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KEY DEFINITIONS

= A code is a subset ¢ C [g]|" with [g] = {0,1,...,g — 1}

= Rateis R :=log (| €|)/n(so |€| = g~"): measures efficiency

= Distance is 6 := min{d(c,¢’) : ¢ #+ ¢’ € €}: measures error-resilience
- Here, d(X,y) = |{i € [n] : x; # y;} |/nis (Hamming) distance
= Let wt(X) = d(X, 0) be its weight

= Goal: design codes with large distance and large rate

= However, these desiderata are at odds
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RATE-DISTANGE TRADEOFF

® @
= Larger rate: more points
= Larger distance: further apart points
- Suppose channel corrupts p-fraction
® of symbols
® = < 0/2: can uniquely decode

® = > 0/2: cannot uniquely decode

® = “Half-the-distance limit”
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€ C [q]"is (p, L)-list-decodable if Vy € [g]",
€ NB(y,p)| <L

Hamming balls:
B(y,p) = 1x€[q]":dx,y) < p}

Tradeoffs between R, p, L?
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What about fixed L.? E.g., L = 10?

Describe this curve?
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LET'S BE MORE MODESI..

= g =2, L =2 (unique-decoding) case:

GV < R <min{LP, EB}

- qg=49,L = 2:
max{GV,AG} <R

= Larger L, g: seems very difficult...

Rate R

0 s5.10-2 01 015 02 025

Decoding radius p

0 0.1 02 03 04
Decoding radius p
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PLOTKIN BOUND

= Plotkin '60's proved that if ¢ C {0,1}" is uniquely-decodable from
(1/4 + e)n errors then |6 | < O(1/¢)
= Thus, p«(2,2) = 1/4

g— 1 L = 2 case is solved!
2q

= Blinovsky '86: g = 2 case is solved!
2k
1 ( k )

pu2L) == — oo LE (2k2k +1)

= Similarly: p.(g,2) =
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INTERPREIATION OF ZERO-RATE THRESHOLD

= The expression (Zk)
1 k
p*(Z,L) — 5 — 2kt ] . L & {2k,2k + 1}

has the following probabilistic interpretation L indep. unif. bits

|
X 2,L — 1 —_— —
pr(&L) L (X;,....X,))~Unif({0,1})-

[pl(Xy, ..., X))

pl(xy, ..., x;) = # oftimesa WICE " N DIEE!

most popular bit appears



CONJECTURE FOR GENERAL .7



CONJECTURE FOR GENERAL .7

= [For general g, answer should be

|
p*(Q, L) =] — — = [pl(Xl, ’XL)]
L X,....X,)~Unif([¢g])*



CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

elements from [g]
[pl(Xy, ..., X))

|
p*(Q9 L) =1—-— —
L X.,....X,)~Unif([g])*




CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

elements from [g]
[pl(Xy, ..., X))

|
p*(Q9 L) =1—-— —
L X.,....X,)~Unif([g])*

pl(l I = W =4




CONJECTURE FOR GENERAL .7

= [For general g, answer should be

L indep. unif.

1 elements from [g]
p(q, L) =1—— - pl(X, ..., X;)]

L X.,....X,)~Unif([g])*
pl(H"'IN =W | W =4

= Blinovsky '05, '08 claims a proof... but it's flawed
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Analogous result

UUH HESUI.T for list-recovery

= Forallg > 2 and L > 2, we prove the equality

new upper bounds

on rate of (p, L)-list-
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AVERAGE-RADIUS

- Given vectors X, ..., X; € |g|", their average-radius is
rad(X, ..., X;) = min — Z d(X,,y) = l—zpl(xl L Xp ))
yelql" L Pt

')\ ( ) rad
1——p|( )257557550 1.75
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INEQUALITY TO PROVE

1

[PI()’p 9yL)] S 1 T - . [pl(y19 9yL)]
L (y,....y)~(Unif([g])®"

= Define function on prob. dists. P € A([g]) = {Q e go : 2 Q; = 1}

fq,L(P) L= E [pl(X;, ..., X;)]

(Xi,....X ) ~P®"

= Want to show: f is minimized on uniform distribution
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SGHUR GONVEXITY

= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Socfiwem X AT

1 l 1/3 2/3 1 1/2 8/10 1
l:

where X' is X sorted in descending order — X =< y



(1/q, ...,1/q) is majorized by
SGHUH GUNVEXITY every other probability vector
= \Well-studied class of functions minimized on uniform distribution:
Schur-convex functions

= Functions f such that f/(X) < f(y) whenever X <y, where <'is
majorization ordering

= X,y € A(|n]) satisfy x <y if A y
Zﬁ < \ yil Vk € [n] Xl yl
| 1

: , 1/3 2/3 1 1/2 8/10 1
=1 =

where X' is X sorted in descending order — X < y
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SGHUR-OSTROWSKI GRITERION

of  of

[ is Schur-convex iff (x;, —x)| — —— 20 Vi#]
o 0xl- ax]

= Can verify this holds for

L
P) = - (X4, ....X;)] = max{a,, ....,a ,_
fq’L( ) (Xl,...,XL)NP‘X’L[p( : 2 Z (ao,.. aq_1> g ! X H

(ag,. - .,aq_l)

where sum runs over all (ay, ..., aq_l) e N? s.t. Z a, =L
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RATE-DEGODING RADIUS TRADEQFFS  =2ssevooss cies

= Use Plotkin bound
on each Hamming
ball subcode
- Use fact that you
don't need too
many Hamming
balls to cover [g]"
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NEED TOUSE WEIGHT GONSTRAINT!

= Each subcode IS not only list-decodable, but is

(equivalent to) code with bounded weight

Want: Plotkin bound for list-decodable

G with weight constraint
witX) <w VX e 6




b=
M~ rad
) Z rad(x,
s+ X, JEGE S

> [HPk@,-)] (1-1Pi )
=PIy, - V)

k=1
()’1,- : '?yL)E[Q]L

j=1

P(W) = 3/13
P(M) = 5/13
P.(H) = 5/13
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USING WEIGHT GONSTRAINT
O = Z (1-1£,uPD) < Z (1——qu( ))

<n 1—%gq,L(%Zwk) 1 (1=48,.00 ) = npu(g, L, w)

=1
- Let w, be fractional weight of k-th column,i.e., 1 — P,(0)

- Define P, = (1 —u,ul/(g—1),...,ul(qg — 1)); then P, <P

- Consider univariate function g(u) := fq,L(Pu), suppose its convex



SUMEPLOTS

g=3, L=73 g=3, L=4

l_ This work Theorelm 11, lowell' bound 03 —— This work ’fheorem 111, lower l[)ound

0.4 —— This work Theorem 13, upper bound | —— This work Theorem 13, upper bound
0.2 -

0.2 | =
0.1 -
O | | O | |
0 0.02 0.04 0.06 0.08 0.1 0 0.006 0.01 0.015 0.02 0.025 0.03

P P
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From this: derive

Analogous result
new upper bounds

HEGAP for list-recovery

= Forallg > 2 and L > 2, we prove the equality

on rate of (p, L)-list-
decodable codes

|
p*(Q, L) =] —— = [pl(Xl, ,XL)]
L X;.,....X,)~Unif([g])*

= [wo parts:

Possibility Result: 1 positive Imbossibility Result: If
= . Impossibility Result:
rate (ps — €, L)-list-dec. € C [q]"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;




From this: derive

Analogous result

HEGAP for list-recovery

= Forallg > 2 and L > 2, we prove the equality

new upper bounds

on rate of (p, L)-list-
decodable codes

plg, L) =1~ JA o amIE: Question: explicit bound a la
[Alon-Bukh-Polyanskiy'18]?

= [wo parts:

Possibility Result: 1 positive Imbossibility Resu'e: If
. IMPOSSIDIITY KeSU.L.
rate (ps — €, L)-list-dec. 6 C [ql"is (p« + €, L)-list-dec.,

codes (standard random then | €| < O.(1)
code argument) ;



List-decodable codes Average-Radius




List-decodable codes Average-Radius

“ y

THANK YOU! %Lrad(xl, s X7)
QUESTIONS?

ilygo Bound




