On Codes and Learning With Errors Over Function Fields (Part 2)

Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard

LIX, École Polytechnique \& Inria
GT Grace
March, 22 + April, 192022

Outline

1 Reminders

2 Carlitz module

3 Instantiations \& applications

Code-based encryption schemes

Decoding Problem in cryptography

- McEliece (1978)
- Alekhnovich (2003)

Alekhnovich cryptosystem (2003)

$t \ll n$
$\mathscr{E}=\left\{(\mathscr{C}, \mathbf{s k}) \mid \mathscr{C}\right.$ is a code with sk $\in \mathscr{C}^{\perp}$ of weight $\left.t\right\}$
Encrypt one bit $\beta \in\{0,1\}$.

Alekhnovich cryptosystem (2003)

Encrypt one bit $\beta \in\{0,1\}$.

$$
\operatorname{Enc}(\beta)=\left\{\begin{array}{cc}
\boldsymbol{c}+\boldsymbol{e} & \text { if } \beta=0 \\
\text { random } & \text { if } \beta=1
\end{array}\right.
$$

Decryption

- $\langle\mathbf{s k}, \operatorname{Enc}(0)\rangle=\langle\mathbf{s k}, \boldsymbol{c}+\boldsymbol{e}\rangle=\langle\mathbf{s k}, \boldsymbol{e}\rangle=0$ w.h.p.
- $\langle\mathbf{s k}, \operatorname{Enc}(1)\rangle=\langle\mathbf{s k}$, random $\rangle=0$ with proba $\frac{1}{2}$.

Message Security

Hard to distinguish $\boldsymbol{c}+\boldsymbol{e}$ from random \approx Code-based analogue of DDH.

Decoding Problems

Search/Computational Decoding Problem

Data. Random matrix \mathbf{G} and noisy codeword $\boldsymbol{m} \mathbf{G}+\boldsymbol{e}$ with $|\boldsymbol{e}|=t$.
Goal. Recover \boldsymbol{m}.

Decisional Decoding Problem

Data. $(\boldsymbol{G}, \boldsymbol{b})$ where \boldsymbol{b} is either random, or noisy codeword $\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e}$ with $|\boldsymbol{e}|=t$. Goal. Distinguish between these two cases.

Fisher, Stern (1996)

Decisional Decoding Problem is as hard as Search Decoding Problem.

Efficiency Alekhnovich?

$$
\begin{aligned}
\text { Public-key }= & \text { random } \mathscr{C} \text { represented by } \boldsymbol{G} \in \mathbb{F}_{q}^{k \times n} \\
& \text { Huge public-key: } \Theta\left(n^{2}\right)
\end{aligned}
$$

Reducing the size of the key ?

Quasi-Cyclic codes

Idea: Use codes with many automorphisms, e.g. Quasi-Cyclic.

Codes having a generator (or parity-check) matrix formed by multiple circulant blocks

$$
G=\left(\begin{array}{ccc}
a^{(1)} & \cdots & a^{(r)} \\
\circlearrowright & \cdots & \circlearrowright
\end{array}\right)
$$

\Rightarrow Public key is now only one row.

Polynomial representation

$$
\mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{n}-1\right)
$$

Isomorphism between circulant matrices and polynomial ring.

$$
\begin{gathered}
\left(\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & \ldots & a_{n-1} \\
a_{n-1} & a_{0} & \ldots & \ldots & a_{n-2} \\
\vdots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{n-1} & a_{0}
\end{array}\right) \xrightarrow{\sim} \boldsymbol{a}(X)=\sum_{i=0}^{n-1} a_{i} X^{i} \in \mathcal{R} \\
\boldsymbol{m}\left(\begin{array}{cc}
\boldsymbol{a}^{(1)} & \boldsymbol{a}^{(2)} \\
\circlearrowright & \circlearrowright
\end{array}\right)+\left(\boldsymbol{e}^{(1)} \quad \boldsymbol{e}^{(2)}\right) \xrightarrow{\sim}\left\{\begin{array}{l}
\boldsymbol{m}(x) \boldsymbol{a}^{(1)}(X)+\boldsymbol{e}^{(1)}(X) \in \mathcal{R} \\
\boldsymbol{m}(x) \boldsymbol{a}^{(2)}(X)+\boldsymbol{e}^{(2)}(X) \in \mathcal{R}
\end{array}\right.
\end{gathered}
$$

Structured versions of Decoding Problems

\mathcal{R} Ring, e.g. $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$

Search version

Data. Samples $\left(\boldsymbol{a}^{(\mathrm{i})}, \mathbf{b}^{(\mathrm{i})}=\boldsymbol{m} \boldsymbol{a}^{(\mathrm{i})}+\boldsymbol{e}^{(\mathrm{i})}\right)$ with same $\boldsymbol{m} \stackrel{\$}{\leftarrow} \mathcal{R}$, where $\boldsymbol{a}^{(\mathrm{i})} \stackrel{\Phi}{\leftarrow} \mathcal{R}$, and $\boldsymbol{e}^{(i)} \leftarrow \mathcal{R}$ such that $\left|\boldsymbol{e}^{(i)}\right|=t$.
Goal. Find $\boldsymbol{m} \in \mathcal{R}$.

Decisional version

Data. Samples $\left(\boldsymbol{a}^{(\mathrm{i})}, \boldsymbol{b}^{(i)}\right)$ where either all $\boldsymbol{b}^{(i)}$ are uniformly random, or are of the form $m a^{(i)}+e^{(i)}$.
Goal. Distinguish between these two cases.

NO known reduction...

Taking height

$$
\underbrace{\mathbb{F}_{q}[X] /\left(X^{n}-1\right)}_{\text {World of Computations }}=\mathbb{F}_{q}[T][X] /\left(T, X^{n}+T-1\right)=\underbrace{\mathcal{O}_{K} / T \mathcal{O}_{K}}_{\text {World of Proofs }}
$$

Idea:

- Get inspired by Euclidean lattices
- Number field - Function field analogy

Number field - Function field analogy

(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_{q}(T)$ share many properties.

\mathbb{Q}	$\mathbb{F}_{q}(T)$
\mathbb{Z}	$\mathbb{F}_{q}[T]$
Prime numbers $q \in \mathbb{Z}$	Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$
$K=\mathbb{Q}[X] /(f(X))$	$K=\mathbb{F}_{q}(T)[X] /(f(T, X))$
\mathcal{O}_{K}	\mathcal{O}_{K}
$=$ Integral closure of \mathbb{Z}	$=$Integral closure of $\mathbb{F}_{q}[T]$ Dedekind domain
Dedekind domain	

Function Field Decoding Problem - FF-DP

- $K=\mathbb{F}_{q}(T)[X] /(f(T, X))$
- \mathcal{O}_{K} ring of integers
- $Q \in \mathbb{F}_{q}[T]$ irreducible.
- ψ some probability distribution
 over $\mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Search FF-DP

Data. Samples $\left(\mathbf{a}^{(\mathbf{i})}, \mathbf{b}^{(\mathrm{i})}=\boldsymbol{m} \mathbf{a}^{(\mathrm{i})}+\mathbf{e}^{(\mathrm{i})}\right)$ with $\mathbf{a}^{(\mathrm{i})} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / Q \mathcal{O}_{K}, \mathbf{e}^{(i)} \leftarrow \psi$.
Goal. Find $\boldsymbol{m} \in \mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Decision FF-DP

Data. Samples $\left(\mathbf{a}^{(\mathrm{i})}, \boldsymbol{b}^{(i)}\right)$ with $\mathbf{a}^{(\mathrm{i})} \stackrel{\Phi}{\leftarrow} \mathcal{O}_{K} / Q \mathcal{O}_{K}$ and $\boldsymbol{b}^{(i)}$ either all random or $m a^{(\mathrm{i})}+\boldsymbol{e}^{(\mathrm{i})}$.
Goal. Distinguish between these two cases.

Main theorem

Let K be a function field with constant field $\mathbb{F}_{q}, Q \in \mathbb{F}_{q}[T]$ irreducible.
Assume that
(1) K is a Galois extension of $\mathbb{F}_{q}(T)$ of not too large degree n.
(2) Ideal $\mathfrak{P} \stackrel{\text { def }}{=} Q \mathcal{O}_{K}$ does not ramify and has not too large inertia f.
(3) For all $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

Main theorem

Let K be a function field with constant field $\mathbb{F}_{q}, Q \in \mathbb{F}_{q}[T]$ irreducible.
Assume that
(1) K is a Galois extension of $\mathbb{F}_{q}(T)$ of not too large degree n.
(2) Ideal $\mathfrak{P} \stackrel{\text { def }}{=} Q \mathcal{O}_{K}$ does not ramify and has not too large inertia f.
(3) For all $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.
$\varepsilon=$ decisional advantage, $t=$ running time of distinguisher.
We can recover the secret in $\mathcal{O}_{K} / \mathfrak{P}$ in time

$$
O\left(\frac{n^{4}}{f^{3}} \times \frac{1}{\varepsilon^{2}} \times q^{f \operatorname{deg}(Q)} \times t\right)
$$

How to instantiate FF-DP ?

What do we need ?

- Galois function field $K / \mathbb{F}_{q}(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Outline

1 Reminders

2 Carlitz module

3 Instantiations \& applications

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.
$\mathbb{Q}\left[\zeta_{n}\right]$ is built by adding the n-th roots of 1 . What about $\mathbb{F}_{q}(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_{q}(T)$ yields extension of constants \Rightarrow We get $\mathbb{F}_{q^{m}}(T)$.

Reduction needs an exhaustive search ...

Cyclotomic function field (Good idea)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z}-module structure by $n \cdot z \stackrel{\text { def }}{=} z^{n}$.
- $\mathbb{U}_{n}=\left\{z \in \overline{\mathbb{Q}} \mid z^{n}=1\right\}=n$-torsion elements.

Idea:

- $\mathbb{Z} \leftrightarrow \mathbb{F}_{q}[T] \Rightarrow$ Consider a new $\mathbb{F}_{q}[T]$-module structure on $\overline{\mathbb{F}_{q}(T)}$.
- Add torsion elements to $\mathbb{F}_{q}(T)$.

Carlitz Polynomials

For $M \in \mathbb{F}_{q}[T]$ define $[M] \in \mathbb{F}_{q}(T)[X]$ by:

- $[1](X)=X$
- $[T](X)=X^{q}+T X$
- \mathbb{F}_{q}-Linearity $+\left[M_{1} M_{2}\right](X)=\left[M_{1}\right]\left(\left[M_{2}\right](X)\right)$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_{q}[T]$.

Examples:

- For $c \in \mathbb{F}_{q},[c](X)=c X$
- $\left[T^{2}\right](X)=\left(X^{q}+T X\right)^{q}+T\left(X^{q}+T X\right)=X^{q^{2}}+\left(T^{q}+T\right) X^{q}+T^{2} X$

Carlitz Module

Fact. $\mathbb{F}_{q}[T]$ acts on $\overline{\mathbb{F}_{q}(T)}$ by $M \cdot z=[M](z)$.
$\overline{\mathbb{F}_{q}(T)}$ endowed with this action is called the $\mathbb{F}_{q^{-}}$- Carlitz module.

- $\Lambda_{M} \stackrel{\text { def }}{=}\left\{z \in \overline{\mathbb{F}_{q}(T)} \mid[M](z)=0\right\} M$-torsion elements $\simeq \mathbb{U}_{n}$.
- $\mathbb{F}_{q}(T)\left[\Lambda_{M}\right]=$ cyclotomic function field.
- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{\times}($Efficiently computable $)$.

Cyclotomic VS Carlitz

$$
\begin{aligned}
& \mathbb{Q} \\
& \mathbb{Z}
\end{aligned}
$$

Prime numbers $q \in \mathbb{Z}$

$$
\begin{gathered}
\mathbb{U}_{n}=\langle\zeta\rangle \simeq \mathbb{Z} /(n) \text { (groups) } \\
d \mid n \Leftrightarrow \mathbb{U}_{d} \subset \mathbb{U}_{n} \text { (subgroups) } \\
a \equiv b \quad \bmod n \Rightarrow \zeta^{a}=\zeta^{b} \\
K=\mathbb{Q}[\zeta] \\
\mathcal{O}_{K}=\mathbb{Z}[\zeta] \\
\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} /(n))^{x}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{F}_{q}(T) \\
& \mathbb{F}_{q}[T]
\end{aligned}
$$

Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$

$$
\begin{gathered}
\Lambda_{M}=\langle\lambda\rangle \simeq \mathbb{F}_{q}[T] /(M) \text { (modules) } \\
D \mid M \Leftrightarrow \Lambda_{D} \subset \Lambda_{M} \text { (submodules) } \\
A \equiv B \quad \bmod M \Rightarrow[A](\lambda)=[B](\lambda) \\
K=\mathbb{F}_{q}(T)[\lambda] \\
\mathcal{O}_{K}=\mathbb{F}_{q}[T][\lambda]
\end{gathered}
$$

$$
\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{\times}
$$

Carlitz

Important example

$$
[T](X)=X^{q}+T X
$$

$$
\begin{aligned}
& \Lambda_{T}=\left\{z \mid z^{q}+T_{z}=0\right\}=\{0\} \cup\left\{z \mid z^{q-1}=-T\right\} ; \\
& K=\mathbb{F}_{q}(T)\left(\Lambda_{T}\right)=\mathbb{F}_{q}(T)[X] /\left(X^{q-1}+T\right) ; \\
& \mathcal{O}_{K}=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T\right) ; \\
& \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\left(\mathbb{F}_{q}[T] / T\right)^{\times}=\mathbb{F}_{q}^{\times} ; \\
& \mathcal{O}_{K} /\left((T+1) \mathcal{O}_{K}\right)=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T, T+1\right)=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) .
\end{aligned}
$$

Outline

$[1$ Reminders

[2 Carlitz module

[3 Instantiations \& applications

Quasi-Cyclic Decoding

- $K=\mathbb{F}_{q}(T)\left[\Lambda_{T}\right]$,

$$
\mathcal{O}_{K} /(T+1) \mathcal{O}_{K}=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) .
$$

- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\mathbb{F}_{q}^{\times}$acts on $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ via $\zeta \cdot P(X)=P(\zeta X) \Rightarrow$ Support is Galois invariant !

Search to decision reduction

Decision $Q C$-decoding in $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ is as hard as Search.

This assumption has also been used for MPC.

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?

$$
\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1} \text { with independent } e_{i} \leftarrow \mathcal{B}_{q}(p) .
$$

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?
$\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1}$ with independent $e_{i} \leftarrow \mathcal{B}_{q}(p)$.

Not Galois invariant ...

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?
$\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1}$ with independent $e_{i} \leftarrow \mathcal{B}_{q}(p)$.

Not Galois invariant ...

Idea: Change the basis

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$) where $\boldsymbol{e}=e_{0} \beta_{0}+\cdots+e_{r-1} \beta_{r-1}$ and $e_{i} \leftarrow \mathcal{B}_{q}(p)$. e.g. Canonical basis $\left(1, X, \ldots, X^{r-1}\right)$.

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$) where $\boldsymbol{e}=e_{0} \beta_{0}+\cdots+e_{r-1} \beta_{r-1}$ and $e_{i} \leftarrow \mathcal{B}_{q}(p)$.
e.g. Canonical basis $\left(1, X, \ldots, X^{r-1}\right)$.

Normal Distribution Ring-LPN

- If $f_{i}(X)$ have the same degree d, then $\mathcal{R} \simeq \mathcal{O}_{K} / T \mathcal{O}_{K}$ where K is some explicit Carlitz extension in which T has inertia d and does not ramify.
- $\mathcal{O}_{K} / T \mathcal{O}_{K}$ admits many \mathbb{F}_{q}-Galois invariant basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Conclusion

	Ring-LWE		FF-DP	
2010:	Cyclotomic number fields Special modulus	Galois function fields Special modulus	\checkmark	
2014:	Any modulus	$?$	x	
2017-2018:	Completely different technique:	Any number field		
	OHCP			

Already useful for special QC codes used in MPC, or for particular Ring-LPN.

Extension to any function field would apply to codes like in BIKE or HQC.

Conclusion and perspectives

Perspectives.

- Extensions to more general function fields
- Develop a "Switching-Modulus" technique

For MPC we would like K such that

- $\mathcal{O}_{K} / T \mathcal{O}_{K} \simeq \mathbb{F}_{2}^{N}$ with $N \simeq 2^{20}$ or 2^{30}
- Efficient representation of sparse elements of \mathcal{O}_{K} or $\mathcal{O}_{K} / T \mathcal{O}_{K}$
- Efficient multiplication.

Thank you for your attention.

