GT-Grace

27 September 2022

Laboratory of Information Security

A Search for Approximate Trapdoors in Lattice-Based Cryptosystem

Anaëlle Le Dévéhat

anaelle.le.devehat.s8@dc.tohoku.ac.jp

Supervisors :

- Prof. Shizuya, Hiroki
- Prof. Hasegawa, Shingo

[GPV08] : Le Dévéhat, A., Shizuya, H., Hasegawa, S. (2021). On the Higher-Bit Version of Approximate Inhomogeneous Short Integer Solution Problem. CANS 2021. Lecture Notes in Computer Science(), vol 13099. Springer, Cham. https://doi.org/10.1007/978-3-030-92548-2_14

<u>Contents</u>

Introduction

- 1. Preliminaries
- 2.
 - Prior works and related issues
- 3. Our results

Approximate setting

- Approximate ISIS 1.
- 2. Approximate trapdoors

Higher-bit version of the approximate setting

- Our idea 1.
- 2. Higher-bit approximate ISIS
- 3. Higher-bit setting construction
- 4. Instantiation of a "Hash-and-Sign" signature scheme

Analysis and Results

- 1. A trade-off between size and security
- 2. Implementation

Non-spherical Gaussian sampler

- Recent related work 1.
- 2. New higher-bit setting construction
- 3. Instantiation of a "Hash-and-Sign" signature scheme
- 4. Better theoretical length bounds
- 5 Implementation and Analysis

Conclusion

Lattice-based cryptography

A lattice is a Discrete additive subgroup of \mathbb{R}^n .

→ We focus on integer lattices

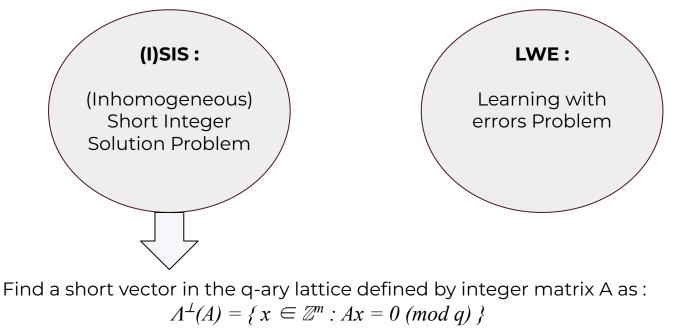
Why in cryptography?

What?

- Simple and efficient : highly parallel ; elegant design
- Quantum-resistant
- Enjoys good average-case to worst-case hardness reductions
- Allows to construct some advanced cryptographic primitives

Lattices problems

We base our hardness on average-case lattices problems that reducts to worst-case ones. Security of a construction is based on the hardness assumption of these underlying problems.



Lattice trapdoors

Lattice-based trapdoor functions

for $A \leftarrow \mathbb{Z}_q^{n \times m}$ and with appropriate parameters, $f_A(x) = Ax \mod q$ ("short" x) $\begin{pmatrix} & & \\ & & & \\ & & &$

→ Use of a "strong" trapdoor to invert f_A (SIS) and/or g_A (LWE) permits the construction of various cryptographic primitives.

Cryptographic functionality of such trapdoors

- Solve worst-case hardness problems
- Sample from a discrete Gaussian distribution of "rather small" width, over any desired coset of the lattice :

$$\Lambda_u^{\perp}(A) := \{ x \in \mathbb{Z}^n : Ax = u \pmod{q} \} = f_A^{-1}(u)$$

Our focus :

Lattice trapdoors and its application to "Hash-and-Sign" Signatures

Gaussian distribution

• For any s > 0, define the **Gaussian function on** \mathbb{R}^n :

$$\forall x \in \mathbb{R}^n, \rho_s(x) = e^{-\pi ||x||^2/s^2}$$

• For any $c \in \mathbb{R}^n$, real s > 0, and n-dimensional lattice Λ , define the **Discrete Gaussian** distribution $D_{\Lambda+c,s}$ as:

$$\forall x \in \Lambda + c, D_{\Lambda + c,s}(x) = \frac{\rho_s(x)}{\rho_s(\Lambda + c)}$$

• For any semi-definite $\Sigma = TT^t$, define the **Non-spherical Gaussian function on** \mathbb{R}^n :

$$\forall x \in span(T) = span(\Sigma), \rho_{\Sigma}(x) = e^{-\pi x^{t} \Sigma^{+} x}$$

Prior works

[GPV08]

<u>Trapdoor</u>: short base S for $\Lambda^{\perp}(A)$

- i.e $AS=0 \mod q$
- Formal proof of unforgeability in the random-oracle model
- Randomized approach : Gaussian sampler

Problems :

- → Generation of A with S is slow and complicated
- → Inefficient inversion algorithms

[MP12] G-trapdoor

Trapdoor:
$$R \rightarrow Not$$
 a base for $\Lambda^{\perp}(A)$

$$4\binom{R}{I} = G \bmod q$$

- Introduction of gadget matrix *G* : **easy to invert** *f*_{*G*}
- Maps coset from $\Lambda^{\perp}(A)$ to cosets from $\Lambda^{\perp}(G)$: more efficient gaussian sampler

Problem :

 Practical inefficiency due to large sizes (key and signature sizes for "Hash-and-Sign"signature)

[CGM19] F-trapdoor

<u>Trapdoor</u>: Approximate version of a G-trapdoor

- Introduction of the Approximate setting
- Reduce considerably the key and signature sizes by allowing an error on the sampled signature.

Problem :

→ Despite its optimization, key and signature sizes are still too large

A comparison with NIST standardization process digital signatures candidates

[MP12]	[ССМ19]	qTesla : rejection sampling approach	Dilithium : rejection sampling approach	Falcon : NTRU lattices
88-bit security :	88-bit security :			
Public key : 19.5 kB Signature : 13.5 kB	Public key : 5 kB Signature : 4.45 kB	<u>128-bit security :</u>	<u>121-bit security :</u>	<u>133-bit security :</u>
<u>128-bit security :</u>	<u>184-bit security :</u>	Public key : 4.03 kB Signature : 3.05 kB	Public key : 1.32 kB Signature : 2.42 kB	Public key : 0.90 kB Signature : 0.66 kB
Public key :> 35 kB Signature : > 25 kB	Public key : 11.25 kB Signature : 9.38 kB			

Question : How to further downsize the public-key and signature for "hash-and-sign" signatures ?

How to further downsize the public key and signature for "Hash-and-Sign" digital signatures ?

- To make "Hash-and-Sign" digital signatures from GPV line of work competitive and practical for post-quantum standardization
- Even though some methods are more advanced, they all suffer from downsides either in systems simplicity, running times, storage...
- As cryptanalysis of post-quantum cryptosystems is not yet well understood, it is essential to develop different schemes relying on different assumptions and/or construction methods.

Why?

Our results

1. Definition of the higher-bit approximate ISIS problem

- Reduction to the ISIS problem
- Permits to discard low-weighted bits of coefficients in the matrix *A* which defines Ajtai's function. (Downsize modulus)

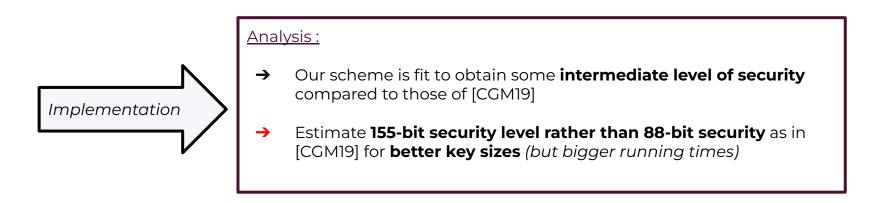
2. An adaptation of **[CGM19]** trapdoor generation and preimage sampling algorithms to fit the "higher-bit" setting

- Public matrix A belongs to $\mathbb{Z}_{a/b^d}^{n \times m}$ rather than $\mathbb{Z}_q^{n \times m}$
- Sampled preimage belongs to \mathbb{Z}^m_{q/b^d} rather than \mathbb{Z}^m_q

Our results

- 3. Instantiation of hash-and-sign digital signature
 - sEUF-CMA secure
 - Trade-off between security and memory space :

We expect our construction to reduce the public key and signature sizes by about half at the expense of a reasonable drop in the security level.



Our results

4. Combination of our work with a non-spherical Gaussian sampler (**[JHT21]**)

- New higher-bit approximate preimage sampling algorithm
- Instantiation of a **sEUF-CMA secure "Hash-and-Sign" digital signature**

We expect this second construction to further reduce the signature size.

Implementation Analysis : Theoretical improvements in objects' length bounds and in the digital signature security level. Very low practical improvement. We might assume that the higher-bit setting subsumes the optimizations brought in [JHT21]

<u>Contents</u>

Introduction

- 1. Preliminaries
- 2. Prior works and related issues
- 3. Our results

Approximate setting

- 1. Approximate ISIS
- 2. Approximate trapdoors

Higher-bit version of the approximate setting

- 1. Our idea
- 2. Higher-bit approximate ISIS
- 3. Higher-bit setting construction
- 4. Instantiation of a "Hash-and-Sign" signature scheme

Analysis and Results

- 1. A trade-off between size and security
- 2. Implementation

Non-spherical Gaussian sampler

- 1. Recent related work
- 2. New higher-bit setting construction
- 3. Instantiation of a "Hash-and-Sign" signature scheme
- 4. Better theoretical length bounds
- 5. Implementation and Analysis

Conclusion

Approximate ISIS problem

<u>ApproxISIS n,m,q, α , β :</u>

For any $n, m, q \in \mathbb{N}$ and $\alpha, \beta \in \mathbb{R}$, define the approximate inhomogeneous short integer solution problem $Approx.ISIS_{n,m,q,\alpha,\beta}$ as follows. Given $A \in \mathbb{Z}_q^{n\times m}$, $y \in \mathbb{Z}_q^n$ find a vector $x \in \mathbb{Z}_q^m$ such that $||x|| \leq \beta$ and there is a vector $z \in \mathbb{Z}^n$ satisfying :

 $||z|| \leq \alpha$ and $Ax = y + z \pmod{q}$

 $\succ LWE_{n,m,q,\theta,U(\mathbb{Z}_q),\chi} \leq_p Approx.ISIS_{n,m,q,\alpha,\beta} \\ \succ ISIS_{n,n+m,q,\beta} \geq_p Approx.ISIS_{n,m,q,\alpha+\beta,\beta} \\ \succ ISIS_{n,n+m,q,\alpha+\beta} \leq_p Approx.ISIS_{n,m,q,\alpha,\beta} \end{cases}$

Approximate trapdoors

• Define the **Approximate gadget-matrix** *F* :

$$F := I_n \otimes f^t \in \mathbb{Z}^{n \times w}$$

where

$$f := (b^{l}, b^{l+1}, ..., b^{k-1})^{t} \in \mathbb{Z}_{q}^{(k-l)}$$

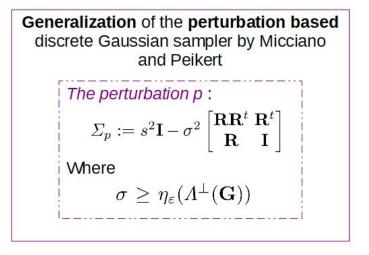
• Sample a **Public-Key A** with a **Secret-Key** \mathcal{R} :

$$\begin{array}{l} \circ \quad \hat{A} \leftarrow \mathbb{U}(\mathbb{Z}_q^{n \times m}), \ \mathcal{R} \leftarrow \chi^{2n \times m} \\ \circ \quad \text{Let } \bar{A} := [I_n, \hat{A}] \text{ and form } A := [\bar{A} \mid F - \bar{A}\mathcal{R}] \in \mathbb{Z}_q^{n \times m} \end{array}$$

→ We can map short cosets representatives of $\Lambda^T(F)$ to approximate short cosets representatives of $\Lambda^T(A)$ using the approximate trapdoor \mathcal{R}

Approximate trapdoors

Algorithm 3: APPROX.SAMPLEPRE. Input: $(\mathbf{A}, \mathbf{R}, \mathbf{u}, s)$ **Output:** An approximate preimage of **u** for **A**, $\mathbf{y} \in \mathbb{Z}^m$. Sample a perturbation 1 $\mathbf{p} \leftarrow D_{\mathbb{Z}^m,\sqrt{\Sigma}_p}.$ Form $\mathbf{v} = \mathbf{u} - \mathbf{A}\mathbf{p} \in \mathbb{Z}_q^n$. 2 3 Sample the approximate gadget preimage $\mathbf{z} \in \mathbb{Z}^{n(k-l)}$ as $\mathbf{z} \leftarrow \text{GSAMP.CUT}(\mathbf{v}, \sigma).$ Form $\mathbf{y} := \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mathbf{z} \in \mathbb{Z}^m$. 4 return y. 5



Samples an approximate preimage y of u from a spherical discrete Gaussian

<u>Contents</u>

Introduction

- 1. Preliminaries
- Prior works and related issues
- 3. Our results

Approximate setting

- . Approximate ISIS
- 2. Approximate trapdoors

Higher-bit version of the approximate setting

- 1. Our idea
- 2. Higher-bit approximate ISIS
- 3. Higher-bit setting construction
- 4. Instantiation of a "Hash-and-Sign" signature scheme

Analysis and Results

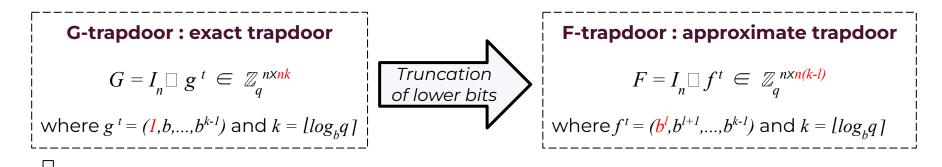
- 1. A trade-off between size and security
- 2. Implementation

Non-spherical Gaussian sampler

- 1. Recent related work
- 2. New higher-bit setting construction
- 3. Instantiation of a "Hash-and-Sign" signature scheme
- 4. Better theoretical length bounds
- 5. Implementation and Analysis

Conclusion

Our idea

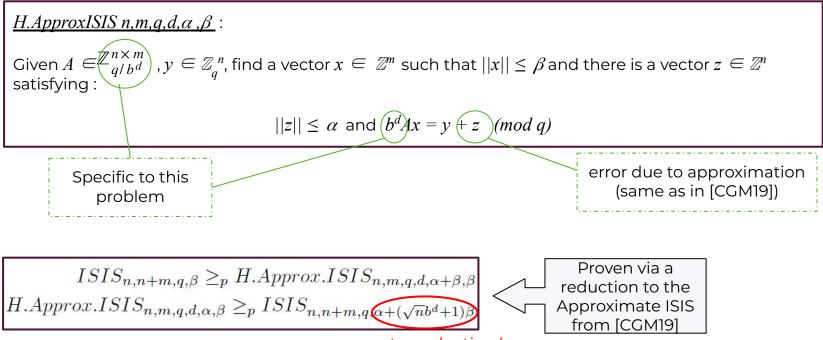


> We extend this idea :

- We can interpret approximate gadget matrix F as an object from $b^l \times \mathbb{Z}_{a/b^l}^{n \times nk}$
- Generalization of this approximation on all objects in the signature scheme

\Rightarrow Truncation of CGM scheme to downsize the modulus q to q/b^d ($d \le l$)

Higher-bit approximate ISIS



greater reduction loss

Higher-bit setting construction

Change in Public matrix and sampled preimage (For a syndrome u)

 $\begin{array}{l} \underline{\left[\text{CCM19} \right] :} \\ \hline \\ \text{Trapdoor} = R \\ \hline \\ \text{[MP12]} \\ \hline \\ \text{PM} = A_0 := [\bar{A} \mid F \mid \bar{A}R] \\ \hline \\ \text{Prei} = y_0 \leftarrow Gaussian \ Sampler \\ \hline \\ \hline \\ \text{Triapdoor} = R \ ; \ \mathbf{PM} = A_0^{-H}/b^d \\ \hline \\ \text{Prei} = y_0 \ (mod \ b^{k-d}) \\ \end{array}$

 $\begin{aligned} A^L &= A \;(mod\;b^d) \\ A^H &= A - A^L \end{aligned}$

Impact on the error term

Define e_0 and e_{new} as the following :

$$e_0 = u - A_0 y_0 \pmod{q};$$

$$e_{new} = A_0^L y_0 \pmod{q};$$

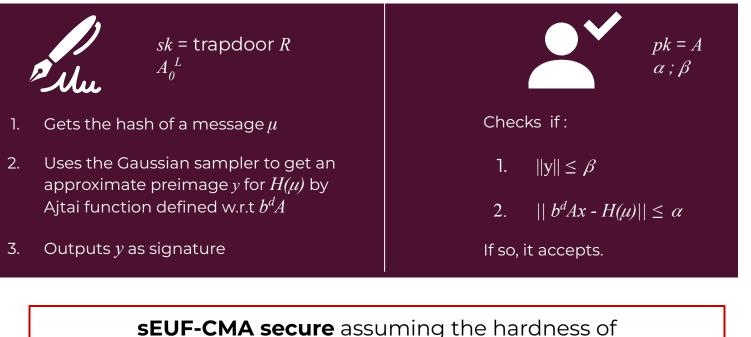
 \rightarrow We find that :

$$e = e_0 + e_{new} \pmod{q}$$
due to our
modification on A

We adapt the trapdoor generation and preimage sampling algorithms from [CGM19] to force them into the higher-bit setting

"Hash-and-Sign" signature scheme

The key-generation algorithm samples $A \in \mathbb{Z}_{q/b^d}^{n \times m}$ together with its (α ; β)-approximate trapdoor R and the matrix $A_0^L \in \mathbb{Z}_{b^d}^{n \times m}$



SIS

<u>Contents</u>

Introduction

- 1. Preliminaries
- 2. Prior works and related issues
- 3. Our results

Approximate setting

- 1. Approximate ISIS
- 2. Approximate trapdoors

Higher-bit version of the approximate setting

- 1. Our idea
- 2. Higher-bit approximate ISIS
- 3. Higher-bit setting construction
- 4. Instantiation of a "Hash-and-Sign" signature scheme

Analysis and Results

- 1. A trade-off between size and security
- 2. Implementation

Non-spherical Gaussian sampler

- 1. Recent related work
- 2. New higher-bit setting construction
- 3. Instantiation of a "Hash-and-Sign" signature scheme
- 4. Better theoretical length bounds
- 5. Implementation and Analysis

Conclusion

A trade-off between size and security

	[CGM19]	This work
Norm of a short solution in the underlying SIS problem	$2(s\sqrt{m}+b^l\sigma\sqrt{n})$	$2(s\sqrt{m}+b^l\sigma\sqrt{n})+4\sqrt{nm}b^ds$
Signature size (in bits)	$m \times \frac{k}{k} \times \log_2(b)$	$m \times (k - d) \times \log_2(b)$
Public key size (in bits)	$m \times n \times \frac{k}{k} \times \log_2(b)$	$m \times n \times (k - d) \times \log_2(b)$

- *n* : security parameter
- *m*: vector dimension
- b:base
- s, σ : Gaussian distributions widths

Implementation results

	-				
	F-trapdoor [CGM19]	F-trapdoor [CGM19]	This work	This work	This work
n	512	1024	512	1024	1024
$k = \lfloor \log_b q \rfloor$	8	9	16	16	9
m	3072	6144	3584	7168	6144
b	4	4	2	2	4
1	4	5	11	11	5
d	-	-	11	11	5
x ₂	138244.3	296473.0	1072.2	1535.5	11495.9
<i>e</i> ₂	20627.9	1502259.7	428806.9	607601.6	2452040.3
<i>PK</i> (kB)	5.12	11.52	1.92	3.84	5.12
Sig (kB)	4.5	9.4	2.25	4.5	6.1
LWE	104.7	192.7	104.7	192.7	192.7
AISIS	87.8	183.7	75.0	155.4	140.5

: n= 512

: n=1024

<u>Advantages :</u>

- → Better security level for better Public key and Signature sizes at the expense of a higher security parameter n.
- → Allows to obtain different security levels with more appropriate public key and signature sizes. (for a same security parameter n)

<u>Disadvantage :</u>

→ To achieve more than 88-bit security, we set n=1024 which can lead to longer running times. (Even bigger for more than 155-bit security.)

24

A comparison with NIST standardization process digital signatures candidates

This work	[ССМ19]	qTesla : rejection sampling approach	Dilithium : rejection sampling approach	Falcon : NTRU lattices
75-bit security :	88-bit security :			
Public key : 1.92 kB Signature : 2.25 kB	Public key : 5 kB Signature : 4.45 kB	<u>128-bit security :</u>	<u>121-bit security :</u>	<u>133-bit security :</u>
<u>155-bit security :</u>	<u>184-bit security :</u>	Public key : 4.03 kB Signature : 3.05 kB	Public key : 1.32 kB Signature : 2.42 kB	Public key : 0.9 kB Signature : 0.66 kB
Public key : 3.84 kB Signature : 4.5 kB	Public key : 11.25 kB Signature : 9.38 kB			

Result : We get **pk** and **sig** sizes closer (or even of same level) to those of NIST 2-round standardization process digital signatures.

<u>Contents</u>

Introduction

- 1. Preliminaries
- 2. Prior works and related issues
- 3. Our results

Approximate setting

- 1. Approximate ISIS
- 2. Approximate trapdoors

Higher-bit version of the approximate setting

- l. Our idea
- 2. Higher-bit approximate ISIS
- 3. Higher-bit setting construction
- 4. Instantiation of a "Hash-and-Sign" signature scheme

Analysis and Results

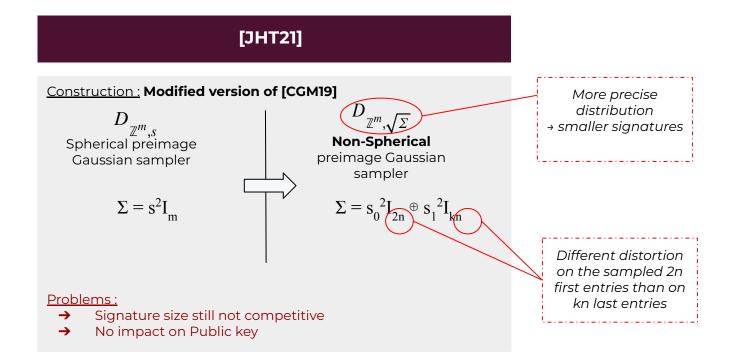
- . A trade-off between size and security
- . Implementation

Non-spherical Gaussian sampler

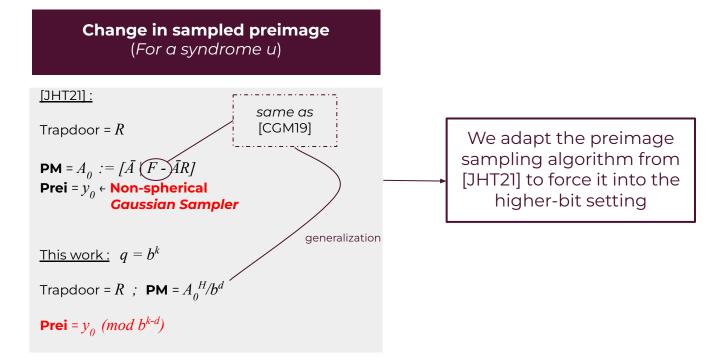
- 1. Recent related work
- 2. New higher-bit setting construction
- 3. Instantiation of a "Hash-and-Sign" signature scheme
- 4. Better theoretical length bounds
- 5. Implementation and Analysis

Conclusion

Recent related work (2021)



New Higher-bit setting construction



 $A^{L} = A \pmod{b^{d}}$ $A^{H} = A - A^{L}$

New "Hash-and-Sign" signature scheme

The key-generation algorithm samples $A \in \mathbb{Z}_{q/b^d}^{n \times m}$ together with its (α ; β)-approximate trapdoor R and the matrix $A_0^L \in \mathbb{Z}_{b^d}^{n \times m}$

SEUF-CMA secure assuming the hardness of and $LWE_{n,n+m,q,2[\alpha + (\sqrt{n}b^d + 1)\beta]} LWE_{n,n,q,\chi,U(\mathbb{Z}_q),\chi}$

Better theoretical length bounds

	Construction 2 Non-spherical Gaussian sampler	Construction 1 Spherical Gaussian sampler
signature term y	$s_0\sqrt{2n} + s_1\sqrt{kn}$	$S\sqrt{m}$
error term <i>e</i>	$b^{l}\sigma \sqrt{n} n^{+} n b^{d} (s_{0}\sqrt{2} + s_{N}k)$	$b^l \sigma \sqrt{n} + \sqrt{nm} b^d s$

- *n* : security parameter
- m: vector dimension
- b:base
- s, σ : Gaussian distributions widths

Expectations :

- → Better security
- → Better practical signature size

Implementation results

	Construction 1	[JHT21]	Construction 2	Construction 2
n	1024	1024	1024	1024
$k = \lfloor \log_b q \rfloor$	16	9	16	9
m	7168	6144	7168	6144
Ь	2	4	2	4
1	11	5	11	5
d	11	-	11	5
x ₂	1535.5	536010	1544.0	12732.6
e ₂	607601.6	173254	603592.8	2448537.1
<i>PK</i> (kB)	3.84	11.25	3.84	5.12
Sig (kB)	4.5	5.75	4.4	5.50
LWE	192.7	218.0	192.7	192.7
AISIS	155.4	168.82	155.4	140.5

: previous constructions

: new construction

<u>Analysis :</u>

- → Very small optimization obtained in the signature size (about 0.1 kB).
- → No gain in the security level (same signature norm).
- → However, using the higher-bit setting brings important improvement to the original scheme from [JHT21].

Possible explanation :

Our bitwise optimization already removes the unnecessary information in the sampled signature. Thus, there is no need for a more precise Gaussian sampler.

Conclusion

- Definition of the Higher-bit approximate ISIS. It can **downsize the modulus** at the price of a **trade-off** between sizes and security level.
- <u>For a same security parameter</u>, our setting brings **optimized objects with different levels of security** than in prior works.

For a higher security parameter, we achieve a **win-win scenario** and obtain better sizes along with better security level (but higher running time).

 Adaptation of the higher-bit setting with a non-spherical Gaussian sampler : Better theoretical objects norms.

SIGNATURE ► SCHEME

)] Improve the reduction loss in the Higher-bit Approximate ISIS problem

O2 Construct a more efficient digital signature implementation code

→ In this work, our implementation is only a tool for the sake of comparison.

03

Explore the possible applications of the higher-bit approximate setting in other advanced lattice cryptosystems

→ Extend the Bonsaï techniques in the approximate setting.

Thank you for listening !

TOHOKU UNIVERSITY

Laboratory of Information Security

Any questions ?

Anaëlle Le Dévéhat

anaelle.le.devehat.s8@dc.tohoku.ac.jp

<u>Bibliography</u>

[GPV08]: Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. STOC '08, ACM (2008). <u>https://doi.org/10.1145/1374376.1374407</u>

[MP12]: Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: EUROCRYPT 2012. vol. LNCS 7237, pp. 700-718. Springer (2012). https://doi.org/10.1007/978-3-642-29011-4-41

[CGM19]: Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: ASIACRYPT 2019. vol. LNCS 11923, pp. 3-32. Springer (2019).

<u> https://doi.org/10.1007/978-3-030-34618-8 1</u>

[JHT21] :

Jia, H., Hu, Y., Tang, C. : Lattice-based hash-and-sign signatures using approximate trapdoor, revisited. In : IET Information Security. John Wiley Sons Ltd (2021). <u>https://doi.org/10.1049/ise2.12039</u>

Parameters

Parameters we choose : (n, b, q, l, d)

Implementation

- □ m = 2n + n(k l)
- $\Box \quad \sigma = \operatorname{sqrt}(b^2 + 1) \log_2(n)$
- \Box s = (s₁-R + 1) σ

$$\Box \quad \chi = D_{\mathbb{Z}^m, \tau} \quad \text{where } \mathbf{T} = 2.6 \text{ or } 2.8$$

Theoretical conditions

- **q** : power of b
- \Box q > n^c where c ≥ 2
- □ n > 128
- **D** 0 < | < d
- n: power of 2
- $\Box \quad \sigma = \operatorname{sqrt}(b^2 + 1)\Omega(\operatorname{sqrt}(\log_2(n)))$
- $\begin{tabular}{ll} $$ \chi$ is a distributions such that the associated LWE problem is hard exactly a statement of the second se$

Apply the higher-bit setting to LWE

Definition (LWE Assumption [Reg05]). Let λ be the security parameter, $n = n(\lambda), m = m(\lambda), q = q(\lambda)$ be integers and let $\chi = \chi(\lambda)$ be a distribution over \mathbb{Z}_q . The LWE_{n,m,q,\chi} assumption says that, if we choose $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$, $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{e} \leftarrow \chi^m$, $\mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$ then the following distributions are computationally indistinguishable:

 $(\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e}) \stackrel{\mathrm{comp}}{\approx} (\mathbf{A}, \mathbf{u}).$

Definition (LWR [BPR12]). Let λ be the security parameter, $n = n(\lambda), m = m(\lambda), q = q(\lambda), p = p(\lambda)$ be integers. The LWR_{n,m,q,p} problem states that for $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}, \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{u} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$ the following distributions are computationally indistinguishable: $(\mathbf{A}, \lfloor \mathbf{A} \cdot \mathbf{s} \rfloor_p) \stackrel{\text{comp}}{\approx} (\mathbf{A}, \lfloor \mathbf{u} \rfloor_p)$.

$$\lfloor \cdot \rfloor_p : \mathbb{Z}_q \to \mathbb{Z}_p : x \mapsto \lfloor (p/q) \cdot x \rfloor$$

Worst-case hardness

Table 1. Comparing the three families of SVP and CVP solvers.

	Time complexity upper bound	Space complexity upper bound	Remarks
Sec. 3	$2^{2n+o(n)}$	$2^{n+o(n)}$	Deterministic
Sec. 4, SVP	$2^{2.465n+o(n)}$	$2^{1.325n+o(n)}$	Monte-Carlo
Sec. 4, CVP	$(2+1/\varepsilon)^{O(n)}$	$(2+1/\varepsilon)^{O(n)}$	Monte-Carlo solves $(1 + \varepsilon)$ -CVP only
Sec. 5 , SVP	$n^{n/(2e)+o(n)}$	$\mathcal{P}oly(n)$	Deterministic
Sec. 5, CVP	$n^{n/2+o(n)}$	$\mathcal{P}oly(n)$	Deterministic