Improving the AGM point counting algorithm

David Lubicz, Damien Robert

D. Lubicz, D. Robert Improving the AGM algorithm

()

1 Generalities about point counting algorithms

2 Mestre's algorithm

Improving the AGM point counting algorithm

- The genus 1 case
- The genus 2 case
- The higher genus case

Point counting algorithms

Quick version:

- Input : a curve **X** of genus **g** over \mathbb{F}_{q} , $q = p^{n}$;
- Output : $\#X(\mathbb{F}_q)$.

★ ∃ ► < ∃ ►</p>

Point counting algorithms

Longer version :

Zeta function of X

•
$$\chi(X,T) = \sum_n A_n T^n$$
, $A_n = \#\{D \in DivC | D \ge 0, \deg D = n\};$

•
$$\chi(X,T) = \frac{\chi_p(X,T)}{(1-T)(1-qT)}, \ \chi_p(X,T) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{Z}[T], a_{2g} = 1, a_0 = q^g.$$

• Input: a curve X of genus g over
$$\mathbb{F}_q$$
;

• Output :
$$\chi_p(X, T)$$
.

Remark

Remark : $\chi_p(X,1) = \#J(X)(\mathbb{F}_q)$ has cryptographic applications.

→ Ξ →

Canonical lift point counting algorithms

• Let \overline{E} be the elliptic curve:

$$\overline{E}: y^2 = x^3 + \overline{a}x + \overline{b}, \text{ for } \overline{a}, \overline{b} \in \mathbb{F}_q, (q = p^n, p \neq 2, 3).$$

- Let $W(\mathbb{F}_q)$ be the degree *n* unramified extension of \mathbb{Z}_p ;
- The reduction morphism $\pi: W(\mathbb{F}_q) \to \mathbb{F}_q, x \mapsto x \mod p$.

Definition

A lift *E* of \overline{E} is a curve over $W(\mathbb{F}_q)$:

$$E: y^2 = x^3 + ax + b$$
, for $a, b \in W(\mathbb{F}_q)$,

which reduces to $E \mod p$ i.e. such that $\overline{a} = a \mod p$ and $\overline{b} = b \mod p$.

Canonical lift point counting algorithms

Definition

If \overline{E} is ordinary there's a unique canonical lift E of \overline{E} such that $End(\overline{E}) = End(E)$.

- In particular, q-Frobenius of \overline{E} has a lift Σ in End(E);
- Σ acts by x → λx, λ ∈ W(𝔽_q) on T^{*}₀(X) the 1-dimensional (co)tangent space in 0 of E;
- then $\chi_p(X,T) = T^2 + (\lambda + q/\lambda)T + q$.

Remark

Generalize to higher genus curves (need to distinguish X and J(X)).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Framework of canonical lift algorithms

General framework of Satoh-Mestre algorithms:

- Input : an ordinary curve **X** of genus **g** over \mathbb{F}_{q} , $q = p^{n}$;
- Output: $\chi_p(X, T)$ the characteristic polynomial of the Frobenius.
- Compute the canonical lift of J(X) over $W(\mathbb{F}_q)$;
- Compute the action *M* of the Frobenius morphism on T₀(J(X));
- Sompute $\chi_1(X, T) = \det(M TI);$
- Recover $\chi_p(X,T) = T^g \chi_1(X,q/T) \chi_1(X,T)$.

A B M A B M

Idea of Mestres's algorithm

- Main idea: the canonical lift is a fixed point for the Frobenius action;
- Compute the canonical lift by iterating the Frobenius: actually we use the *p*-Frobenius isogeny because of its small degree;
- the Frobenius action: easily computed by an isomorphism between Weierstrass models of elliptic curves.

By the way, where is the AGM ? Characteristic 2 case !

• Define an AGM sequence by: $(a_0, b_0) \in W(\mathbb{F}_{2^n})$,

$$(a_{k+1}, b_{k+1}) = \left(\frac{a_k+b_k}{2}, \sqrt{a_k b_k}\right)$$

• Let \widetilde{E}_{a_k,b_k} be the elliptic curves over \mathbb{Q}_{2^n} given by :

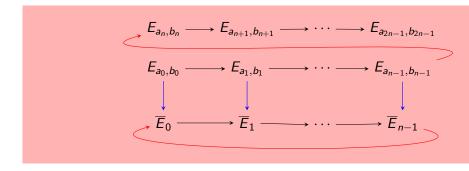
$$y^2 = x(x - a_k^2)(x - b_k^2).$$

• Then there is a sequence of 2-isogeny:

$$E_{a_0,b_0} \longrightarrow E_{a_1,b_1} \longrightarrow \cdots \longrightarrow E_{a_k,b_k} \longrightarrow \cdots$$

Scheme of the algorithm

- Let \overline{E}_0 over \mathbb{F}_{2^n} , suppose that E_{a_0,b_0} is a lift of E_0 .
- Then we have the diagram of isogenies:



Generalisations and algorithmic improvements

- Higher genus generalisation by Mestre: theta interpretation of theta AGM;
- Generalisation to the odd characteristic case;
- Algorithmic improvement: compute the canonical lift with a kind of Hensel lift.

We obtain a quasi-quadratic algorithm in *n* for point counting over \mathbb{F}_{p^n} .

Theta functions

Definition

Let \mathcal{H}_g be the Siegel upper-half space. For $a, b \in \mathbb{Q}^g$, and $\Omega \in \mathcal{H}_g$, the theta function with rational characteristics (a, b) is given by:

$$\theta \begin{bmatrix} ab(z) \\ \Omega \end{bmatrix}) = \sum_{n \in \mathbb{Z}^g} \exp \left[\pi i^t (n+a) \cdot \Omega \cdot (n+a) + 2\pi i^t (n+a) \cdot (z+b) \right].$$
(1)

Theta functions

Definition

For $\ell \ge 2$, let $Z(\ell) = \mathbb{Z}/\ell\mathbb{Z}$, the ℓ^g level ℓ theta functions are:

$$\theta_i(z) = \theta \begin{bmatrix} 0i/\ell(z) \\ \Omega \end{bmatrix} / \ell), \text{ for } i \in Z(\ell).$$

• Ω fixed: embedding of $A_{\Omega} = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ in $\mathbb{P}^{Z(\ell)}$ if $\ell \ge 4$:

$$z\mapsto (heta_i^A(z)).$$

 z = 0 : embedding of A_g = H_g/Γ, Γ some congruence subgroup of Sp_{2g}(ℤ) in ℙ^{Z(ℓ)}:

$$\Omega \mapsto (\theta_i(0,\Omega)).$$

A B F A B F

Application to AGM algorithm

Remark

If $\ell = 2$, $\theta_i^A(z) = \theta_i^A(-z)$ and θ_i^A gives an embedding of K = A/(-1) the Kummer variety of A.

Theta function theory gives formulas:

- recover level 2 $\theta_i^A(0)$ from the knowledge of the ramification points of an hyperelliptic curve : Thomae formulas;
- compute 2^g-isogenies: duplications formulas;
- recover $\prod_{i=1}^{g} \lambda_i$, λ_i Eigenvalues of the Frobenius morphism which are unit mod 2: transformation formula.

• • = • • = •

Limitation of AGM point counting algorithms

Bad behavior with respect to the genus:

- 2^g coordinates;
- Recovering λ_i from $\prod_{i=1}^{g} \lambda_i$ is painful:
 - consider P_{sym} symmetric polynomial whose roots are products in pairs $\{\lambda_i, \overline{\lambda_i}\}$;
 - need to increase the precision of computations;
 - LLL algorithm with a matrix of size 2^g
- starting from g = 4 does not characterise isogeny class of Abelian varieties (counter example of Mestre).

Aim of this talk

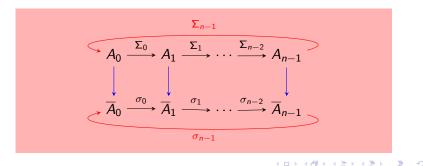
Let X be a curve over \mathbb{F}_q , $q = p^n$, let A be a canonical lift of J(X), we explain :

- How to recover $\chi_P(X, T)$;
- More : the similarity class of the action of the Frobenius on differential forms;
- Efficiently : no increase of precision, almost in the same time complexity as the lift step.

We suppose that p = 2 for the sake of simplicity.

Notations

- Let X be a curve over 𝔽_{2ⁿ};
- $\overline{A}_0 = J(X)$, A_0 a canonical lift of \overline{A}_0 ;
- v_i (resp. V_i) is the dual of σ_i (resp. Σ_i);
- the absolute Frobenius gives isomorphisms $\overline{A}_{i+1} \simeq \overline{A}_i \otimes_{\sigma_i} \mathbb{F}_{2^n}$ which lifts to $A_{i+1} \simeq A_i \otimes_{\Sigma_i} \mathbb{Q}_{2^n}$



Guiding principle

- Let $\Sigma^q : A_0 \to A_0$ be the q^{th} -Frobenius, V^q its dual;
- Aim : compute $V^{q*}: T_0^*(A_0) \to T_0^*(A_0)$;
- By standard argument it suffices to:
 - Compute the matrix *M* of

$$V_0^*: T_0^*(A_0) \to T_0^*(A_1)$$

in basis
$$(x_i)_{i=1,...,g}$$
 of $T_0^*(A_0)$ and
 $(x_i \otimes_{\Sigma_0} \mathbb{Q}_{2^n})_{i=1,...,g} = (x_i^{\Sigma_0})_{i=1,...,g}$ of $T_0^*(A_1)$;
Then the matrix of V^{q*} is similar to

$$\operatorname{Norm}_{\mathbb{Q}_{2^n}/\mathbb{Q}_2}(M).$$

Guiding principle

- Generically, level 4 (θ^{A0}_i/θ^{A0}₀)_{i=1,...,g} gives local parameters in 0 of A₀;
- Duplication formulas give expression for V_0 ;
- So what's the problem?
- We lose because we are using 4^g coordinates;
- We would like to stay in level 2 but...
- Level 2 theta functions does not provide an embedding of A_0 but rather that of $K_0 = A_0/(-1)$.

Guiding principle

- Generically, level 4 $(\theta_i^{A_0}/\theta_0^{A_0})_{i=1,...,g}$ gives local parameters in 0 of A_0 ;
- Duplication formulas give expression for V_0 ;
- So what's the problem?
- We lose because we are using 4^g coordinates;
- We would like to stay in level 2 but...
- Level 2 theta functions does not provide an embedding of A_0 but rather that of $K_0 = A_0/(-1)$.

The genus 1 case The genus 2 case The higher genus case

Outline

1 Generalities about point counting algorithms

2 Mestre's algorithm

Improving the AGM point counting algorithmThe genus 1 case

- The genus 2 case
- The higher genus case

< ∃ > <

The genus 1 case The genus 2 case The higher genus case

The Kummer line

- $x_{A_0} = \theta_1^{A_0}/\theta_0^{A_0}$ local parameter in 0 of $K_0 = A_0/(-1) \simeq \mathbb{P}^1$;
- Duplication give expression for $V_0: K_1 \rightarrow K_0$:

$$x_{A_0} = \frac{(A+B)x_{A_1}^2 + A - B}{(A-B)x_{A_1}^2 + A + B},$$

A,B depend of level 2 theta constants of A_0 and A_1 . Then,

$$dx_{A_0} = dx_{A_1} \frac{4xAB}{(A-B)x^2 + A + B)^2}.$$

The genus 1 case The genus 2 case The higher genus case

The Kummer line

• It seems reasonable to obtain the action of the Frobenius as:

$$t = \operatorname{Norm}_{\mathbb{Q}_{2^n}/\mathbb{Q}_2}\left(\sqrt{\frac{4xAB}{(A-B)x^2+A+B)^2}}\right).$$

• It works ! Trace of Frobenius morphism up to a sign:

$$t + 2^{n}/t$$
.

∃ ▶ ∢

The genus 1 case The genus 2 case The higher genus case

Outline

1 Generalities about point counting algorithms

2 Mestre's algorithm

Improving the AGM point counting algorithm
 The genus 1 case

- The genus 2 case
- The higher genus case

< ∃ > <

The genus 1 case The genus 2 case The higher genus case

Some difficulties

- For $g \ge 2$, the Kummer line is singular in 0;
- We still have a description of $V_0: A_1
 ightarrow A_0$
- $3 = \dim T_0^* K_0 \ge 2;$
- How to recover a 2×2 matrix from a 3×3 matrix?

★ ∃ ► < ∃ ►</p>

The genus 1 case The genus 2 case The higher genus case

Tangent cone I

Definition

Let (R, \mathfrak{M}) be a local ring, its associated graduated ring is:

$$\operatorname{Gr}(R) = \bigoplus_{i} \mathfrak{M}^{i}/\mathfrak{M}^{i+1}.$$

Definition

Let (V, \mathcal{O}) an algebraic variety and $x \in V$ a point with associated local ring $(\mathcal{O}_x, \mathfrak{M})$. The tangent cone $T_x^c(V)$ of V in x is $\operatorname{Spec}(\operatorname{Gr}(\mathcal{O}_x))$.

Remark

 $\mathfrak{M}/\mathfrak{M}^2$ is the co-tangent space of V in x.

< ロ > < 同 > < 三 > < 三 >

The genus 1 case The genus 2 case The higher genus case

Tangent cone II

Definition

For $P \in R = k[x_1, ..., x_g]$ let P_0 be its lowest degree homogeneous component. If $I \subset R$ is an ideal let I_0 be the ideal generated the set $\{P_0, P \in I\}$.

Definition

If V is an affine variety over k with ring of functions $k[x_1, \ldots, x_g]/I$. Suppose that $0 \in V(k)$, $T_0^c(V)$ is the affine variety defined by the ideal I_0 .

▲ 同 ▶ ▲ 三 ▶ ▲

The genus 1 case The genus 2 case The higher genus case

Tangent cone III

Example

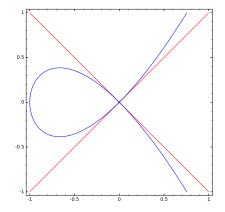
The affine curve:

$$y^2 = x^3 + x^2$$

has tangent cone in (0,0):

$$y^2 = x^2.$$

Limit of directions lines when approaching (0,0).



< ∃ >

The genus 1 case The genus 2 case The higher genus case

Tangent cone IV

Tangent cone generalizes tangent space:

- If R is a regular local ring of dimension g then $Gr(R) = k[x_1, ..., x_g] \Rightarrow Spec(Gr(R))$ tangent space;
- The dimension of the tangent cone is equal to that of the variety;
- Functoriality property.

()

The genus 1 case The genus 2 case The higher genus case

Tangent cone and genus 2 Kummer variety

The genus 2 Kummer variety embedded in \mathbb{P}^3 with level 2 theta is given:

$$f(x_1,\ldots,x_4)=\sum a_iX^i,$$

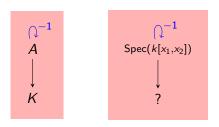
f homogeneous, deg f = 4. The theta null point (θ_i) verify $f(\theta_i) = 0$. Compute its tangent cone:

- make affine: $f_a(x_1, x_2, x_3) = f(x_1, x_2, x_3, 1)$, deg $f_a = 4$;
- localize around the origin: $f_{loc}(\vartheta_i) = f_a(x_i + \frac{\theta_i}{\theta_4});$
- write $f_{loc}(\vartheta_i) = \sum_j h_j(\vartheta_i)$, where h_j degree *i* homogeneous component;
- $h_0 = h_1 = 0$, $h_2(\vartheta_i) = Q_f(\vartheta_i) \neq 0$ is the quadratic equation of the tangent cone at the origin.

< ロ > < 同 > < 回 > < 回 > .

The genus 1 case The genus 2 case The higher genus case

An idea

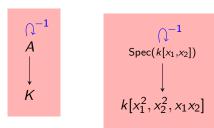


▲御▶ ▲ 臣▶ ▲ 臣▶

æ

The genus 1 case The genus 2 case The higher genus case

An idea

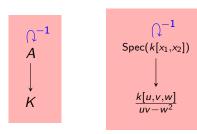


æ

▲御▶ ▲ 陸▶ ▲ 陸▶

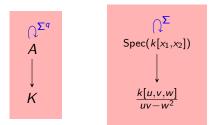
The genus 1 case The genus 2 case The higher genus case

An idea



æ

An idea



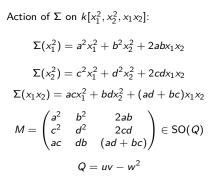
Action of Σ on $k[x_1, x_2]$: $\Sigma(x_1) = ax_1 + bx_2$ $\Sigma(x_2) = cx_2 + dx_2$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(k)$

・ 同 ト ・ ヨ ト ・ ヨ ト

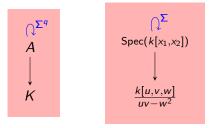
э

T<mark>he genus 1 case</mark> The genus 2 case T**he higher genus case**

An idea



伺 ト イヨト イヨト



ΩΣ

 $\operatorname{Spec}(k[x_1,x_2])$

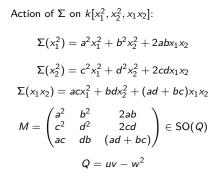
 $\frac{k[u,v,w]}{w^2}$

The genus 1 case The genus 2 case The higher genus case

An idea

 $\begin{smallmatrix} \Omega^{\Sigma^q} \\ A \end{smallmatrix}$

 $\stackrel{\downarrow}{K}$



 $\binom{b}{d}$

Remark

From M we recover
$$\pm \begin{pmatrix} \mathsf{a} \\ \mathsf{c} \end{pmatrix}$$

The genus 1 case The genus 2 case The higher genus case

A first result

Proposition

Let (R, \mathfrak{M}) be a dimension 2 regular local ring over k and let σ be an automorphism of R which acts like (-1) on $\mathfrak{M}/\mathfrak{M}^2$. Then:

 $\kappa : \operatorname{Gr}(R^{\sigma}) \simeq (\operatorname{Gr} R)^{\sigma}.$

Remark

Let x_1, x_2 be local parameters of R:

- $(GrR) = k[x_1, x_2], (GrR)^{\sigma} = k[x_1^2, x_2^2, x_1x_2];$
- If R is the local ring at origin of A then Gr(R^σ) is the coordinate ring of T^c₀(K);
- Isomorphism between $T_0^c(K)$ and "standard" tangent cone.

< ロ > < 同 > < 三 > < 三

 Generalities about point counting algorithms
 The genus 1 case

 Mestre's algorithm
 The genus 2 case

 Improving the AGM point counting algorithm
 The higher genus case

An idea

We want to compute:

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 & b^2 & 2ab \\ c^2 & d^2 & 2cd \\ ac & bd & ad + bc \end{pmatrix} = (M_{\kappa} \otimes_{\Sigma} \mathbb{Q}_{2^n})^{-1} M_c(V_0^*) M_{\kappa}.$$

The genus 1 case The genus 2 case The higher genus case

A second good news

Keeping the notations of the proposition:

Proposition

The isomorphism $\kappa : (GrR^{\sigma}) \simeq (GrR)^{\sigma}$ is linear. Let T be the matrix of this ismorphism in the basis (x_1^2, x_2^2, x_1x_2) and (ϑ_i) :

$${}^{t}TM(Q_{f})T=M(Q),$$

$$M(Q_f)(\vartheta_i)$$
 matrix of Q_f and $M(Q) = M(uv - w^2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

The genus 1 case The genus 2 case The higher genus case

Because...

- κ induce a linear isomorphism $k[x_1^2, x_2^2, x_1x_2] \rightarrow \mathfrak{M}_{R^{\sigma}}/\mathfrak{M}_{R^{\sigma}}^2$;
- but such a linear isomorphism determines uniquely κ ;

• moreover
$$\kappa^*(Q_f) = Q$$
.

• • = • • = •

The genus 1 case The genus 2 case The higher genus case

Computing the matrix M

Computing *M*:

- $Q = uv w^2$ is the orthogonal sum of an hyperbolic plane and definite one dimensional quadratic form;
- to compute *M*:
 - find an isotropic vector v for Q_f ;
 - 2 take any w such that $Q_f(v, w) \neq 0$;
 - (a) find λ such that $w' = w + \lambda v$, $Q_f(w') = 0$ and scale s.t. $Q_f(v, w') = 1$;
 - **(4)** compute an orthogonal vector to the plane (v, w').

The genus 1 case The genus 2 case The higher genus case

Finding an isotropic vector

- Use Gram-Schmidt : we have to solve $Q_f \sim aX^2 + bY^2 + cZ^2 \sim X^2 + baY^2 + caZ^2 = 0$
- If -ba is a square α^2 in \mathbb{Q}_{2^n} then $(\alpha, 1, 0)$ is a solution;
- If no we have to solve a norm equation in $\mathbb{Q}_{2^n}(\sqrt{-ab})$: efficient algorithm.

★ ∃ ► < ∃ ►</p>

A new problem

The genus 1 case The genus 2 case The higher genus case

Remark

If M is such that ${}^{t}MM(Q_{f})M = M(Q)$ then for any $T \in SO(Q)$ MT is another solution !

D. Lubicz, D. Robert Improving the AGM algorithm

• • = • • = •

T<mark>he genus 1 case</mark> The genus 2 case The higher genus case

The fix

Proposition

We have an exact sequence:

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow Sl_2(\mathbb{Q}_{2^r}) \xrightarrow{\mu} SO(Q) \longrightarrow 0$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} a^2 & b^2 & 2ab \\ c^2 & d^2 & 2cd \\ ac & bd & ad+bc \end{pmatrix}$$

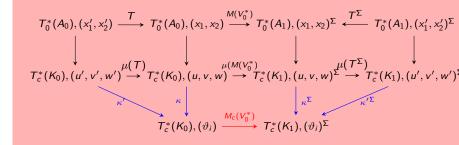
D. Lubicz, D. Robert Improving the AGM algorithm

э

★ ∃ → ★ ∃

The genus 1 case The genus 2 case The higher genus case

The fix II



- what we are computing is $\pm T M_{\Sigma} T^{\Sigma-1}$;
- taking the norm we obtain: $\pm T M_{\Sigma^q} T^{-1}$ same similarity class as M_{Σ^q} .

The genus 1 case The genus 2 case The higher genus case

Description of the algorithm

- Input : (θ_i) the theta null point of a canonical lift of J(X) (up to the right p-adic precision);
- Output : $\chi_1(X, T)$;
- compute the quadratic equation Q_f of $T_c(K_0)$;
- **2** compute a matrix M such that ${}^{t}M Q_{f} M = Q$;
- So compute the matrix of $M_c(V_0^*)$ of partial derivatives of the dual of the Frobenius;

• compute
$$M_0 = M^{-1} M_c(V_0^*) M^{\Sigma};$$

$$\textbf{O} \text{ compute } \textit{Norm}_{\mathbb{Q}_{2^n}/\mathbb{Q}_2}(M_0) = \begin{pmatrix} a^2 & b^2 & 2ab \\ c^2 & d^2 & 2cd \\ ac & bd & ad+bc \end{pmatrix};$$

• recover
$$M = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and compute $\det(M - TI)$.

The genus 1 case The genus 2 case The higher genus case

Some remarks

Remark

- It can be shown that the coefficients of M are in Q_{2ⁿ} and its trace and determinant are in Q₂.
- The matrix T s.t. ${}^{t}T M(Q_{f}) T = M(Q)$ is not in general defined over $\mathbb{Q}_{2^{n}}$. We have to work with the basis $tx_{1}^{2}, x_{2}^{2}, x_{1}x_{2}$ in order to stay rational and pay attention to the fact that the Frobenius morphism is semi-linear.

he genus 1 case he genus 2 case he higher genus case

Outline

1 Generalities about point counting algorithms

2 Mestre's algorithm

Improving the AGM point counting algorithm

- The genus 1 case
- The genus 2 case
- The higher genus case

< ∃ > <

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for T^{*}_c(K₀);
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for $T_c^*(K_0)$;
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for $T_c^*(K_0)$;
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for T^{*}_c(K₀);
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

The genus 1 case T**he genus 2 case** The higher genus case

Normalized tangent cone

Remark

The normalized tangent cone has coordinate ring:

$$k[x_i^2, x_i x_j | i = 1 \dots g, j = 1 \dots g] = \frac{k[u_i, w_{ij}]}{u_i u_j - w_{ij}^2}$$

It is a g-dimensional variety embedded in a g(g+1)/2 tangent space.

The proof of the isomorphism is the same.

∃ → ∢

The genus 1 case T**he genus 2 case** The higher genus case

A funny side remark

Remark

A consequence of the isomorphism is that the tangent space in 0 of K_0 has dimension g(g+1)/2.

• = • •

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for T^{*}_c(K₀);
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for T^{*}_c(K₀);
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for $T_c^*(K_0)$;
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for $T_c^*(K_0)$;
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

he genus 1 case he genus 2 case he higher genus case

A problem

- The tangent cone is embedde in \mathbb{P}^{2^g-1} ;
- Closed subvariety given by *E*₁,..., *E*_k equations k ≥ 2^g − 1 − g;
- Let $I_1 = (\mathcal{E}_{i,0});$
- Problem $I_1 \neq I_0 = \{P_0 | P \in I\};$
- Burberger like algorithm to compute the tangent cone: very inefficient;
- In the $\mathcal{E}_{i,0}$ there are:
 - at least $2^g 1 g(g+1)/2$ linear equations $\{\mathcal{E}_{i,0}\}_{i \in L}$;
 - equations of degree 2: $\{\mathcal{E}_{i,0}\}_{i\in M}$;
 - equations of degree ≥ 2 .

・ 同 ト ・ ヨ ト ・ ヨ ト

The genus 1 case T**he genus 2 case** The higher genus case

Tangent cone (almost) for free

Proposition

The degree 1 and 2 equations $\{\mathcal{E}_{i,0}\}_{i \in L}$ and $\{\mathcal{E}_{i,0}\}_{i \in M}$ generate the ideal of the tangent cone of K_0 .

- Normalized tangent cone:
 - has dimension g;
 - g(g-1)/2 equations inside a space of dimension g(g+1)/2.
 - degree of the variety: $2^{g(g-1)/2}$.
- Kummer tangent cone $T_c(K_0)$:
 - at least g(g-1)/2 equations;
 - of degree ≥ 2 , if equations of degree > 3 $\deg(T_c(K_0)) > 2^{g(g-1)/2}$ contradiction.

A B M A B M

he genus 1 case he genus 2 case he higher genus case

List of ingredients to generalize

- Equations for K_0 embedded with 2 theta functions;
- Isomorphism between $T_c^*(K_0)$ and normalized tangent cone;
- Equations for $T_c^*(K_0)$;
- Computation of the isomorphism;
- Computation of the matrix $M_c(V_0^*)$;
- Recovering the dual of the Frobenius matrix.

The genus 1 case T**he genus 2 case** The higher genus case

Computation of the isomorphism of tangent cones

- The underlying problem is difficult but:
- no need to be smart: it involves computing with $g \times g$ matrices;
- We have somewhat good solution involving computing determinant of matrices.

< E > < E >

he genus 1 case he genus 2 case he higher genus case

A word about the complexity

- Dominant step : computation of the tangent space;
- Gaussian elimination in a matrix of dimension 2^g with coefficients in \mathbb{Z}_{2^n} with precision $n^{g/2}$;
- Time complexity: $O(2^{3g} n^{g/2})$.

★ ∃ ► < ∃ ►</p>

The genus 1 case The genus 2 case The higher genus case

The end

Questions ?

D. Lubicz, D. Robert Improving the AGM algorithm

æ