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| Lattice-based cryptography
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A lattice is a Discrete additive subgroup of &". - - - - © © ©
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- We focus on integer lattices g
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Why in cryptography ?
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e Simple and efficient: highly parallel ; elegant design

e Quantum-resistant
e Enjoys good average-case to worst-case hardness reductions

e Allows to construct some advanced cryptographic primitives



| Lattices problems

We base our hardness on average-case lattices problems that reducts to
worst-case ones. Security of a construction is based on the hardness assumption of
these underlying problems.

()SIS : LWE :

(Inhomogeneous)
Short Integer
Solution Problem

Learning with
errors Problem

Find a short vector in the g-ary lattice defined by integer matrix A as:
AtA) ={x €E2": Ax = 0 (mod q) }



| Lattice trapdoors

Lattice-based trapdoor functions
for A « Zq’“"” and with appropriate parameters,

Our focus:

f,(x) =Ax mod q g,x)=s'A+e modq

Lattice trapdoors and

(“short” x) (“very short” e)

its application to
“Hash-and-Sign”

permits the construction of various cryptographic primitives. Signatures

> Use of a “strong” trapdoor to invert £, (SIS) and/or g, (LWE)

Cryptographic functionality of such trapdoors
e Solve worst-case hardness problems
e Sample from a discrete Gaussian distribution of "rather

small” width, over any desired coset of the lattice :

Aui(A) ={x €EZ":Ax=u (mod q) } =f (u)




| Gaussian distribution

e Foranys> 0, define the Gaussian function on R":
= orllx]|?/s?
Vx & R, p(x)=e

e Foranyc € R reals >0, and n-dimensional lattice 4, define the Discrete Gaussian
distribution DA+CS as:

p(x)
p(A+c)

® For any semi-definite =TT, define the Non-spherical Gaussian function on R":

Vx EAd+e D, (X)=

Vx € span(T)= span(%), p (x) =T Tt




Drior works

[MP12]
PV

Trapdoor : R » Not a base for A+ (4)

[CGMI19]
F-trapdoor

Trapdoor : Approximate version

Trapdoor : short base S for A+ (4) of a G-trapdoor

i.e AS=0 mod q

° Formal proof of
unforgeability in the
random-oracle model

° Randomized approach :
Gaussian sampler

Problems:
> Generation of Awith S'is
slow and complicated
> Inefficient inversion
algorithms

A(f)ZGmod(]

° Introduction of gadget
matrix G : easy to invert f,

e  Maps coset from A (4) to

cosets from A (G) :
more efficient gaussian

sampler
Problem :
> Practical inefficiency due to
large sizes

(key and signature sizes for
“Hash-and-Sign"signature)

° Introduction of the
Approximate setting

° Reduce considerably the
key and signature sizes by
allowing an error on the
sampled signature.

Problem :
> Despite its optimization,
key and signature sizes are
still too large



A comparison with NIST standardization
process digital signatures candidates

[MP12]

88-bit security :

Public key : 19.5 kB
Signature :13.5 kB

128-bit security :

[CGM19]

88-bit security :

Public key :5 kB
Signature : 4.45 kB

184-bit security :

Public key : > 35 kB
Signature: > 25 kB

Public key : 11.25 kB
Signature : 9.38 kB

qTesla:
rejection sampling
approach

128-bit security :

Public key : 4.03 kB
Signature: 3.05 kB

Dilithium :
rejection sampling
approach

121-bit security :

Public key :1.32 kB
Signature: 2.42 kB

Falcon:
NTRU lattices

133-bit security :

Public key : 0.90 kB
Signature: 0.66 kB

Question :

How to further downsize the public-key and
sighature for *hash-and-sign” signatures ?




How to further downsize the public key and
signature for "Hash-and-Sign” digital
signatures ?

e To make “Hash-and-Sign” digital signatures from GPV line of
work competitive and practical for post-quantum
standardization

e Even though some methods are more advanced, they all
suffer from downsides either in systems simplicity, running
times, storage...

e As cryptanalysis of post-quantum cryptosystems is not
yet well understood, it is essential to develop different
schemes relying on different assumptions and/or
construction methods.




| Our results

1. Definition of the higher-bit approximate ISIS problem

e Reduction to the ISIS problem

e Permits to discard low-weighted bits of coefficients in the matrix 4
which defines Ajtai's function. (Downsize modulus)

2. An adaptation of [CGM19] trapdoor generation and preimage sampling
algorithms to fit the “higher-bit” setting

e Public matrix 4 belongs to ZZ/Xb’Z} rather than Z’;X’”

e Sampled preimage belongs to Zm/bd rather than zm
q q

10



| Our results

3. Instantiation of hash-and-sign digital signature

SEUF-CMA secure
Trade-off between security and memory space :

We expect our construction to reduce the public key and signature sizes
by about half at the expense of a reasonable drop in the security level.

Implementation

Analysis :

- Ourscheme is fit to obtain some intermediate level of security
compared to those of [CGM19]

-  Estimate 155-bit security level rather than 88-bit security as in
[CGM19] for better key sizes (but bigger running times)

11



| Our results

4. Combination of our work with a non-spherical Gaussian sampler
([AHT21])

e New higher-bit approximate preimage sampling algorithm
e Instantiation of a sEUF-CMA secure “Hash-and-Sign” digital signature

We expect this second construction to further reduce the signature size.

Analysis :

- Theoretical improvements in objects’ length bounds and in the

' digital signature security level.
Implementation

= Very low practical improvement. We might assume that the
higher-bit setting subsumes the optimizations brought in [JHT21]

12
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| Approximate ISIS problem

ApproxISIS nm.qg.a 5 :

Forany n,m,qg € N anda, 8 € R, define the approximate inhomogeneous short integer solution
problem Approx.ISISnmqa .z as follows.

Given 4 € Zq”x’”,y S Zq” find a vectorx & Zq’” such that ||x|| < fand thereis a vectorz € 2"
satisfying :

lIz|]| £ @ and Ax =y +z (mod q)

= LWEn,m,q,G,U(Zq),X <, Approx. ISIS, g0,
> [S1S, ntmaqp =p Approx.ISIS,, m g0+5,
> IS1Snnimgatrs <p Approx. ISIS, m.qap

14



| Approximate trapdoors

e Define the Approximate gadget-matrix F:

F:=1¢f"e7"""
where
NN N NES k-1t = 7 (k-])
f:={db",..., ") Zq

e Sample a Public-Key A with a Secret-Key %

o A<UEZ""), Rey"™
o Letd: [1 A] and form 4 :=[4A | F - AR]EZ”X’”

> We can map short cosets representatives of A7(F) to approximate short cosets
representatives of 47(4) using the approximate trapdoor ®

15



| Approximate trapdoors

- Generalization of the perturbation based
Algorithm 3: APPROX.SAMPLEPRE. discrete Gaussian sampler by Micciano

Input: (A R, u,s) and Peikert
Output: An approximate preimage The perturbation p :

|

of ufor A,y € Z2™. : ; . [RR! R '

3 . l Nt SzI - 02 |

1 Sample a perturbation : P R I |
p < Dzm,\/f,,- ' Where |

2 Form v=u— Ap € Zj. : o > n.(AL(G)) :
3 Sample the approximate gadget U S s S |

preimage z € Z"*~V ag

z — GsAMP.CUT(v,0). .
R :> ‘Samples an approximate
4 Form v := p + wc L. preimage y of u from a spherical
Y P [I} discrete Gaussian
5 return y.
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| Ouridea

e ————

F-trapdoor : approximate trapdoor

of lower bits

|
| | | |
| | | |
: G=Ilg'e 7 nxnk [ Truncation } F=I0f"€ 7 nxn(k-1) |
| n q : : n q |
| : ! :
| | | |

where f'= (0", b)) and k = llog,q]

L We extend this idea:

We can interpret approximate gadget matrix F as an object from bh/x Z”/Xb’;k
q

Generalization of this approximation on all objects in the signature scheme

2 Truncation of CGM scheme to downsize the modulus ¢ to ¢/b% (d <)

18



| Higher-bit approximate ISIS

H.ApproxISIS nm.g.d.a .5 :

Given 4 E Yy E Zq”, find a vectorx € Z" such that ||x|| < fand thereisavectorz & Z"

satisfying :
Il < @ and (b =y = )mod ¢
A R . T !
. Specific to this . error due to approximation !
5 problem E (same as in [CGM19])

IS Sumpvinig, i Zp H ADPTOT L ST S5 sisie dwt8.8

H.Approz-ISTSym q.4.0.8 Zp ISTS, ntma@Emit 0B

<=

Proven via a
reduction to the
Approximate ISIS

from [CGM19]

greater reduction loss

19



| Higher-bit setting construction

Change in Public matrix

and sampled preimage
(For a syndrome u_)

CGM19] . SRREREEIE
Trapdoor = R  [MP12]

PM=4, := [A AR]

Prei = y, « Gaussian Sampler

Thiswork: g = b*
Trapdoor=R ; PM = AOH/bd

Prei =y, (mod )

AL = 4 (mod b%)
Al =4- AL

—_—

‘generalization

Impact on the

error term

Define e, and €, . 3aS the
following :

e,=u-Ay, (modq);

e = AOLyO (mod q );

> We find that :

We adapt the trapdoor
generation and preimage
sampling algorithms from

[CGM19] to force them
into the higher-bit setting

due to our i
modification on A

............................

20



I“Hash—and—Sig Nn" signature scheme

ZnXm

The key-generation algorithm samples A € o/ bd

matrix AOL c znxm

together with its (@ ; f)-approximate trapdoor R and the

sk = trapdoor R
A L
0

Gets the hash of a message u Checks if:

Uses the Gaussian sampler to get an ) lyll < g
approximate preimage y for H(x) by
Ajtai function defined w.r.t b%4 2. || b%x-H@w)|| < «

Outputs y as signature If so, it accepts.

sEUF-CMA secure assuming the hardness of

and LWE
SISn,n +m,q,2[a+(\/;bd +1)[))] n,n,q,X,U(Zq),l

21
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| Atrade-off between size and secu rity

[CGM19] This work
Norm of a short solution in the 2(sy[m+ blo[n) 2(s\/m+ b'o\[n) + 4 nm bs
underlying SIS problem
Signature size (in bits) mXkX logz(b) mX (k-d)Xx logz(b)
Public key size (in bits) m X n X kx log,(b) mXnX (k-d)xlog,(b)

n:security parameter

m . vector dimension

b: base

s, 0. Gaussian distributions widths



Implementation results

d
(41
|lell,

PK (kB)
Sig (kB)
LWE

AISIS

F-trapdoor
[CGM19]

512

3072

138244.3

20627.9

5.12

4.5

104.7

87.8

F-trapdoor
[CGM19]

1024

6144

296473.0
1502259.7
11.52
9.4
192.7

183.7

This work

512

16

3584

11

11

1072.2

428806.9

1.92

2.25

104.7

75.0

This work

1024

16

7168

11

11

1535.5

607601.6

3.84

4.5

192.7

155.4

This work

1024

6144

11495.9

2452040.3

5.12

6.1

192.7

140.5

:n=512

:n=1024%

Advantages:

->

Better security level for
better Public key and
Signature sizes at the
expense of a higher security

parameter n.

Allows to obtain different
security levels with more
appropriate public key and
signature sizes. (for a same
security parameter n)

Disadvantage:

-

To achieve more than
88-bit security, we set
n=1024 which can lead to
longer running times.
(Even bigger for more

than 155-bit security.) 24



A comparison with NIST standardization
process digital signatures candidates

This work [CGM19] qTesla: Dilithium : Falcon:
rejection sampling rejection sampling NTRU lattices
approach approach
75-bit security : 88-bit security :
Public key : 1.92 kB Public key :5 kB 128-bit security : 121-bit security : 133-bit security :

Signature : 2.25 kB Signature : 4.45 kB
Public key : 4.03 kB Public key :1.32 kB Public key : 0.9 kB
155-bit security : 184-bit security : Signature: 3.05 kB Signature: 2.42 kB Signature: 0.66 kB

Public key : 3.84 kB Public key : 11.25 kB
Signature : 4.5 kB Signature : 9.38 kB

Result : We get pk and sig sizes closer (or even of same
level) to those of NIST 2-round standardization process
digital sighatures.

25
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Recent related work (2021

Construction : Modified version of [CGM19]

D,
7".s ;

Spherical preimage N.on-Spherica.I :
Gaussian sampler preimage Gaussian et

sampler
>

More precise
distribution
» smaller signatures

> =g’

m

: Different distortion
i on the sampled 2n

' first entries than on

Problems : kn last entries

> Signature size still not competitive
> No impact on Public key



I New

AL = 4 (mod b%)
Al =A4- A"

Igher-bit setting construction

Change in sampled preimage

(For a syndrome u)

[IHT21] : e :

same as

Trapdoor = R @/ [CGMm19] !
PM=4, :=[4 {R]

Prei = y, « Non-spherical
Gaussian Sampler

generalization

This work: g = b*
Trapdoor=R ; PM :AOH/bd

Prei =y, (mod b

We adapt the preimage
sampling algorithm from
[JHT21] to force it into the

higher-bit setting




I New “Hash-and-Sign” signature scheme

ZnXm

The key-generation algorithm samples A € o/ bd

matrix AOL c znxm

together with its (@ ; f)-approximate trapdoor R and the

sk = trapdoor R
A L
0

Gets the hash of a message u Checks if:

Uses the Non-spherical Gaussian .yl B
sampler to get an approximate

preimagey forrHC[l) by A_]tal function 2. || bdAx - H(/l)” <a
defined w.r.t b%4 |

If so, it accepts.

Outputs y as sighature

sEUF-CMA secure assuming the hardness of

and LWE
SISn,n +m,q,2[a+(\/;bd +1)[))] n,n,q,X,U(Zq),l




| Better theoretical length bounds

Construction 2 Construction 1
Non-spherical Gaussian sampler Spherical Gaussian sampler
signature termy Sp/2nt S8 kn S/ m

error term e bo Jrt nbd(so V2tsyk ) blﬁ\/;‘h/nmde

Expectations::

n:.:secu rity parameter > Better security
m . vector dimension
b: base > Better practical signature size

s, o Gaussian distributions widths

30



Implementation results

d
[1xI1,
llell,

PK (kB)
Sig (kB)
LWE

AISIS

Construction

1

1024

16

7168

11

11

1535.5

607601.6

3.84

4.5

192.7

155.4

[IHT21]

1024

6144

536010

173254

11.25

5.75

218.0

168.82

Construction
2

1024

16

7168

11

11

1544.0

603592.8

3.84

4.4

192.7

1554

Construction

2

1024

6144

12732.6

2448537.1

5.12

5.50

192.7

140.5

. previous constructions

: new construction

Analysis :

-  Very small optimization
obtained in the signature size (
about 0.1 kB).

- No gainin the security level
(same signature norm).

-  However, using the higher-bit
setting brings important
improvement to the original
scheme from [JHT21].

Possible explanation:

Our bitwise optimization already
removes the unnecessary
information in the sampled
signature. Thus, there is no need for a
more precise Gaussian sampler.

31



Conclusion

e Definition of the Higher-bit approximate ISIS.
It can downsize the modulus at the price of
a trade-off between sizes and security level.

e Forasame security parameter, our setting )
brings optimized objects with different
levels of security than in prior works.

SIGNATURE

. . . SCHEME
For a higher security parameter, we achieve

a win-win scenario and obtain better sizes
along with better security level (but higher
running time).

e Adaptation of the higher-bit setting with a
non-spherical Gaussian sampler : Better

theoretical objects norms.
32




Future works

O'I Improve the reduction loss in the Higher-bit
Approximate ISIS problem

02 Construct a more efficient digital signature
implementation code
- Inthiswork, our implementation is only a

tool for the sake of comparison.

03 Explore the possible applications of the higher-bit
approximate setting in other advanced lattice

cryptosystems
- Extend the Bonsai techniques in the approximate

setting.
33
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| Parameters

Parameters we choose: (n, b, q,/,d)

Implementation

d m=2n+n(k-1)

O o =sqrt(b”+1)log,(n)

Q s=(s_R+10O

7"t

where T=260r2.8

O o o o o

L

Theoretical conditions
g : power of b
g>n“wherec=>2
n>128
O<l<d
N : power of 2
0 = sart(b® + 1)Q(sqrt(log,(n)))

x s a distributions such that the
associated LWE problem is hard
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| Apply the higher-bit setting to LWE

g Deﬁnltlon (LWE Assumption [Reg05]). Let A be the security parameter, n = n(\),m =
- m(A),q = q(X\) be integers and let x = x(A) be a distribution over Zgy. The LWE,, , 4 assumption
. says that, if we choose A £ Z;"X", s & Ly, e ~—x™

,u Pl Lq" then the following distributions are
. computationally indistinguishable:

Definition (LWR [BPR12]). Let A be the security parameter, n = n(\), m = mA); § =

q(A),p = p(X) be integers. The LWRy, m q.p problem states that for A & Z;"x'"', s Z5,a & Zy'
the following distributions are computationally indistinguishable: (A, |A - s| p) ~ (A, |ty

..........................................................................................................................................................................
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| Worst-case hardness

Table 1. Comparing the three families of SVP and CVP solvers.

Time complexity

Space complexity

upper bound upper bound Remaris
Sec. 3 gPatoln) p-toln) Deterministic
Sec. 4, SVP g2 40omtalm) gl-22amtalmn) Monte-Carlo
Sec. 4, CVP|| (2+1/¢)°™ (2.4 1 )P solvesl\zlfrf(; )0321/% -
Sec. 5, SVP p ee)teln) Poly(n) Deterministic
Sec. 5, CVP nm/2to(n) Poly(n) Deterministic
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