AN ISOGENY-BASED ADAPTOR SIGNATURE USING SQISIGN J

Valerie Gilchrist, David Jao

University of Waterloo

June 21, 2022

1/23

Payment Channel Networks

Blockchain transactions can be very costly.

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

® @

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

H—O

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

» ©

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

(O—®

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

& ®

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

Charlie a Evelyne

Diane

2/23

Payment Channel Networks

Blockchain transactions can be very costly.

Alice Bob

Charlie a Evelyne

Diane

How can Alice be assured her money will arrive to Bob?

2/23

Anonymous Multi-Hop Locks (AMHL)

®

3/23

Anonymous Multi-Hop Locks (AMHL)

) (e)

3/23

Anonymous Multi-Hop Locks (AMHL)

Set-Up:

4/23

Anonymous Multi-Hop Locks (AMHL)

Set-Up:
Alice first chooses a cryptographic hard problem

f: Ewitness — Estatement

e.g. (x,g") is a witness, statement pair for the discrete logarithm problem

4/23

Anonymous Multi-Hop Locks (AMHL)

Set-Up:
Alice first chooses a cryptographic hard problem

f: Ewitness — Estatement

e.g. (x,g") is a witness, statement pair for the discrete logarithm problem
Next, she will choose a random collection of elements

{Ela o 'Ek—l} C »Cwitness~

4/23

Anonymous Multi-Hop Locks (AMHL)

Set-Up:
Alice first chooses a cryptographic hard problem

f: Ewitness — Estatement

e.g. (x,g") is a witness, statement pair for the discrete logarithm problem
Next, she will choose a random collection of elements

{Ela o 'Ek—l} C »Cwitness~

She will then compute the following for each j € [1,--- k — 1]
J
vj=2 b ¥y =)
i=0

4/23

Anonymous Multi-Hop Locks (AMHL)

Commit:

5/23

Anonymous Multi-Hop Locks (AMHL)

Commit:

5/23

Anonymous Multi-Hop Locks (AMHL)

Commit:

5/23

Anonymous Multi-Hop Locks (AMHL)

Commit:

A Yi—1,Yk-1 B

Yi 4

5/23

Anonymous Multi-Hop Locks (AMHL)
Commit:

Yi—1,Yk-1

5/23

Anonymous Multi-Hop Locks (AMHL)

Commit:

Yi—1,Yk-1

Yi 4

Intermediary /; will sign a contract agreeing to release funds to /;11 on the condition that /;;
can provide y;.

5/23

Anonymous Multi-Hop Locks (AMHL)

Release:

6/23

Anonymous Multi-Hop Locks (AMHL)

Y < iy

Release:

6/23

Anonymous Multi-Hop Locks (AMHL)

Y < iy

Release:

Yi-1=Yj =4

6/23

Anonymous Multi-Hop Locks (AMHL)

Y < iy

Release:

Yi-1=Yj =4

i < yj—1

6/23

Anonymous Multi-Hop Locks (AMHL)

Y < iy

Release:

Yi-1=Yj =4

i < yj—1

...how can we make this post-quantum?

6/23

Adaptor Signatures

witness signature

presignature

7/23

Adaptor Signatures

witness signature

presignature

7/23

Adaptor Signatures

witness signature

presignature

7/23

Adaptor Signatures

witness signature

presignature

7/23

Adaptor Signatures

witness signature

presignature

7/23

Adaptor Signatures

Let R be a hard relation, and (y, Y) € R.

8/23

Adaptor Signatures

Let R be a hard relation, and (y, Y) € R.
Consider a signature scheme, ¥, consisting of three algorithms:

8/23

Adaptor Signatures

Let R be a hard relation, and (y, Y) € R.

Consider a signature scheme, ¥, consisting of three algorithms:

KeyGen(A) — sk, pk
Sig(sk, m) —» o
Ver(pk, m,0) — b € {0,1}

8/23

Adaptor Signatures

Let R be a hard relation, and (y, Y) € R.
Consider a signature scheme, ¥, consisting of three algorithms:

KeyGen(A) — sk, pk
Sig(sk, m) —» o
Ver(pk, m,0) — b € {0,1}

Then an adaptor signature scheme with respect to R and ¥ consists of four algorithms:

PreSig(sk,m,Y) — &
PreVer(pk,m,Y,c) — b € {0,1}
Adapt(c,y) — o
Extract(o,0,Y) — y

8/23

Example

Schnorr Signature

Alice chooses a cyclic group G = (g) of prime order g, and a cryptographic hash function
H:{0,1}" — Zg.

9/23

Example

Schnorr Signature

Alice chooses a cyclic group G = (g) of prime order g, and a cryptographic hash function
H:{0,1}" — Zg.

Alice chooses her secret key x € Zj.

She publishes X = g* as her public key.

9/23

Example

Schnorr Signature

Alice chooses a cyclic group G = (g) of prime order g, and a cryptographic hash function
H:{0,1}" — Zg.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

For a message m € {0,1}*, she chooses k € Z, and computes r := H(X||gk||m) and
s:=k+ rx.

Alice's signature is o = (r, s).

9/23

Example

Schnorr Signature

Alice chooses a cyclic group G = (g) of prime order g, and a cryptographic hash function
H:{0,1}" — Zg.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

For a message m € {0,1}*, she chooses k € Z, and computes r := H(X||gk||m) and
s:=k+ rx.

Alice's signature is o = (r, s).

A verifier will check that r = H(X||g*X~"||m).

9/23

Example

Schnorr-based Adaptor Signature

She chooses Ry = {(y, Y)|Y =g"} C G x Z,.

10/23

Example

Schnorr-based Adaptor Signature
She chooses Ry = {(y, Y)|Y =g"} C G x Z,.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

10/23

Example

Schnorr-based Adaptor Signature
She chooses Ry = {(y, Y)|Y =g"} C G x Z,.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

For a message m € {0, 1}*, she chooses k € Z, and computes r := H(X||g"Y||m) and
s =k + rx.

10/23

Example

Schnorr-based Adaptor Signature
She chooses Ry = {(y, Y)|Y =g"} C G x Z,.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

For a message m € {0, 1}*, she chooses k € Z, and computes r := H(X||g"Y||m) and
s =k + rx.

Alice’s presignature is 0 = (r, s).
Her signature is s’ = s+ y.

10/23

Example

Schnorr-based Adaptor Signature
She chooses Ry = {(y, Y)|Y =g"} C G x Z,.

Alice chooses her secret key x € Zg.
She publishes X = g* as her public key.

For a message m € {0, 1}*, she chooses k € Z, and computes r := H(X||g"Y||m) and
s =k + rx.

Alice’s presignature is 0 = (r, s).
Her signature is s’ = s+ y.

A verifier will check that r = H(X||g¥ X~"||m).

10/23

AMHL via Adaptor Sigantures

Setup:

11/23

AMHL via Adaptor Sigantures
Setup:

{617 o 'Ekfl} C Ewitness-
For eachj € [1,---k —1]:
J

vi= Y b Y;=f(y)

i=0

11/23

AMHL via Adaptor Sigantures
Setup:

{617 o 'Ekfl} C Ewitness-
For eachj € [1,---k —1]:
J
vi=Y Y= f(y)

i=0

Commit:
Each I; will create a pre-signature &; = PreSig(ski, tx;, Y;) where tx; is the conditional contract
stating that /; will release funds to ;11 once /; is provided their full signature.

11/23

AMHL via Adaptor Sigantures

Release:

12/23

AMHL via Adaptor Sigantures

0j = lj+1

Release:

12/23

AMHL via Adaptor Sigantures

0j = lj+1

Release:

y;j < Extract(gj, 0}, Y)

12/23

AMHL via Adaptor Sigantures

0j = lj+1

Release:

y;j < Extract(gj, 0}, Y)

Yi-1 =Y =4

12/23

AMHL via Adaptor Sigantures

0j = lj+1

Release:

y;j < Extract(gj, 0}, Y)

Yi-1 =Y =4

Oj—1 < Adapt(Ej_l, yj_1)
12/23

SQISign Adaptor Signature (SAS)

Currently there are two post-quantum adaptor signatures schemes:

o Lattice Adaptor Signature (LAS) using Dilithium (Esgin, Ersoy, Erkin, 2020).

@ Isogeny Adaptor Signature (IAS) using CSI-FiSh (Tairi, Moreno-Sanchez, Maffei, 2021).

» Derived from CSIDH.
» May not be secure for some instances.

13/23

SQISign Adaptor Signature (SAS)

Currently there are two post-quantum adaptor signatures schemes:

o Lattice Adaptor Signature (LAS) using Dilithium (Esgin, Ersoy, Erkin, 2020).

@ Isogeny Adaptor Signature (IAS) using CSI-FiSh (Tairi, Moreno-Sanchez, Maffei, 2021).

» Derived from CSIDH.
» May not be secure for some instances.

A generic construction was also published, but does not include most post-quantum
signatures, such as SQISign.

13/23

Isogeny Background

Let
Ea,b:y2 =x3+ax+b

be a (supersingular) elliptic curve defined over FF ..

14/23

Isogeny Background

Let
Ea,b:y2 =x3+ax+b

be a (supersingular) elliptic curve defined over FF ..

An isogeny, , is a non-zero morphism ¢ : E; p — Ey

14/23

Isogeny Background

Let
Ea,b:y2 =x3+ax+b

be a (supersingular) elliptic curve defined over FF ..
An isogeny, , is a non-zero morphism ¢ : E; p — Ey

There exists a separable quotient isogeny for every finite subgroup G of E of the form
¢ : E — E' where ker(¢) = G.

14/23

Isogeny Background

Let
Ea,b:y2 =x3+ax+b

be a (supersingular) elliptic curve defined over FF ..

An isogeny, , is a non-zero morphism ¢ : E; p — Ey

There exists a separable quotient isogeny for every finite subgroup G of E of the form
¢ : E — E' where ker(¢) = G.

o We say ¢ is separable if deg(y) = | ker(p)].

14/23

Isogeny Background

Let
Ea,b:y2 =x3+ax+b

be a (supersingular) elliptic curve defined over FF ..
An isogeny, , is a non-zero morphism ¢ : E; p — Ey

There exists a separable quotient isogeny for every finite subgroup G of E of the form
¢ : E — E' where ker(¢) = G.

o We say ¢ is separable if deg(y) = | ker(p)].
@ In particular, this means E’ = E/ker(¢).

14/23

Isogeny Background

Problem (Computational Supersingular Isogeny (CSSI))

Consider two curves E and E' defined over]sz.

Assuming it exists, find an isogeny ¢ : E — E' of degree ¢, for some prime power ¢,
with (cyclic) kernel.

Equivalently, find a generator of order ¢ for the kernel of such a map.

15/23

Isogeny Background

Let p be a prime of the form p = (3 4Ff — 1.
Let E and E’ be two isogenous curves.

Problem (SIDH Relation)
Suppose we have that (Pg, Qg) is a basis of E[(¥], and (Pa, Qa) is a basis of E[(3'].

Given p, E, E',(Pg, Qg), (Pa, Qa), »(Ps), (Qg)
find the isogeny ¢ : E — E' satisfying ©(Pg), v(Qp).

16/23

17/23

17/23

17/23

E

17/23

SQISign

Eq

E;

17/23

SQISign

Eq

E;

17/23

SQISign Adaptor Signature (SAS)

Let (Po, Qo) be a basis for Ey[¢€], for some small prime Z.
We choose our hard relation to be

Rssi :=={(y, Ey)ly : Eo = Ey = Eg/(Po+ o, Qo) }

18/23

SQISign Adaptor Signature (SAS)

Let (Po, Qo) be a basis for Ey[¢€], for some small prime Z.
We choose our hard relation to be

Rssi :={(y, Ev)ly : Eo = Ey = Eo/(Po + a, Qo) }
Presig :

Y

Eq

T

Eo
Ex g

18/23

SQISign Adaptor Signature (SAS)

Let (Po, Qo) be a basis for Ey[¢€], for some small prime Z.
We choose our hard relation to be

Rssi :={(y, Ev)ly : Eo = Ey = Eo/(Po + a, Qo) }
Presig :

1/) E 4 Ec

T

Eo
Ex g

18/23

SQISign Adaptor Signature (SAS)

Let (Po, Qo) be a basis for Ey[¢€], for some small prime Z.
We choose our hard relation to be

Rssi :={(y, Ev)ly : Eo = Ey = Eo/(Po + a, Qo) }
Presig :

/
Eo 1/) E 4 Ec

T

Ea Z E>

Include 7(Pp), 7(Qp) in PreSig

18/23

SQISign Adaptor Signature (SAS)

Adapt : (y, Ey) where y : Eg — Ey = Ey/(Py + a, Qo)

E;

19/23

SQISign Adaptor Signature (SAS)

Adapt : (y, Ey) where y : Eg — Ey = Ey/(Py + a, Qo)

y’ . EA — Ey = EA/<T(P0) + ayT(Qo)>

E;

(== — =

Eyn
19/23

SQISign Adaptor Signature (SAS)

Adapt : (y, Ey) where y : Eg — Ey = Ey/(Py + a, Qo)

y’ . EA — Ey = EA/<T(P0) + ayT(Qo)>

o1 Ey — Es = B/ {G(7(Po) + a,7(Qo)))

\]

Me----m
Q

~

(== — =

<

m
s

19/23

SQISign Adaptor Signature (SAS)

Extract :

20/23

Anonymous Multi-Hop Locks (AMHL) via SAS

Setup:

21/23

Anonymous Multi-Hop Locks (AMHL) via SAS
Setup:

{51, .- -ﬁkfl} C Z.

For each j € [1,---k —1]:

J
aj = Zﬁhyj : Eg — Eyj = E0/<P0 +06on>
i=0

21/23

Anonymous Multi-Hop Locks (AMHL) via SAS
Setup:

{51, .- -ﬁkfl} C Z.

For each j € [1,---k —1]:

J
Qj = Zghyj i Ep — Ey; = E0/<P0+OéjQ0>
i=0

Commit:
Each /; will create a pre-signature &; = PreSig(sk;, tx;, Eyj) where tx; is the conditional

contract stating that /; will release funds to /;1; once /; is provided their full signature.

21/23

Anonymous Multi-Hop Locks (AMHL) via SAS

Release:

22/23

Anonymous Multi-Hop Locks (AMHL) via SAS

0j = lj+1

Release:

22/23

Anonymous Multi-Hop Locks (AMHL) via SAS

0j = lj+1

Release:

yj < Extract(oj,gj, Ev;)

aj<—yj

22/23

Anonymous Multi-Hop Locks (AMHL) via SAS

0j = lj+1

Release:

yj < Extract(oj,gj, Ev;)

aj<—yj

aj-1=aj — ¢

yj—1: Eo = Eyj_1 = Eo/(Po + aj—1Qo)

22/23

Anonymous Multi-Hop Locks (AMHL) via SAS

0j = lj+1

Release:

yj < Extract(oj,gj, Ev;)

aj<—yj

aj-1=aj — ¢

yj—1: Eo = Eyj_1 = Eo/(Po + aj—1Qo)

Oj—1 < Adapt(Ej_l, yj_1)
22/23

Size Comparison in Bytes for 128-bit Security

\\ LAS IAS SAS |
public key (bytes) 1472 128 - 2097152 64
presig (bytes) 2701 18327 226
sig (bytes) 3210 263 - 1880 15704

23/23

Size Comparison in Bytes for 128-bit Security

’\ LAS IAS SAS |
public key (bytes) 1472 128 - 2097152 64
presig (bytes) 2701 18327 226
sig (bytes) 3210 263 - 1880 15704

The smaller presignature sizes in SAS make it better suited for long payment channel networks

@ longer networks mean a longer set-up phase
@ more will need to be transmitted to the participants

23/23

	Off-Chain Payments
	Adaptor Signatures
	SAS

