AN ISOGENY-BASED ADAPTOR SIGNATURE USING SQISIGN

Valerie Gilchrist, David Jao

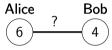
University of Waterloo

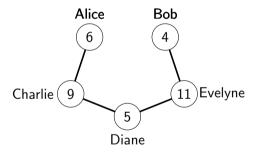
June 21, 2022

Alice	Bob
3	7

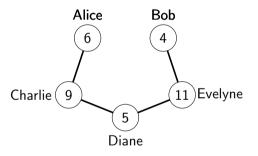
Alice	Bob
2	8

Alice	Bob
6	4





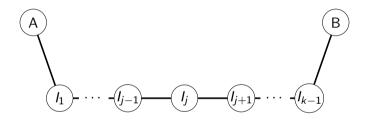
Blockchain transactions can be very costly.



How can Alice be assured her money will arrive to Bob?

A

в)



Set-Up:

Set-Up:

Alice first chooses a cryptographic hard problem

$$f: \mathcal{L}_{\textit{witness}}
ightarrow \mathcal{L}_{\textit{statement}}$$

e.g. (x, g^x) is a witness, statement pair for the discrete logarithm problem

Set-Up:

Alice first chooses a cryptographic hard problem

$$f:\mathcal{L}_{ extit{witness}}
ightarrow \mathcal{L}_{ extit{statement}}$$

e.g. (x, g^x) is a witness, statement pair for the discrete logarithm problem Next, she will choose a random collection of elements

$$\{\ell_1, \cdots \ell_{k-1}\} \subset \mathcal{L}_{\textit{witness}}.$$

Set-Up:

Alice first chooses a cryptographic hard problem

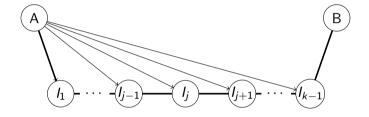
$$f:\mathcal{L}_{ extit{witness}}
ightarrow \mathcal{L}_{ extit{statement}}$$

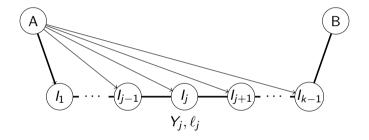
e.g. (x, g^x) is a witness, statement pair for the discrete logarithm problem Next, she will choose a random collection of elements

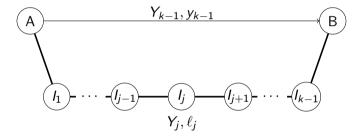
$$\{\ell_1, \cdots \ell_{k-1}\} \subset \mathcal{L}_{\textit{witness}}.$$

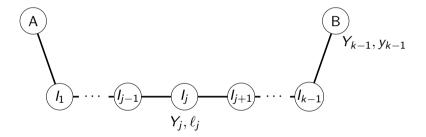
She will then compute the following for each $j \in [1, \cdots k-1]$:

$$y_j = \sum_{i=0}^j \ell_i, Y_j = f(y_j)$$

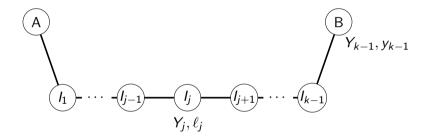




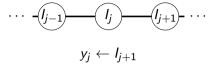




Commit:



Intermediary I_j will sign a contract agreeing to release funds to I_{j+1} on the condition that I_{j+1} can provide y_j .



$$y_j \leftarrow l_{j+1}$$

$$y_{j-1} = y_j - \ell_j$$

$$y_j \leftarrow l_{j+1}$$
 y_{j+1} y_{j+1} y_{j+1} y_{j+1} y_{j+1}

$$y_{j-1} = y_j - \ell_j$$

$$I_j \leftarrow y_{j-1}$$

Release:

$$y_j \leftarrow l_{j+1}$$

$$y_{j-1} = y_j - \ell_j$$

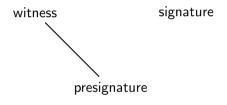
$$I_j \leftarrow y_{j-1}$$

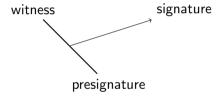
...how can we make this post-quantum?

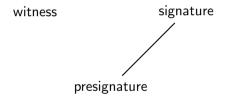
witness

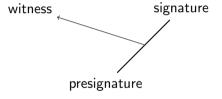
signature

presignature









Let R be a hard relation, and $(y, Y) \in R$.

Let R be a hard relation, and $(y, Y) \in R$. Consider a signature scheme, Σ , consisting of three algorithms:

Let R be a hard relation, and $(y, Y) \in R$. Consider a signature scheme, Σ , consisting of three algorithms:

$$\mathsf{KeyGen}(\lambda) o \mathsf{sk}, \mathsf{pk} \ \mathsf{Sig}(\mathsf{sk}, m) o \sigma \ \mathsf{Ver}(\mathsf{pk}, m, \sigma) o b \in \{0, 1\}$$

Let R be a hard relation, and $(y, Y) \in R$. Consider a signature scheme, Σ , consisting of three algorithms:

$$\mathsf{KeyGen}(\lambda) o \mathsf{sk}, \mathsf{pk} \ \mathsf{Sig}(\mathsf{sk}, m) o \sigma \ \mathsf{Ver}(\mathsf{pk}, m, \sigma) o b \in \{0, 1\}$$

Then an adaptor signature scheme with respect to R and Σ consists of four algorithms:

$$\begin{array}{c} \mathsf{PreSig}(\mathsf{sk}, \mathit{m}, \mathit{Y}) \to \widetilde{\sigma} \\ \mathsf{PreVer}(\mathsf{pk}, \mathit{m}, \mathit{Y}, \widetilde{\sigma}) \to \mathit{b} \in \{0, 1\} \\ \mathsf{Adapt}(\widetilde{\sigma}, \mathit{y}) \to \sigma \\ \mathsf{Extract}(\sigma, \widetilde{\sigma}, \mathit{Y}) \to \mathit{y} \end{array}$$

Schnorr Signature

Alice chooses a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, and a cryptographic hash function $\mathcal{H}:\{0,1\}^*\to\mathbb{Z}_q.$

Schnorr Signature

Alice chooses a cyclic group $\mathbb{G}=\langle g \rangle$ of prime order q, and a cryptographic hash function $\mathcal{H}:\{0,1\}^* \to \mathbb{Z}_q$.

Alice chooses her secret key $x \in \mathbb{Z}_q$.

She publishes $X = g^x$ as her public key.

Schnorr Signature

Alice chooses a cyclic group $\mathbb{G}=\langle g \rangle$ of prime order q, and a cryptographic hash function $\mathcal{H}:\{0,1\}^* \to \mathbb{Z}_q$.

Alice chooses her secret key $x \in \mathbb{Z}_q$.

She publishes $X = g^x$ as her public key.

For a message $m \in \{0,1\}^*$, she chooses $k \in \mathbb{Z}_q$ and computes $r := \mathcal{H}(X||g^k||m)$ and s := k + rx.

Alice's signature is $\sigma = (r, s)$.

Schnorr Signature

Alice chooses a cyclic group $\mathbb{G}=\langle g\rangle$ of prime order q, and a cryptographic hash function $\mathcal{H}:\{0,1\}^*\to\mathbb{Z}_q$.

Alice chooses her secret key $x \in \mathbb{Z}_q$.

She publishes $X = g^x$ as her public key.

For a message $m \in \{0,1\}^*$, she chooses $k \in \mathbb{Z}_q$ and computes $r := \mathcal{H}(X||g^k||m)$ and s := k + rx.

Alice's signature is $\sigma = (r, s)$.

A verifier will check that $r = \mathcal{H}(X||g^sX^{-r}||m)$.

Schnorr-based Adaptor Signature

She chooses $R_g = \{(y, Y) | Y = g^y\} \subseteq \mathbb{G} \times \mathbb{Z}_q$.

Schnorr-based Adaptor Signature

She chooses
$$R_g = \{(y, Y) | Y = g^y\} \subseteq \mathbb{G} \times \mathbb{Z}_q$$
.

Alice chooses her secret key $x \in \mathbb{Z}_q$. She publishes $X = g^x$ as her public key.

Schnorr-based Adaptor Signature

She chooses $R_g = \{(y, Y) | Y = g^y\} \subseteq \mathbb{G} \times \mathbb{Z}_q$.

Alice chooses her secret key $x \in \mathbb{Z}_q$. She publishes $X = g^x$ as her public key.

For a message $m \in \{0,1\}^*$, she chooses $k \in \mathbb{Z}_q$ and computes $r := \mathcal{H}(X||g^k Y||m)$ and s := k + rx.

Schnorr-based Adaptor Signature

She chooses $R_g = \{(y, Y) | Y = g^y\} \subseteq \mathbb{G} \times \mathbb{Z}_q$.

Alice chooses her secret key $x \in \mathbb{Z}_q$. She publishes $X = g^x$ as her public key.

For a message $m \in \{0,1\}^*$, she chooses $k \in \mathbb{Z}_q$ and computes $r := \mathcal{H}(X||g^k Y||m)$ and s := k + rx.

Alice's presignature is $\tilde{\sigma} = (r, s)$. Her signature is s' = s + y.

Schnorr-based Adaptor Signature

She chooses
$$R_g = \{(y, Y) | Y = g^y\} \subseteq \mathbb{G} \times \mathbb{Z}_q$$
.

Alice chooses her secret key $x \in \mathbb{Z}_q$. She publishes $X = g^x$ as her public key.

For a message $m \in \{0,1\}^*$, she chooses $k \in \mathbb{Z}_q$ and computes $r := \mathcal{H}(X||g^k Y||m)$ and s := k + rx.

Alice's presignature is $\tilde{\sigma} = (r, s)$. Her signature is s' = s + y.

A verifier will check that $r = \mathcal{H}(X||g^{s'}X^{-r}||m)$.

Setup:

Setup:

$$\{\ell_1, \cdots \ell_{k-1}\} \subset \mathcal{L}_{\textit{witness}}.$$

For each $j \in [1, \cdots k-1]$:

$$y_j = \sum_{i=0}^j \ell_i, Y_j = f(y_j)$$

Setup:

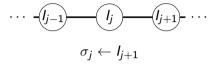
$$\{\ell_1, \cdots \ell_{k-1}\} \subset \mathcal{L}_{\textit{witness}}.$$

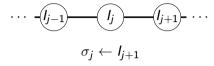
For each $j \in [1, \cdots k-1]$:

$$y_j = \sum_{i=0}^j \ell_i, Y_j = f(y_j)$$

Commit:

Each I_j will create a pre-signature $\hat{\sigma}_i = \text{PreSig}(\mathsf{sk}_i, \mathsf{tx}_i, \mathsf{Y}_i)$ where tx_i is the conditional contract stating that I_j will release funds to I_{j+1} once I_j is provided their full signature.





$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma_j}, Y_j)$$

$$\sigma_j \leftarrow I_{j+1}$$
 $\sigma_j \leftarrow I_{j+1}$ \cdots

$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma_j}, Y_j)$$

$$y_{j-1} = y_j - \ell_j$$

$$\cdots - \overbrace{l_{j-1}} - \overbrace{l_j} - \overbrace{l_{j+1}} - \cdots$$

$$\sigma_j \leftarrow l_{j+1}$$

$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma_j}, Y_j)$$

$$y_{j-1} = y_j - \ell_j$$

$$\sigma_{j-1} \leftarrow \mathsf{Adapt}(\widetilde{\sigma}_{j-1}, y_{j-1})$$

Currently there are two post-quantum adaptor signatures schemes:

- Lattice Adaptor Signature (LAS) using Dilithium (Esgin, Ersoy, Erkin, 2020).
- Isogeny Adaptor Signature (IAS) using CSI-FiSh (Tairi, Moreno-Sanchez, Maffei, 2021).
 - Derived from CSIDH.
 - May not be secure for some instances.

Currently there are two post-quantum adaptor signatures schemes:

- Lattice Adaptor Signature (LAS) using Dilithium (Esgin, Ersoy, Erkin, 2020).
- Isogeny Adaptor Signature (IAS) using CSI-FiSh (Tairi, Moreno-Sanchez, Maffei, 2021).
 - Derived from CSIDH.
 - May not be secure for some instances.

A generic construction was also published, but does not include most post-quantum signatures, such as SQISign.

Let

$$E_{a,b}: y^2 = x^3 + ax + b$$

be a (supersingular) elliptic curve defined over $\mathbb{F}_{p^2}.$

Let

$$E_{a,b}: y^2 = x^3 + ax + b$$

be a (supersingular) elliptic curve defined over $\mathbb{F}_{p^2}.$

An *isogeny*, φ , is a non-zero morphism $\varphi: \mathcal{E}_{\mathsf{a},b} \to \mathcal{E}_{\mathsf{a}',b'}$

Let

$$E_{a,b}: y^2 = x^3 + ax + b$$

be a (supersingular) elliptic curve defined over \mathbb{F}_{p^2} .

An *isogeny*, φ , is a non-zero morphism $\varphi: E_{\mathsf{a},b} \to E_{\mathsf{a}',b'}$

There exists a separable *quotient* isogeny for every finite subgroup G of E of the form $\phi: E \to E'$ where $\ker(\phi) = G$.

Let

$$E_{a,b}: y^2 = x^3 + ax + b$$

be a (supersingular) elliptic curve defined over \mathbb{F}_{p^2} .

An isogeny, φ , is a non-zero morphism $\varphi: E_{a,b} \to E_{a',b'}$

There exists a separable *quotient* isogeny for every finite subgroup G of E of the form $\phi: E \to E'$ where $\ker(\phi) = G$.

• We say φ is *separable* if $deg(\varphi) = |ker(\varphi)|$.

Let

$$E_{a,b}: y^2 = x^3 + ax + b$$

be a (supersingular) elliptic curve defined over \mathbb{F}_{p^2} .

An *isogeny*, φ , is a non-zero morphism $\varphi: E_{a,b} \to E_{a',b'}$

There exists a separable *quotient* isogeny for every finite subgroup G of E of the form $\phi: E \to E'$ where $\ker(\phi) = G$.

- We say φ is *separable* if $deg(\varphi) = |ker(\varphi)|$.
- In particular, this means $E' \cong E/\ker(\phi)$.

Problem (Computational Supersingular Isogeny (CSSI))

Consider two curves E and E' defined over \mathbb{F}_{p^2} .

Assuming it exists, find an isogeny $\phi: E \to \dot{E}'$ of degree ℓ , for some prime power ℓ , with (cyclic) kernel.

Equivalently, find a generator of order ℓ for the kernel of such a map.

Let p be a prime of the form $p = \ell_A^{e_A} \ell_B^{e_B} f - 1$. Let E and E' be two isogenous curves.

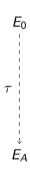
Problem (SIDH Relation)

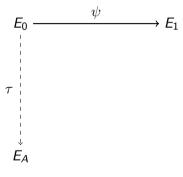
Suppose we have that (P_B, Q_B) is a basis of $E[\ell_B^{e_B}]$, and (P_A, Q_A) is a basis of $E[\ell_A^{e_A}]$. Given $p, E, E', (P_B, Q_B), (P_A, Q_A), \varphi(P_B), \varphi(Q_B)$ find the isogeny $\varphi: E \to E'$ satisfying $\varphi(P_B), \varphi(Q_B)$.

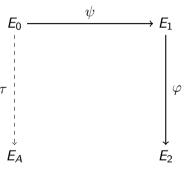
$\mathsf{SQISign}$

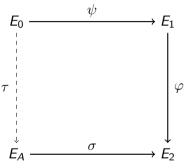
$\mathsf{SQISign}$

 E_0









Let (P_0, Q_0) be a basis for $E_0[\ell^e]$, for some small prime ℓ . We choose our hard relation to be

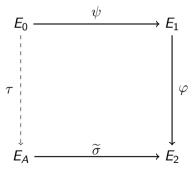
$$\mathsf{R}_{\mathit{SSI}} := \{ (y, E_Y) | y : E_0 \to E_Y \cong E_0 / \langle P_0 + \alpha_y Q_0 \rangle \}$$

Let (P_0, Q_0) be a basis for $E_0[\ell^e]$, for some small prime ℓ .

We choose our hard relation to be

$$\mathsf{R}_{SSI} := \{ (y, E_Y) | y : E_0 \to E_Y \cong E_0 / \langle P_0 + \alpha_y Q_0 \rangle \}$$

Presig:

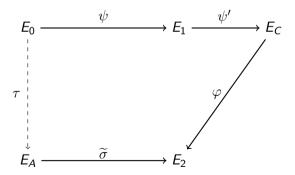


Let (P_0, Q_0) be a basis for $E_0[\ell^e]$, for some small prime ℓ .

We choose our hard relation to be

$$\mathsf{R}_{\mathit{SSI}} := \{ (y, E_{\mathit{Y}}) | y : E_0 \to E_{\mathit{Y}} \cong E_0 / \langle P_0 + \alpha_y Q_0 \rangle \}$$

Presig:

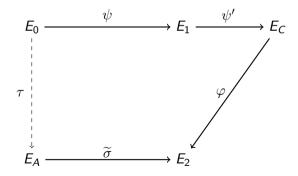


Let (P_0, Q_0) be a basis for $E_0[\ell^e]$, for some small prime ℓ .

We choose our hard relation to be

$$\mathsf{R}_{\mathit{SSI}} := \{ (y, E_{\mathit{Y}}) | y : E_0 \to E_{\mathit{Y}} \cong E_0 / \langle P_0 + \alpha_y Q_0 \rangle \}$$

Presig:



Include $\tau(P_0), \tau(Q_0)$ in PreSig

Adapt : (y, E_Y) where $y : E_0 \to E_Y \cong E_0/\langle P_0 + \alpha_y Q_0 \rangle$

Adapt : (y, E_Y) where $y : E_0 \to E_Y \cong E_0/\langle P_0 + \alpha_y Q_0 \rangle$

$$y': E_A \to E_{yA} = E_A/\langle \tau(P_0) + \alpha_y \tau(Q_0) \rangle$$

$$\begin{array}{ccc}
E_{A} & & \widetilde{\sigma} \\
\downarrow & & \widetilde{\sigma} \\
\downarrow & & \downarrow \\
\downarrow &$$

Adapt : (y, E_Y) where $y : E_0 \to E_Y \cong E_0/\langle P_0 + \alpha_y Q_0 \rangle$

$$y': E_A \to E_{yA} = E_A/\langle \tau(P_0) + \alpha_y \tau(Q_0) \rangle$$

$$\sigma: E_2 \to E_s = E_2/\langle \widetilde{\sigma}(\tau(P_0) + \alpha_y \tau(Q_0)) \rangle$$

$$\begin{array}{ccc}
\tau & & & \widetilde{\sigma} \\
E_A & & & \widetilde{\sigma} \\
y' & & & \downarrow \\
E_{yA} & & & E_s
\end{array}$$

Extract:

Setup:

Setup:

$$\{\ell_1,\cdots\ell_{k-1}\}\subset\mathbb{Z}.$$
 For each $j\in[1,\cdots k-1]$: $lpha_j=\sum_{i=0}^j\ell_i,y_j:E_0 o E_{Yj}\cong E_0/\langle P_0+lpha_jQ_0
angle$

Setup:

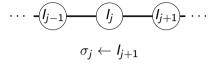
$$\{\ell_1,\cdots\ell_{k-1}\}\subset\mathbb{Z}.$$

For each $j \in [1, \cdots k-1]$:

$$\alpha_j = \sum_{i=0}^j \ell_i, y_j : E_0 \to E_{Yj} \cong E_0 / \langle P_0 + \alpha_j Q_0 \rangle$$

Commit:

Each I_j will create a pre-signature $\hat{\sigma}_i = \text{PreSig}(sk_i, tx_i, E_{Yj})$ where tx_i is the conditional contract stating that I_j will release funds to I_{j+1} once I_j is provided their full signature.



$$\cdots - \underbrace{I_{j-1}} \qquad \underbrace{I_{j}} \qquad \underbrace{I_{j+1}} \cdots$$

$$\sigma_{j} \leftarrow I_{j+1}$$

$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma}_j, E_{Y_j})$$

$$\alpha_j \leftarrow y_j$$

$$\sigma_{j} \leftarrow I_{j+1}$$

$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma_j}, E_{Yj})$$
 $\alpha_j \leftarrow y_j$ $\alpha_{j-1} = \alpha_j - \ell_j$ $\gamma_{j-1} : E_0 \rightarrow E_{Yj-1} \cong E_0/\langle P_0 + \alpha_{j-1} Q_0 \rangle$

Release:

$$\cdots - \underbrace{(l_{j-1})} - \underbrace{(l_j)} - \underbrace{(l_{j+1})} - \cdots$$

$$\sigma_j \leftarrow l_{j+1}$$

$$y_j \leftarrow \mathsf{Extract}(\sigma_j, \widetilde{\sigma}_j, E_{Yj})$$

$$\alpha_j \leftarrow y_j$$

$$\alpha_{j-1} = \alpha_j - \ell_j$$

$$y_{j-1} : E_0 \to E_{Yj-1} \cong E_0 / \langle P_0 + \alpha_{j-1} Q_0 \rangle$$

 $\sigma_{i-1} \leftarrow \mathsf{Adapt}(\widetilde{\sigma}_{i-1}, y_{i-1})$

Size Comparison in Bytes for 128-bit Security

	LAS	IAS	SAS
public key (bytes)	1472	128 - 2097152	64
presig (bytes)	2701	18327	226
sig (bytes)	3210	263 - 1880	15704

Size Comparison in Bytes for 128-bit Security

	LAS	IAS	SAS
public key (bytes)	1472	128 - 2097152	64
presig (bytes)	2701	18327	226
sig (bytes)	3210	263 - 1880	15704

The smaller presignature sizes in SAS make it better suited for *long* payment channel networks

- longer networks mean a longer set-up phase
- more will need to be transmitted to the participants