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What is a verifiable computation?



What is a verifiable computation?

You A company X

programm + input−→

Small computing capability. Big computing capability.

Within 30s you get a result.

How to be sure that X’s answer is correct?
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What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how?

→ a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.
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Terminology

You→ the “Verifier” The company X→ the “Prover”

One type of protocols model→ IOP model: Interactive Oracle Proof [BCS16]:

• allows V and P interactions: they can send each other messages during several
rounds.

• allows V to have oracle access to P’s messages.
• V can use randomness to make queries to P’s oracles.

The oracle notion is theoretical, but can be implemented with Merkle trees.
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Some precisions

What do we need to be careful about:

• Completeness.
• Linear Prover time.
• Sublinear Verifier time.
• Soundness.

• Linear Proof length, or less.
proof length = total length of prover’s
oracles.

• Sublinear Query complexity.
query complexity = elements read by
the Verifier.
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Arithmetic circuits and R1CS



Arithmetic circuit

What’s an arithmetic circuit C?

1 x1 x2

+

×

+

v

u2

u1

Represents the computation

v = (1+ x1)× x2 + x1.

Claim: C(1, x1, x2) = v.

x1 and x2 are the inputs of the circuit, v is the output. Every variable belongs to F.

“Length of the computation” = |(1, x1, x2,u1,u2, v)|.
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Arithmetic circuits and R1CS

We can build a Rank 1 Constraint Satisfiability (A,B, C, x, v) from it.

1 x1 x2

+

×

+

v

u2

u1
⇒

Az⊙ Bz = Cz with
zT = (1, x1, x2,u1,u2, v)

A =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

 ,B =

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


C =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


where “⊙ ” is a coefficient-wise product.

Claim that C(1, x1, x2) = v⇔ ∃(u1,u2, v)/Az⊙ Bz = Cz.
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Arithmetic circuits and R1CS

We can build a Rank 1 Constraint Satisfiability (A,B, C, x, v) from it.

Why does it work?
Line 1 of A, B, C:
• (Az)1 = 1+ x1
• (Bz)1 = 1
• (Cz)1 = u1 = 1× (1+ x1)

Az⊙ Bz = Cz with
zT = (1, x1, x2,u1,u2, v)

A =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

 ,B =

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


C =

0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0


where “⊙ ” is a coefficient-wise product.

From now on the goal of P is to prove to V that it exists u1,u2, v such that
Az⊙ Bz = Cz.

Still a bit vague, let’s make it more precise.
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R1CS

P knows z = (1, x1, . . . , xn,u1, . . . ,un′ , v) = (1||x||u||v), with u = (u1, . . . ,un′) supposed to be
the outputs of the gates of the circuit.

V knows (1||x) and v.

A R1CS instance is specified by n×m matrices A,B, C over F and by a vector x and an
element v over F.

It is satisfied by a vector u if and only if Az⊙ Bz = Cz, z := (1||x||u||v).

→ the whole instance = (F,n,m,A,B, C, x, v).

R1CS [BCRSVW18]

The relation RR1CS is the set of tuples ((F,n,m,A,B, C, x, v),u) such that u satisfies

(F,n,m,A,B, C, x, v).
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The Univariate Sumcheck

The “Aurora” [BCRSVW18] article proposes a protocol for R1CS relations

• Define zA = Az, zB = Bz, zC = Cz.
• Separately check that Az = zA, Bz = zB, Cz = zC → lincheck.
• Then check that zA ⊙ zB = zC → rowcheck.

A core non-trivial ingredient is to be able to check the statement∑
a∈H

f̂(a) = µ,

given H ⊂ F with |H| = number of variables, f̂(X) ∈ F[X], µ ∈ F.

The univariate sumcheck is a protocol that allows to do so.
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The Univariate Sumcheck

We need, on input H ⊂ F, f̂(X) ∈ F[X], µ ∈ F, to be able to check that∑
a∈H

f̂(a) = µ

The univariate sumcheck is a protocol that allows to do so.

Why not simply computing the sum?

• O(|H|) evaluations of f̂(X) for the Verifier.
• An evaluation of f̂(X) costs O(deg f̂(X)) operations.

→ way too long!
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Reed-Solomon codes



Preliminary notions - Reed-Solomon codes

Given L ⊂ F, 0 < d ⩽ |L|, we denote by RS[L,d] the evaluations over L of all polyno-
mials of F[X] of degree < d.

Reed-Solomon codes

Encoding of a vector t into a codeword

Define H = {h1, . . . ,hd}, L = {ℓ1, . . . , ℓn} ⊂ F such that |H| ⩽ |L|, and t ∈ F|H|:

1. The “low degree extension” f̂t(X) of t is defined as the only polynomial of
degree< |H| such that

∀i ∈ {1, . . . ,d}, f̂t(hi) = ti.

2. ft := f̂t|L := (ft(ℓ1), . . . , ft(ℓn)) is the codeword that encodes t.
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The FRI

What are we going to do with RS codewords?

1. Compute f̂t(X) from H and t.
2. “Check, given a vector ft, that ft belongs to RS[L,d].”

→ Low degree test FRI [BBHR17]: Fast Reed-Solomon Interactive oracle proof of
proximity.

FRI = IOPP, Interactive Oracle Proof of Proximity

• Allows interactions, oracle access, randomness . . .
• Locality: logarithmic number of query.
• “Proximity”→ the protocol checks whether a vector ft is in RS[L,d] (so in RS[L,d] with
a certain probability) or far from it.
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The FRI

The FRI, if L is well choosen, has the performance:

• Prover time < 6|L|.
• Verifier time ⩽ 21 log |L|.

• Proof length < |L|/3.
• Query complexity = 2 log |L|.
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The univariate Sumcheck

The relation RSUM is the set of all pairs ((F, L,H,d, µ), ft) where

• L,H ⊂ F

• 0 < d < |L|
• µ ∈ F

• ft ∈ RS[L,d]
•
∑

a∈H f̂t(a) = µ.

Sumcheck Relation

We can make an IOP protocol for the Sumcheck relation.

15



The univariate Sumcheck

The relation RSUM is the set of all pairs ((F, L,H,d, µ), ft) where

• L,H ⊂ F

• 0 < d < |L|
• µ ∈ F

• ft ∈ RS[L,d]
•
∑

a∈H f̂t(a) = µ.

Sumcheck Relation

We can make an IOP protocol for the Sumcheck relation.

15



The univariate Sumcheck

If H is an additive subgroup of F, given a polynomial ĝ(X) such that deg ĝ(X) ⩽ |H| − 1
and the coefficient of X|H|−1 in ĝ(X) is α, we have∑

a∈H
ĝ(a) = α

∑
a∈H

a|H|−1.

A useful result
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The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].
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5. V and P computes ζ =
∑

a∈H a|H|−1.
6. V and P run a FRI protocol with P to check that
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The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Performance

• Prover time:
• one IFFT to get f̂(X) from f.
• one “divide-and-conquer” algorithms
to get ZH(X): O(log |H|).

• one polynomial divisions to compute ĝ,
ĥ: O(M(d)) (d = deg f̂(X)).

• two FFT to evaluate ĥ(X), ĝ(X) over L.
• two FRI: < 6|L|.

so Prover time in
O(M(d)) + 3FFT(F, L) + 12|L|.

• Verifier time: O(log2 |H|) (computing ζ)
+42 log |L|) (FRI).

• Query complexity: 4 log |L| related to the
low degree test.

• Proof length: 2|L|/3.
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Our goal

Sarah, Jade and Daniel made an efficient multivariate FRI recently, for tensor product of
Reed-Solomon codes RS[L1,d1]⊗ . . .⊗ RS[Ln,dn].

Given L1, . . . , Ln ⊂ F, 0 < d1, . . . ,dn < |L1|,d otsc, |Ln|, we denote by RS[L1,d1] ⊗ . . . ⊗
RS[Ln,dn] the evaluations over L1×. . .×Ln of all polynomials f̂(X1, . . . , Xn) of F[X1, . . . , Xn]
such that ∀i ∈ {1, . . . ,n}, degXi f̂(X1, . . . , Xn) < di.

Tensor product of RS codes

→ Let’s use it to build a multivariate Sumcheck.

19



Our goal

Sarah, Jade and Daniel made an efficient multivariate FRI recently, for tensor product of
Reed-Solomon codes RS[L1,d1]⊗ . . .⊗ RS[Ln,dn].

Given L1, . . . , Ln ⊂ F, 0 < d1, . . . ,dn < |L1|,d otsc, |Ln|, we denote by RS[L1,d1] ⊗ . . . ⊗
RS[Ln,dn] the evaluations over L1×. . .×Ln of all polynomials f̂(X1, . . . , Xn) of F[X1, . . . , Xn]
such that ∀i ∈ {1, . . . ,n}, degXi f̂(X1, . . . , Xn) < di.

Tensor product of RS codes

→ Let’s use it to build a multivariate Sumcheck.

19



Our goal

→ Let’s use it to build a multivariate Sumcheck.

. . . Actually, this already exists.

The first multivariate sumcheck is from Carsten Lund et al [LFKN90] and was related to
the SAT and UNSAT problems.

In fact, it has many applications.
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Multivariate Sumcheck

IP protocol: Interactive protocol, with V reading all the messages it receives.

Inputs: P knows p̂(X1, . . . , Xn), V has oracle access to p̂(X1, . . . , Xn) and its degree.

Claim:
∑

a1,...,an∈H p̂(a1, . . . , an) = α.

Protocol

Prover Verifier
p̂1(X) :=

∑
a2,...,an∈H p̂(X,a2, . . . , an)

p̂1(X)→
∑

a1∈H p̂1(a1)
?
= α

w1← w1
$← F

p̂2(X) :=
∑

a3,...,an∈H p̂(w1, X,a3, . . . , an)
p̂2(X)→

∑
a2∈H p̂2(a2)

?
= p̂1(w1)

...
...

...
p̂n(X) := p̂(w1, . . . ,wn−1, X)

p̂n(X)→
∑

an∈H p̂n(an)
?
= p̂n−1(wn−1)

wn
$← F

p̂(w1,w2, . . . ,wn)
?
= p̂n(wn)
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Multivariate Sumcheck

IP protocol: Interactive protocol, with V reading all the messages it receives.

Inputs: P knows p̂(X1, . . . , Xn), V has oracle access to p̂(X1, . . . , Xn) and its degree.

Claim:
∑

a1,...,an∈H p̂(a1, . . . , an) = α.

Protocol

Prover Verifier
p̂1(X) :=

∑
a2,...,an∈H p̂(X,a2, . . . , an)

p̂1(X)→
∑

a1∈H p̂1(a1)
?
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w1← w1
$← F
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Multivariate Sumcheck

Performance

• Prover time: |H|n.
• Verifier time: n|H| degind p̂(X1, . . . , Xn).
• Communication cost: n degind p̂(X1, . . . , Xn).
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Multivariate Sumcheck - an improvement

Original Multivariate Sumcheck← [LFKN90].

Ben-Sasson et al [BCGRS17] proposed an alternative algorithm, using a univariate
sumcheck, Reed-Solomon codes, and a big abstract theorem [MIE09], to have better
computing time.

[BCGRS17]
• Prover times: npoly(log |F|) + nO(|L|2 +
|H| log(|L|2 + |H|)) + n|L|n.

• Verifier times:
n× poly(log |F|+ log(|L|2 + |H|)) + O(n).

• Proof length: O(n(|L|2 + |H|) log(|L|2 + |H|)).
• Query complexity: O(n).

[LFKN90]]
• Prover time: |H|n.
• Verifier time:
n|H| degind p̂(X1, . . . , Xn).

• Communication cost:
n degind p̂(X1, . . . , Xn).

Much better!
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Can we do better ?
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My multivariate Sumcheck

Let’s focus on the bivariate case:

If H is an additive subgroup of F, given a polynomial f̂(X, Y) such that degX,Y f̂ ⩽ |H| − 1
and α is the coefficient of X|H|−1Y|H|−1 in f̂, we have∑

a1,a2∈H
f̂(a1,a2) = α

∑
a1,a2∈H

a|H|−11 a|H|−12 .

Another useful result

Inputs: P knows f = f̂|L×L, V has oracle access to f = f̂|L×L. Claim:
∑

a1,a2∈H f̂(a1,a2) = µ.
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My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).

2. P and V compute ZH(X) =
∏

a∈H(X− a).
3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).
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p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
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5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.

6. V computes ζ =
(∑

a∈H a|H|−1
)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
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Our multivariate Sumcheck

Performance

• Prover time:
• one 2DIFFT to get f̂(X, Y).
• one “divide-and-conquer” algorithms to getZH(X) and ZH(Y) → O(log |H|)
• four polynomial divisions to compute ĝ2(X, Y), β, q̂1(X, Y), q̂2(X, Y) → O(M(d)× d).
• three 2DFFT to evaluate those polynomials over L2.
• four 2DFRI: O(|L|2).

so Prover time in O(log |H|+M(d)d) + 4FFT(F, L2) + O(|L|2).
• Verifier time: O(log2 |H|) + O(log |H|), related to the 2DFRI.
• Query complexity: O(4 log |H|), related to the 2DFRI.
• Proof length: O(|L|2).
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Our multivariate Sumcheck

Performance

• Prover time: O(log |H|+M(d)d) + 4FFT(F, L2) + O(|L|2).
• Verifier time: O(log2 |H|) + O(log |H|), related to the 2DFRI.
• Query complexity: O(4 log |H|), related to the 2DFRI.
• Proof length: O(|L|2).

If we have n variables

• Prover time: O(n)FFT(F, Ln) + O(log |H|) + O(nM(d)dn−1) + O(|L|n).
• Verifier time: O(n log2 |H|) + O(n log |H|).
• Query complexity: O(n log |H|).
• Proof length: O(n|L|n).
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Comparison

Sumcheck from [BCGRS17] Our multivariate Sumcheck
Prover time |L|n + npoly(log |F|) + nÕ(|L|2 +

|H|) + n|L|n
O(n)FFT(F, Ln) + O(log |H|) +

O(nM(d)dn−1) + O(|L|n)
Verifier time poly(n + |L|) + npoly(log |F| +

log(|L|2 + |H|)) + O(n)
O(n log2 |H|) + O(n log |H|)

Proof length O(|L|n log(q) + nÕ(|L|2 + |H|)) O(n|L|n)
Query complexity O(n) O(n log |H|)
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Conclusion

The univariate Sumcheck is well known and used, and it’s efficiency is mostly due to the
FRI protocol.

Since Sarah, Jade and Daniel made a multivariate version of the FRI, we made a
multivariate version of the sumcheck that uses the FRI.

• it should have better performance in practice. Sumcheck from [3] Our multivariate
Sumcheck

• it could be used within specific arithmetization with multivariate polynomials.

Thank you for listening!
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