepsilon, L)$ -list-dec. codes (standard random code argument)

Analogous result for list-recovery

For all $q \ge 2$ and $L \ge 2$, we prove the equality

From this: derive new upper bounds on rate of (ρ, L) -list-decodable codes

$$\rho_*(q,L) = 1 - \frac{1}{L} \underset{(X_1,\ldots,X_L) \sim \mathsf{Unif}([q])^L}{\mathbb{E}} \left[\mathsf{pl}(X_1,\ldots,X_L) \right]$$

Two parts:

Today's focus

Possibility Result: \exists positive rate $(\rho_* - \varepsilon, L)$ -list-dec. codes (standard random code argument)

HOW TO BOUND A GODE

RADIUS

$$rad(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \max_{i \in [L]} d(\mathbf{x}_i, \mathbf{y})$$

RADIUS

Radius of smallest ball containing $\{x_1, ..., x_L\}$

$$rad(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \max_{i \in [L]} d(\mathbf{x}_i, \mathbf{y})$$

$$\overline{\text{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_i, \mathbf{y}) = \sum_{i=1}^n \left(1 - \frac{1}{L} \text{pl}(x_{1,i}, ..., x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_i, \mathbf{y}) = \sum_{i=1}^n \left(1 - \frac{1}{L} \text{pl}(x_{1,i}, ..., x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_i, \mathbf{y}) = \sum_{i=1}^n \left(1 - \frac{1}{L} \text{pl}(x_{1,i}, ..., x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_i, \mathbf{y}) = \sum_{i=1}^n \left(1 - \frac{1}{L} \text{pl}(x_{1,i}, ..., x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L) = \min_{\mathbf{y} \in [q]^n} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_i, \mathbf{y}) = \sum_{i=1}^n \left(1 - \frac{1}{L} \text{pl}(x_{1,i}, ..., x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_{1},...,\mathbf{x}_{L}) = \min_{\mathbf{y} \in [q]^{n}} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_{i},\mathbf{y}) = \sum_{i=1}^{n} \left(1 - \frac{1}{L} \text{pl}(x_{1,i},...,x_{L,i}) \right)$$

$$\overline{\text{rad}}(\mathbf{x}_{1},...,\mathbf{x}_{L}) = \min_{\mathbf{y} \in [q]^{n}} \frac{1}{L} \sum_{j \in [L]} d(\mathbf{x}_{i},\mathbf{y}) = \sum_{i=1}^{n} \left(1 - \frac{1}{L} \text{pl}(x_{1,i},...,x_{L,i}) \right)$$

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \epsilon, L)$ -list-dec with M "too big"

"too big" $= O_{q,L,\varepsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \epsilon, L)$ -list-dec with M "too big"

"too big" $= O_{q,L,\epsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \varepsilon, L)$ -list-dec with M "too big"

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\text{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

"too big" $= O_{q,L,\epsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \epsilon, L)$ -list-dec with M "too big"

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\text{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

After "preprocessing"*, may ensure

"too big" $= O_{q,L,\epsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \varepsilon, L)$ -list-dec with M "too big"

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\text{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

After "preprocessing"*, may ensure

$$\Phi \approx \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathcal{C}^L} \operatorname{rad}(\mathbf{x}_1, \dots, \mathbf{x}_L) \geq (\rho_* + \epsilon) n$$

"too big" $= O_{q,L,\epsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \varepsilon, L)$ -list-dec with M "too big"

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

After "preprocessing"*, may ensure

*pass to "very symmetric" subcode of size $\Omega(M)$

$$\Phi \approx \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathcal{C}^L} \operatorname{rad}(\mathbf{x}_1, \dots, \mathbf{x}_L) \geq (\rho_* + \epsilon) n$$

"too big" $= O_{q,L,\epsilon}(1)$ (independent of n!)

■ Suppose $\mathscr{C} \subseteq [q]^n$, $|\mathscr{C}| = M$, is $(\rho_* + \varepsilon, L)$ -list-dec with M "too big"

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

Ramsey-theory...

After "preprocessing"*, may ensure

*pass to "very symmetric" subcode of size $\Omega(M)$

$$\Phi \approx \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathcal{C}^L} \operatorname{rad}(\mathbf{x}_1, \dots, \mathbf{x}_L) \geq (\rho_* + \epsilon) n$$

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L) \qquad k$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

WF NFFN AN IPPER BOUND

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\text{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L) \qquad k$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$P_k(\blacksquare) = 3/13$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

$$\left(1 - \frac{1}{L}\mathsf{pl}(y_1, \dots, y_L)\right)$$

$$P_k(\Box) = 3/13$$

$$P_k(\Box) = 5/13$$

$$P_k(\Box) = 5/13$$

$$\sum_{(y_1,\ldots,y_L)\in[q]^L} \left(\prod_{j=1}^L P_k(y_j)\right) \left(1 - \frac{1}{L} \operatorname{pl}(y_1,\ldots,y_L)\right)$$

$$\sum_{(y_1,...,y_L)\in[q]^L} \left(\prod_{j=1}^L P_k(y_j)\right) \left(1 - \frac{1}{L}\mathsf{pl}(y_1,...,y_L)\right)$$

$$= 1 - \frac{1}{L} \underset{(y_1,...,y_L)\sim P_k^{\otimes L}}{\mathbb{E}} \left[\mathsf{pl}(y_1,...,y_L)\right]$$

If $P_k = \text{Unif}([q])$, then this equals $\rho^*!$

$$\sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^L P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$= 1 - \frac{1}{L} \underset{(y_1, \dots, y_L) \sim P_k^{\otimes L}}{\mathbb{E}} \left[\mathsf{pl}(y_1, \dots, y_L) \right]$$

If $P_k = \text{Unif}([q])$, then this equals $\rho^*!$

$$\sum_{(y_1,\ldots,y_L)\in[q]^L} \left(\prod_{j=1}^L P_k(y_j)\right) \left(1 - \frac{1}{L} \operatorname{pl}(y_1,\ldots,y_L)\right)$$

Suppose we can prove this inequality

$$| = 1 - \frac{1}{L} \underset{(y_1, \dots, y_L) \sim P_k^{\otimes L}}{\mathbb{E}} [\mathsf{pl}(y_1, \dots, y_L)]$$

$$| \leq 1 - \frac{1}{L} \underset{(y_1, \dots, y_L) \sim \mathsf{Unif}([q])^{\otimes L}}{\mathbb{E}} [\mathsf{pl}(y_1, \dots, y_L)] = \rho_*$$

If $P_k = \text{Unif}([q])$, then this equals $\rho^*!$

$$\sum_{(y_1,\ldots,y_L)\in[q]^L} \left(\prod_{j=1}^L P_k(y_j)\right) \left(1 - \frac{1}{L}\mathsf{pl}(y_1,\ldots,y_L)\right) \qquad (\rho_* + \epsilon)n \le \Phi \le \rho_* n$$

$$(\rho_* + \epsilon)n \le \Phi \le \rho_* n$$

Suppose we can prove inequality

$$\begin{split} &|=1-\frac{1}{L}\underset{(y_1,\ldots,y_L)\sim P_k^{\otimes L}}{\mathbb{E}}[\operatorname{pl}(y_1,\ldots,y_L)]\\ &\leq 1-\frac{1}{L}\underset{(y_1,\ldots,y_L)\sim \operatorname{Unif}([q])^{\otimes L}}{\mathbb{E}}[\operatorname{pl}(y_1,\ldots,y_L)] = \rho_* \end{split}$$

If $P_k = \text{Unif}([q])$, then this equals ρ^* !

$$\sum_{(y_1,\ldots,y_L)\in[q]^L} \left(\prod_{j=1}^L P_k(y_j)\right) \left(1 - \frac{1}{L}\mathsf{pl}(y_1,\ldots,y_L)\right) \qquad (\rho_* + \epsilon)n \le \Phi \le \rho_* n$$

$$(\rho_* + \epsilon)n \le \Phi \le \rho_*n$$

Suppose we can prove this inequality

$$= 1 - \frac{1}{L} \underset{(y_1, \dots, y_L) \sim P_k^{\otimes L}}{\mathbb{E}} [\mathsf{pl}(y_1, \dots, y_L) \text{--Contradiction!}]$$

$$\leq 1 - \frac{1}{L} \underset{(y_1, \dots, y_L) \sim \mathsf{Unif}([q])^{\otimes L}}{\mathbb{E}} [\mathsf{pl}(y_1, \dots, y_L)] = \rho_*$$

PROVING THAT INEQUALITY

INEQUALITY TO PROVE

$$1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim P_k^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)] \leq 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim (\mathsf{Unif}([q])^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)]$$

INEQUALITY TO PROVE

$$1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim P_k^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)] \leq 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim (\mathsf{Unif}([q])^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)]$$

■ Define function on prob. dists. $P \in \Delta([q]) = \left\{ Q \in \mathbb{R}_{\geq 0}^q : \sum_i Q_i = 1 \right\}$

$$f_{q,L}(P) := \mathbb{E}_{(X_1,\ldots,X_L)\sim P^{\otimes L}}[\operatorname{pl}(X_1,\ldots,X_L)]$$

INEQUALITY TO PROVE

$$1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim P_k^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)] \leq 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(y_1, \dots, y_L) \sim (\mathsf{Unif}([q])^{\otimes L}} [\mathsf{pl}(y_1, \dots, y_L)]$$

■ Define function on prob. dists. $P \in \Delta([q]) = \left\{ Q \in \mathbb{R}_{\geq 0}^q : \sum_i Q_i = 1 \right\}$

$$f_{q,L}(P) := \mathbb{E}_{(X_1,\ldots,X_L)\sim P^{\otimes L}}[\operatorname{pl}(X_1,\ldots,X_L)]$$

— Want to show: f is minimized on uniform distribution

Well-studied class of functions minimized on uniform distribution:

Schur-convex functions

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $x, y \in \Delta([n])$ satisfy $x \leq y$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

where x^{\downarrow} is x sorted in descending order

Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions

1/3 1/3 1/3

- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $\mathbf{x}, \mathbf{y} \in \Delta([n])$ satisfy $\mathbf{x} \leq \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

where x^{\downarrow} is x sorted in descending order

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $\mathbf{x}, \mathbf{y} \in \Delta([n])$ satisfy $\mathbf{x} \leq \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $\mathbf{x}, \mathbf{y} \in \Delta([n])$ satisfy $\mathbf{x} \leq \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $\mathbf{x}, \mathbf{y} \in \Delta([n])$ satisfy $\mathbf{x} \leq \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

$$\Rightarrow x \leq y$$

(1/q,...,1/q) is majorized by every other probability vector

- Well-studied class of functions minimized on uniform distribution:
 Schur-convex functions
- Functions f such that $f(\mathbf{x}) \leq f(\mathbf{y})$ whenever $\mathbf{x} \leq \mathbf{y}$, where \leq is majorization ordering
- $\mathbf{x}, \mathbf{y} \in \Delta([n])$ satisfy $\mathbf{x} \leq \mathbf{y}$ if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow} \quad \forall k \in [n]$$

$$\Rightarrow x \leq y$$

SCHUR-OSTROWSKI CRITERION

SCHUR-OSTROWSKI GRITERION

$$fis Schur-convex iff $(x_i - x_j) \left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j} \right) \ge 0 \quad \forall i \ne j$$$

SCHUR-OSTROWSKI GRITERION

$$fis Schur-convex iff $(x_i - x_j) \left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j} \right) \ge 0 \quad \forall i \ne j$$$

Can verify this holds for

$$f_{q,L}(P) = \underset{(X_1,...,X_L) \sim P^{\otimes L}}{\mathbb{E}} \left[\mathsf{pl}(X_1,...,X_L) \right] = \sum_{(a_0,...,a_{q-1})} \begin{pmatrix} L \\ a_0,...,a_{q-1} \end{pmatrix} \max\{a_0,...,a_{q-1}\} \prod_{i \in [q]} P_i^{a_i}$$

where sum runs over all $(a_0,\ldots,a_{q-1})\in\mathbb{N}_{\geq 0}^q$ s.t. $\sum_i a_i=L$

ELIAS-BASSALYGO-LIKE BOUND

[Bassalygo'65,Elias]

[Bassalygo'65,Elias]

[Bassalygo'65,Elias]

Use Plotkin bound on each Hamming ball subcode

[Bassalygo'65,Elias]

- Use Plotkin bound on each Hamming ball subcode
- Use fact that you don't need too many Hamming balls to cover $[q]^n$

NEED TO USE WEIGHT CONSTRAINT!

Each subcode(equivalent to)

is not only list-decodable, but is code with bounded weight

NEED TO USE WEIGHT CONSTRAINT!

Each subcode(equivalent to)

is not only list-decodable, but is code with bounded weight

Want: Plotkin bound for list-decodable \mathscr{C} with weight constraint $\mathrm{wt}(\mathbf{x}) \leq w \ \ \forall \mathbf{x} \in \mathscr{C}$

LEIS RETIRN HERF

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L) \qquad k$$

$$= \dots = \sum_{k=1}^{n} \sum_{(y_1, \dots, y_L) \in [q]^L} \left(\prod_{j=1}^{L} P_k(y_j) \right) \left(1 - \frac{1}{L} \mathsf{pl}(y_1, \dots, y_L) \right)$$

$$P_k(\blacksquare) = 3/13$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

$$\left(1 - \frac{1}{L}\mathsf{pl}(y_1, \dots, y_L)\right)$$

$$P_k(\Box) = 3/13$$

$$P_k(\Box) = 5/13$$

$$P_k(\Box) = 5/13$$

LET'S RETURN HERE

$$\Phi = \frac{1}{M^L} \sum_{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L} \overline{\text{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

$$= \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k)\right)$$

$$P_k(y) = \frac{1}{M} \sum_{\mathbf{x} \in \mathscr{C}} 1\{x_k = y\}$$

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right)$$

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right)$$

Let w_k be fractional weight of k-th column, i.e., $1 - P_k(0)$

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right)$$

- Let w_k be fractional weight of k-th column, i.e., $1 P_k(0)$
- Define $P_u = (1 u, u/(q 1), ..., u/(q 1))$; then $P_{w_k} \le P_k$

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right) \le \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L} \left(P_{w_k} \right) \right)$$

- Let w_k be fractional weight of k-th column, i.e., $1 P_k(0)$
- Define $P_u = (1 u, u/(q 1), ..., u/(q 1))$; then $P_{w_k} \le P_k$

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right) \le \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L} \left(P_{w_k} \right) \right)$$

- Let w_k be fractional weight of k-th column, i.e., $1-P_k(0)$
- Define $P_u = (1 u, u/(q 1), ..., u/(q 1))$; then $P_{w_k} \le P_k$
- Consider univariate function $g(u) := f_{q,L}(P_u)$, suppose its convex

$$\Phi = \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right) \le \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}\left(P_{w_k}\right) \right)$$

$$\le n \left(1 - \frac{1}{L} g_{q,L}\left(\frac{1}{n} \sum_{k=1}^{n} w_k\right) \right)$$

- Let w_k be fractional weight of k-th column, i.e., $1 P_k(0)$
- Define $P_u = (1 u, u/(q 1), ..., u/(q 1))$; then $P_{w_k} \le P_k$
- Consider univariate function $g(u) := f_{q,L}(P_u)$, suppose its convex

$$\begin{split} \Phi &= \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L}(P_k) \right) \leq \sum_{k=1}^{n} \left(1 - \frac{1}{L} f_{q,L} \left(P_{w_k} \right) \right) \\ &\leq n \left(1 - \frac{1}{L} g_{q,L} \left(\frac{1}{n} \sum_{k=1}^{n} w_k \right) \right) \leq n \left(1 - \frac{1}{L} g_{q,L}(w) \right) =: n \rho_*(q, L, w) \end{split}$$

- Let w_k be fractional weight of k-th column, i.e., $1 P_k(0)$
- Define $P_u = (1 u, u/(q 1), ..., u/(q 1))$; then $P_{w_k} \le P_k$
- Consider univariate function $g(u) := f_{q,L}(P_u)$, suppose its convex

SOME PLOTS

CONCLUSION

REGAP

Analogous result for list-recovery

For all $q \ge 2$ and $L \ge 2$, we prove the equality

From this: derive new upper bounds on rate of (ρ, L) -list-decodable codes

$$\rho_*(q,L) = 1 - \frac{1}{L} \mathop{\mathbb{E}}_{(X_1,...,X_L) \sim \mathsf{Unif}([q])^L} [\mathsf{pl}(X_1,...,X_L)]$$

Two parts:

Possibility Result: \exists positive rate $(\rho_* - \varepsilon, L)$ -list-dec. codes (standard random code argument)

Impossibility Result: If $\mathscr{C}\subseteq [q]^n$ is $(\rho_*+\varepsilon,L)$ -list-dec., then $|\mathscr{C}|\le O_\varepsilon(1)$

RECAP

Analogous result for list-recovery

For all $q \ge 2$ and $L \ge 2$, we prove the equality

From this: derive new upper bounds on rate of (ρ, L) -list-decodable codes

$$ho_*(q,L) = 1 - \frac{1}{L} \sum_{(X_1,...,X_L) \sim \mathsf{Unif}}^{\mathbb{E}}$$
 Question: explicit bound à la

Question: explicit bound à la [Alon-Bukh-Polyanskiy'18]?

Two parts:

Possibility Result: \exists positive rate $(\rho_* - \epsilon, L)$ -list-dec. codes (standard random code argument)

Impossibility Result: If $\mathscr{C}\subseteq [q]^n$ is $(\rho_*+\varepsilon,L)$ -list-dec., then $|\mathscr{C}|\le O_\varepsilon(1)$

List-decodable codes

$$\Phi = \frac{1}{M^L} \sum_{\substack{(\mathbf{x}_1, \dots, \mathbf{x}_L) \in \mathscr{C}^L}} \overline{\mathrm{rad}}(\mathbf{x}_1, \dots, \mathbf{x}_L)$$

Schur-Convexity

$$(P_i - P_j) \left(\frac{\partial f_{q,L}}{\partial P_i}(P) - \frac{\partial f_{q,L}}{\partial P_i}(P) \right) \ge 0$$

Elias-Bassalygo Bound

List-decodable codes

Average-Radius

THANK YOU!
QUESTIONS?

 $\overline{\mathrm{rad}}(\mathbf{x}_1, ..., \mathbf{x}_L)$

 $\in \mathscr{C}^L$

Schur-Co

alygo Bound

$$(P_i - P_j) \left(\frac{\partial f_{q,L}}{\partial P_i}(P) - \frac{\partial f_{q,L}}{\partial P_i}(P) \right) \ge 0$$

