
Some important tools for verifiable computation: the
Sumcheck protocols
Clémence Chevignard

Overview

1. What is a verifiable computation?

2. Arithmetic circuits and R1CS

3. Reed-Solomon codes

4. The univariate Sumcheck

5. The multivariate Sumchecks

6. Conclusion

1

What is a verifiable computation?

What is a verifiable computation?

You A company X

programm + input−→

Small computing capability. Big computing capability.

Within 30s you get a result.

How to be sure that X’s answer is correct?

2

What is a verifiable computation?

You A company X

programm + input−→

Small computing capability. Big computing capability.

Within 30s you get a result.

How to be sure that X’s answer is correct?

2

What is a verifiable computation?

You A company X

programm + input−→

Small computing capability. Big computing capability.

Within 30s you get a result.

How to be sure that X’s answer is correct?

2

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how?

→ a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.

3

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how? → a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.

3

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how? → a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.

3

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how? → a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.

• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.

3

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how? → a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.

• You must be able to check the proof faster than doing the computation.

3

What is a verifiable computation?

• Solution 1: You do the computation by yourself to check→ not efficient.
• Solution 2: You ask the company X for a proof→ ok, but how? → a protocol!

Goals of a verifiable computation protocol:

• allowing the company X to give a proof that the result is correct.
• . . . without spending more time to craft the proof than to do the computation.
• You must be able to check the proof faster than doing the computation.

3

Terminology

You→ the “Verifier” The company X→ the “Prover”

One type of protocols model→ IOP model: Interactive Oracle Proof [BCS16]:

• allows V and P interactions: they can send each other messages during several
rounds.

• allows V to have oracle access to P’s messages.
• V can use randomness to make queries to P’s oracles.

The oracle notion is theoretical, but can be implemented with Merkle trees.

4

Terminology

You→ the “Verifier” The company X→ the “Prover”

One type of protocols model→ IOP model: Interactive Oracle Proof [BCS16]:

• allows V and P interactions: they can send each other messages during several
rounds.

• allows V to have oracle access to P’s messages.
• V can use randomness to make queries to P’s oracles.

The oracle notion is theoretical, but can be implemented with Merkle trees.

4

Terminology

You→ the “Verifier” The company X→ the “Prover”

One type of protocols model→ IOP model: Interactive Oracle Proof [BCS16]:

• allows V and P interactions: they can send each other messages during several
rounds.

• allows V to have oracle access to P’s messages.
• V can use randomness to make queries to P’s oracles.

The oracle notion is theoretical, but can be implemented with Merkle trees.

4

Some precisions

What do we need to be careful about:

• Completeness.
• Linear Prover time.
• Sublinear Verifier time.
• Soundness.

• Linear Proof length, or less.
proof length = total length of prover’s
oracles.

• Sublinear Query complexity.
query complexity = elements read by
the Verifier.

5

Arithmetic circuits and R1CS

Arithmetic circuit

What’s an arithmetic circuit C?

1 x1 x2

+

×

+

v

u2

u1

Represents the computation

v = (1+ x1)× x2 + x1.

Claim: C(1, x1, x2) = v.

x1 and x2 are the inputs of the circuit, v is the output. Every variable belongs to F.

“Length of the computation” = |(1, x1, x2,u1,u2, v)|.

6

Arithmetic circuits and R1CS

We can build a Rank 1 Constraint Satisfiability (A,B, C, x, v) from it.

1 x1 x2

+

×

+

v

u2

u1
⇒

Az⊙ Bz = Cz with
zT = (1, x1, x2,u1,u2, v)

A =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

 ,B =

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


C =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


where “⊙ ” is a coefficient-wise product.

Claim that C(1, x1, x2) = v⇔ ∃(u1,u2, v)/Az⊙ Bz = Cz.

7

Arithmetic circuits and R1CS

We can build a Rank 1 Constraint Satisfiability (A,B, C, x, v) from it.

Why does it work?
Line 1 of A, B, C:
• (Az)1 = 1+ x1
• (Bz)1 = 1
• (Cz)1 = u1 = 1× (1+ x1)

Az⊙ Bz = Cz with
zT = (1, x1, x2,u1,u2, v)

A =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

 ,B =

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


C =

0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0


where “⊙ ” is a coefficient-wise product.

From now on the goal of P is to prove to V that it exists u1,u2, v such that
Az⊙ Bz = Cz.

Still a bit vague, let’s make it more precise.

8

Arithmetic circuits and R1CS

We can build a Rank 1 Constraint Satisfiability (A,B, C, x, v) from it.

Why does it work?
Line 1 of A, B, C:
• (Az)1 = 1+ x1
• (Bz)1 = 1
• (Cz)1 = u1 = 1× (1+ x1)

Az⊙ Bz = Cz with
zT = (1, x1, x2,u1,u2, v)

A =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

 ,B =

1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0


C =

0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0


where “⊙ ” is a coefficient-wise product.

From now on the goal of P is to prove to V that it exists u1,u2, v such that
Az⊙ Bz = Cz.
Still a bit vague, let’s make it more precise.

8

R1CS

P knows z = (1, x1, . . . , xn,u1, . . . ,un′ , v) = (1||x||u||v), with u = (u1, . . . ,un′) supposed to be
the outputs of the gates of the circuit.

V knows (1||x) and v.

A R1CS instance is specified by n×m matrices A,B, C over F and by a vector x and an
element v over F.

It is satisfied by a vector u if and only if Az⊙ Bz = Cz, z := (1||x||u||v).

→ the whole instance = (F,n,m,A,B, C, x, v).

R1CS [BCRSVW18]

The relation RR1CS is the set of tuples ((F,n,m,A,B, C, x, v),u) such that u satisfies

(F,n,m,A,B, C, x, v).

9

R1CS

P knows z = (1, x1, . . . , xn,u1, . . . ,un′ , v) = (1||x||u||v), with u = (u1, . . . ,un′) supposed to be
the outputs of the gates of the circuit.

V knows (1||x) and v.

A R1CS instance is specified by n×m matrices A,B, C over F and by a vector x and an
element v over F.

It is satisfied by a vector u if and only if Az⊙ Bz = Cz, z := (1||x||u||v).

→ the whole instance = (F,n,m,A,B, C, x, v).

R1CS [BCRSVW18]

The relation RR1CS is the set of tuples ((F,n,m,A,B, C, x, v),u) such that u satisfies

(F,n,m,A,B, C, x, v).

9

The Univariate Sumcheck

The “Aurora” [BCRSVW18] article proposes a protocol for R1CS relations

• Define zA = Az, zB = Bz, zC = Cz.
• Separately check that Az = zA, Bz = zB, Cz = zC → lincheck.
• Then check that zA ⊙ zB = zC → rowcheck.

A core non-trivial ingredient is to be able to check the statement∑
a∈H

f̂(a) = µ,

given H ⊂ F with |H| = number of variables, f̂(X) ∈ F[X], µ ∈ F.

The univariate sumcheck is a protocol that allows to do so.

10

The Univariate Sumcheck

We need, on input H ⊂ F, f̂(X) ∈ F[X], µ ∈ F, to be able to check that∑
a∈H

f̂(a) = µ

The univariate sumcheck is a protocol that allows to do so.

Why not simply computing the sum?

• O(|H|) evaluations of f̂(X) for the Verifier.
• An evaluation of f̂(X) costs O(deg f̂(X)) operations.

→ way too long!

11

Reed-Solomon codes

Preliminary notions - Reed-Solomon codes

Given L ⊂ F, 0 < d ⩽ |L|, we denote by RS[L,d] the evaluations over L of all polyno-
mials of F[X] of degree < d.

Reed-Solomon codes

Encoding of a vector t into a codeword

Define H = {h1, . . . ,hd}, L = {ℓ1, . . . , ℓn} ⊂ F such that |H| ⩽ |L|, and t ∈ F|H|:

1. The “low degree extension” f̂t(X) of t is defined as the only polynomial of
degree< |H| such that

∀i ∈ {1, . . . ,d}, f̂t(hi) = ti.

2. ft := f̂t|L := (ft(ℓ1), . . . , ft(ℓn)) is the codeword that encodes t.

12

Preliminary notions - Reed-Solomon codes

Given L ⊂ F, 0 < d ⩽ |L|, we denote by RS[L,d] the evaluations over L of all polyno-
mials of F[X] of degree < d.

Reed-Solomon codes

Encoding of a vector t into a codeword

Define H = {h1, . . . ,hd}, L = {ℓ1, . . . , ℓn} ⊂ F such that |H| ⩽ |L|, and t ∈ F|H|:

1. The “low degree extension” f̂t(X) of t is defined as the only polynomial of
degree< |H| such that

∀i ∈ {1, . . . ,d}, f̂t(hi) = ti.

2. ft := f̂t|L := (ft(ℓ1), . . . , ft(ℓn)) is the codeword that encodes t.

12

The FRI

What are we going to do with RS codewords?

1. Compute f̂t(X) from H and t.
2. “Check, given a vector ft, that ft belongs to RS[L,d].”

→ Low degree test FRI [BBHR17]: Fast Reed-Solomon Interactive oracle proof of
proximity.

FRI = IOPP, Interactive Oracle Proof of Proximity

• Allows interactions, oracle access, randomness . . .
• Locality: logarithmic number of query.
• “Proximity”→ the protocol checks whether a vector ft is in RS[L,d] (so in RS[L,d] with
a certain probability) or far from it.

13

The FRI

What are we going to do with RS codewords?

1. Compute f̂t(X) from H and t.
2. “Check, given a vector ft, that ft belongs to RS[L,d].”

→ Low degree test FRI [BBHR17]: Fast Reed-Solomon Interactive oracle proof of
proximity.

FRI = IOPP, Interactive Oracle Proof of Proximity

• Allows interactions, oracle access, randomness . . .
• Locality: logarithmic number of query.
• “Proximity”→ the protocol checks whether a vector ft is in RS[L,d] (so in RS[L,d] with
a certain probability) or far from it.

13

The FRI

The FRI, if L is well choosen, has the performance:

• Prover time < 6|L|.
• Verifier time ⩽ 21 log |L|.

• Proof length < |L|/3.
• Query complexity = 2 log |L|.

14

The univariate Sumcheck

The univariate Sumcheck

The relation RSUM is the set of all pairs ((F, L,H,d, µ), ft) where

• L,H ⊂ F

• 0 < d < |L|
• µ ∈ F

• ft ∈ RS[L,d]
•
∑

a∈H f̂t(a) = µ.

Sumcheck Relation

We can make an IOP protocol for the Sumcheck relation.

15

The univariate Sumcheck

The relation RSUM is the set of all pairs ((F, L,H,d, µ), ft) where

• L,H ⊂ F

• 0 < d < |L|
• µ ∈ F

• ft ∈ RS[L,d]
•
∑

a∈H f̂t(a) = µ.

Sumcheck Relation

We can make an IOP protocol for the Sumcheck relation.

15

The univariate Sumcheck

If H is an additive subgroup of F, given a polynomial ĝ(X) such that deg ĝ(X) ⩽ |H| − 1
and the coefficient of X|H|−1 in ĝ(X) is α, we have∑

a∈H
ĝ(a) = α

∑
a∈H

a|H|−1.

A useful result

16

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).

2. P and V compute ZH(X) =
∏

a∈H(X− a).
3. P computes ĝ(X) and f̂(X) such that

f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.
4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.

5. V and P computes ζ =
∑

a∈H a|H|−1.
6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].

17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Claim:
∑

a∈H f̂(a) = µ

Protocol

1. P computes f̂(X).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ(X) and f̂(X) such that
f̂(X) = ĝ(X) + ZH(X)ĥ(X), deg ĝ(X) < |H|.

4. P gives oracle access to V to h = ĥ|L.
5. V and P computes ζ =

∑
a∈H a|H|−1.

6. V and P run a FRI protocol with P to check that

p := (ζ f̂(X)− ζZH(X)ĥ(X)− µX|H|−1)|L ∈ RS[L, |H| − 1],

7. and another to check that

h ∈ RS[L, deg f̂(X)− |H|+ 1].
17

The univariate Sumcheck

Setup/Inputs of the sumcheck: P knows f, V has oracle access to f.

Performance

• Prover time:
• one IFFT to get f̂(X) from f.
• one “divide-and-conquer” algorithms
to get ZH(X): O(log |H|).

• one polynomial divisions to compute ĝ,
ĥ: O(M(d)) (d = deg f̂(X)).

• two FFT to evaluate ĥ(X), ĝ(X) over L.
• two FRI: < 6|L|.

so Prover time in
O(M(d)) + 3FFT(F, L) + 12|L|.

• Verifier time: O(log2 |H|) (computing ζ)
+42 log |L|) (FRI).

• Query complexity: 4 log |L| related to the
low degree test.

• Proof length: 2|L|/3.

18

Our goal

Sarah, Jade and Daniel made an efficient multivariate FRI recently, for tensor product of
Reed-Solomon codes RS[L1,d1]⊗ . . .⊗ RS[Ln,dn].

Given L1, . . . , Ln ⊂ F, 0 < d1, . . . ,dn < |L1|,d otsc, |Ln|, we denote by RS[L1,d1] ⊗ . . . ⊗
RS[Ln,dn] the evaluations over L1×. . .×Ln of all polynomials f̂(X1, . . . , Xn) of F[X1, . . . , Xn]
such that ∀i ∈ {1, . . . ,n}, degXi f̂(X1, . . . , Xn) < di.

Tensor product of RS codes

→ Let’s use it to build a multivariate Sumcheck.

19

Our goal

Sarah, Jade and Daniel made an efficient multivariate FRI recently, for tensor product of
Reed-Solomon codes RS[L1,d1]⊗ . . .⊗ RS[Ln,dn].

Given L1, . . . , Ln ⊂ F, 0 < d1, . . . ,dn < |L1|,d otsc, |Ln|, we denote by RS[L1,d1] ⊗ . . . ⊗
RS[Ln,dn] the evaluations over L1×. . .×Ln of all polynomials f̂(X1, . . . , Xn) of F[X1, . . . , Xn]
such that ∀i ∈ {1, . . . ,n}, degXi f̂(X1, . . . , Xn) < di.

Tensor product of RS codes

→ Let’s use it to build a multivariate Sumcheck.

19

Our goal

→ Let’s use it to build a multivariate Sumcheck.

. . . Actually, this already exists.

The first multivariate sumcheck is from Carsten Lund et al [LFKN90] and was related to
the SAT and UNSAT problems.

In fact, it has many applications.

20

Our goal

→ Let’s use it to build a multivariate Sumcheck.

. . . Actually, this already exists.

The first multivariate sumcheck is from Carsten Lund et al [LFKN90] and was related to
the SAT and UNSAT problems.

In fact, it has many applications.

20

Multivariate Sumcheck

IP protocol: Interactive protocol, with V reading all the messages it receives.

Inputs: P knows p̂(X1, . . . , Xn), V has oracle access to p̂(X1, . . . , Xn) and its degree.

Claim:
∑

a1,...,an∈H p̂(a1, . . . , an) = α.

Protocol

Prover Verifier
p̂1(X) :=

∑
a2,...,an∈H p̂(X,a2, . . . , an)

p̂1(X)→
∑

a1∈H p̂1(a1)
?
= α

w1← w1
$← F

p̂2(X) :=
∑

a3,...,an∈H p̂(w1, X,a3, . . . , an)
p̂2(X)→

∑
a2∈H p̂2(a2)

?
= p̂1(w1)

...
...

...
p̂n(X) := p̂(w1, . . . ,wn−1, X)

p̂n(X)→
∑

an∈H p̂n(an)
?
= p̂n−1(wn−1)

wn
$← F

p̂(w1,w2, . . . ,wn)
?
= p̂n(wn)

21

Multivariate Sumcheck

IP protocol: Interactive protocol, with V reading all the messages it receives.

Inputs: P knows p̂(X1, . . . , Xn), V has oracle access to p̂(X1, . . . , Xn) and its degree.

Claim:
∑

a1,...,an∈H p̂(a1, . . . , an) = α.

Protocol

Prover Verifier
p̂1(X) :=

∑
a2,...,an∈H p̂(X,a2, . . . , an)

p̂1(X)→
∑

a1∈H p̂1(a1)
?
= α

w1← w1
$← F

p̂2(X) :=
∑

a3,...,an∈H p̂(w1, X,a3, . . . , an)
p̂2(X)→

∑
a2∈H p̂2(a2)

?
= p̂1(w1)

...
...

...
p̂n(X) := p̂(w1, . . . ,wn−1, X)

p̂n(X)→
∑

an∈H p̂n(an)
?
= p̂n−1(wn−1)

wn
$← F

p̂(w1,w2, . . . ,wn)
?
= p̂n(wn)

21

Multivariate Sumcheck

Performance

• Prover time: |H|n.
• Verifier time: n|H| degind p̂(X1, . . . , Xn).
• Communication cost: n degind p̂(X1, . . . , Xn).

22

Multivariate Sumcheck - an improvement

Original Multivariate Sumcheck← [LFKN90].

Ben-Sasson et al [BCGRS17] proposed an alternative algorithm, using a univariate
sumcheck, Reed-Solomon codes, and a big abstract theorem [MIE09], to have better
computing time.

[BCGRS17]
• Prover times: npoly(log |F|) + nO(|L|2 +
|H| log(|L|2 + |H|)) + n|L|n.

• Verifier times:
n× poly(log |F|+ log(|L|2 + |H|)) + O(n).

• Proof length: O(n(|L|2 + |H|) log(|L|2 + |H|)).
• Query complexity: O(n).

[LFKN90]]
• Prover time: |H|n.
• Verifier time:
n|H| degind p̂(X1, . . . , Xn).

• Communication cost:
n degind p̂(X1, . . . , Xn).

Much better!

23

Multivariate Sumcheck - an improvement

Original Multivariate Sumcheck← [LFKN90].

Ben-Sasson et al [BCGRS17] proposed an alternative algorithm, using a univariate
sumcheck, Reed-Solomon codes, and a big abstract theorem [MIE09], to have better
computing time.

[BCGRS17]
• Prover times: npoly(log |F|) + nO(|L|2 +
|H| log(|L|2 + |H|)) + n|L|n.

• Verifier times:
n× poly(log |F|+ log(|L|2 + |H|)) + O(n).

• Proof length: O(n(|L|2 + |H|) log(|L|2 + |H|)).
• Query complexity: O(n).

[LFKN90]]
• Prover time: |H|n.
• Verifier time:
n|H| degind p̂(X1, . . . , Xn).

• Communication cost:
n degind p̂(X1, . . . , Xn).

Much better!

23

Can we do better ?

24

My multivariate Sumcheck

Let’s focus on the bivariate case:

If H is an additive subgroup of F, given a polynomial f̂(X, Y) such that degX,Y f̂ ⩽ |H| − 1
and α is the coefficient of X|H|−1Y|H|−1 in f̂, we have∑

a1,a2∈H
f̂(a1,a2) = α

∑
a1,a2∈H

a|H|−11 a|H|−12 .

Another useful result

Inputs: P knows f = f̂|L×L, V has oracle access to f = f̂|L×L. Claim:
∑

a1,a2∈H f̂(a1,a2) = µ.

25

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).

2. P and V compute ZH(X) =
∏

a∈H(X− a).
3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.

6. V computes ζ =
(∑

a∈H a|H|−1
)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y).

26

My multivariate Sumcheck

Protocol

1. P computes f̂(X, Y).
2. P and V compute ZH(X) =

∏
a∈H(X− a).

3. P computes ĝ, q̂1, q̂2 such that

f̂(X, Y) = ĝ(X, Y) + ZH(X)q̂1(X, Y) + ZH(Y)q̂2(X, Y), degX,Y ĝ < |H|.

4. P computes ĝ1, ĝ2, and β ∈ Fq such that:

ĝ(X, Y) = ĝ1(X, Y) + Y|H|−1ĝ2(X, Y) + βX|H|−1Y|H|−1.

5. P gives oracle access to V to g2 := ĝ2|L×L, q1 := q̂1|L×L and q2 := q̂2|L×L.
6. V computes ζ =

(∑
a∈H a|H|−1

)2 and accepts if and only if
p ∈ RS[L, |H|]⊗ RS[L, |H| − 1]

where
p̂ := ζ (̂f− Y|H|−1ĝ2 − µX|H|−1Y|H|−1 − ZH(X)q̂1 − ZH(Y)q̂2).

7. V and P also runs low-degree tests to check the degrees of ĝ2(X, Y), q̂1(X, Y) and
q̂2(X, Y). 26

Our multivariate Sumcheck

Performance

• Prover time:
• one 2DIFFT to get f̂(X, Y).
• one “divide-and-conquer” algorithms to getZH(X) and ZH(Y) → O(log |H|)
• four polynomial divisions to compute ĝ2(X, Y), β, q̂1(X, Y), q̂2(X, Y) → O(M(d)× d).
• three 2DFFT to evaluate those polynomials over L2.
• four 2DFRI: O(|L|2).

so Prover time in O(log |H|+M(d)d) + 4FFT(F, L2) + O(|L|2).
• Verifier time: O(log2 |H|) + O(log |H|), related to the 2DFRI.
• Query complexity: O(4 log |H|), related to the 2DFRI.
• Proof length: O(|L|2).

27

Our multivariate Sumcheck

Performance

• Prover time: O(log |H|+M(d)d) + 4FFT(F, L2) + O(|L|2).
• Verifier time: O(log2 |H|) + O(log |H|), related to the 2DFRI.
• Query complexity: O(4 log |H|), related to the 2DFRI.
• Proof length: O(|L|2).

If we have n variables

• Prover time: O(n)FFT(F, Ln) + O(log |H|) + O(nM(d)dn−1) + O(|L|n).
• Verifier time: O(n log2 |H|) + O(n log |H|).
• Query complexity: O(n log |H|).
• Proof length: O(n|L|n).

28

Comparison

Sumcheck from [BCGRS17] Our multivariate Sumcheck
Prover time |L|n + npoly(log |F|) + nÕ(|L|2 +

|H|) + n|L|n
O(n)FFT(F, Ln) + O(log |H|) +

O(nM(d)dn−1) + O(|L|n)
Verifier time poly(n + |L|) + npoly(log |F| +

log(|L|2 + |H|)) + O(n)
O(n log2 |H|) + O(n log |H|)

Proof length O(|L|n log(q) + nÕ(|L|2 + |H|)) O(n|L|n)
Query complexity O(n) O(n log |H|)

29

Conclusion

The univariate Sumcheck is well known and used, and it’s efficiency is mostly due to the
FRI protocol.

Since Sarah, Jade and Daniel made a multivariate version of the FRI, we made a
multivariate version of the sumcheck that uses the FRI.

• it should have better performance in practice. Sumcheck from [3] Our multivariate
Sumcheck

• it could be used within specific arithmetization with multivariate polynomials.

Thank you for listening!

30

Conclusion

The univariate Sumcheck is well known and used, and it’s efficiency is mostly due to the
FRI protocol.

Since Sarah, Jade and Daniel made a multivariate version of the FRI, we made a
multivariate version of the sumcheck that uses the FRI.

• it should have better performance in practice. Sumcheck from [3] Our multivariate
Sumcheck

• it could be used within specific arithmetization with multivariate polynomials.

Thank you for listening!

30

Bibliographie i

[1] E. Ben-Sasson et al. “Fast Reed-Solomon Interactive Oracle Proofs of Proximity”. In:
Electron. Colloquium Comput. Complex. 2017.

[2] Eli Ben-Sasson et al. Aurora: Transparent Succinct Arguments for R1CS. Cryptology
ePrint Archive, Report 2018/828. https://eprint.iacr.org/2018/828. 2018.

[3] Eli Ben-Sasson et al. Interactive Oracle Proofs with Constant Rate and Query
Complexity. Cryptology ePrint Archive, Report 2016/324.
https://ia.cr/2016/324. 2016.

[4] Carsten Lund et al. “Algebraic Methods for Interactive Proof Systems”. In: vol. 39(4).
Nov. 1990, 2–10 vol.1. ISBN: 0-8186-2082-X. DOI: 10.1109/FSCS.1990.89518.

31

https://eprint.iacr.org/2018/828
https://ia.cr/2016/324
https://doi.org/10.1109/FSCS.1990.89518

	What is a verifiable computation?
	Arithmetic circuits and R1CS
	Reed-Solomon codes
	The univariate Sumcheck
	The multivariate Sumchecks
	Conclusion
	References

