On Codes and Learning With Errors Over Function Fields (Part 2)

Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard

LIX, École Polytechnique & Inria

GT Grace

March, 22 + April, 19 2022

Outline

2 Carlitz module

3 Instantiations & applications

Code-based encryption schemes

Decoding Problem in cryptography

- McEliece (1978)
- Alekhnovich (2003)

Alekhnovich cryptosystem (2003)

 $\begin{array}{l} t \ll n \\ \mathscr{E} = \{(\mathscr{C}, \mathsf{sk}) \mid \ \mathscr{C} \text{ is a code with } \mathsf{sk} \in \mathscr{C}^{\perp} \text{ of weight } t\} \end{array}$

Alekhnovich cryptosystem (2003)

Encrypt one bit $\beta \in \{0, 1\}$.

$$\operatorname{Enc}(\beta) = \begin{cases} \boldsymbol{c} + \boldsymbol{e} & \text{if } \beta = 0\\ \text{random} & \text{if } \beta = 1 \end{cases}$$

Decryption

- $\langle \mathbf{sk}, \operatorname{Enc}(0) \rangle = \langle \mathbf{sk}, \boldsymbol{c} + \boldsymbol{e} \rangle = \langle \mathbf{sk}, \boldsymbol{e} \rangle = 0$ w.h.p.
- $\langle \mathbf{sk}, \operatorname{Enc}(1) \rangle = \langle \mathbf{sk}, \operatorname{random} \rangle = 0$ with proba $\frac{1}{2}$.

Message Security

Hard to **distinguish** c + e from random \approx Code-based analogue of DDH.

Decoding Problems

Search/Computational Decoding Problem

```
Data. Random matrix G and noisy codeword m\mathbf{G} + \mathbf{e} with |\mathbf{e}| = t.
Goal. Recover m.
```

Decisional Decoding Problem

Data. (**G**, **b**) where **b** is either random, or noisy codeword mG + e with |e| = t.

Goal. Distinguish between these two cases.

Fisher, Stern (1996)

Decisional Decoding Problem is as hard as Search Decoding Problem.

Efficiency Alekhnovich ?

Public-key = random $\mathscr C$ represented by $\mathbf G \in \mathbb F_q^{k imes n}$ Huge public-key: $\Theta(n^2)$

Reducing the size of the key ?

Quasi-Cyclic codes

Idea: Use codes with many automorphisms, e.g. Quasi-Cyclic.

Codes having a generator (or parity-check) matrix formed by multiple circulant blocks

$$G = \begin{pmatrix} a^{(1)} & \cdots & a^{(r)} \\ \circlearrowright & \cdots & \circlearrowright \end{pmatrix}$$

 \Rightarrow Public key is now only one row.

Polynomial representation

$$\mathcal{R} = \mathbb{F}_q[X]/(X^n - 1)$$

Isomorphism between circulant matrices and polynomial ring.

$$\begin{pmatrix} a_0 & a_1 & \dots & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix} \xrightarrow{\sim} \mathbf{a}(X) = \sum_{i=0}^{n-1} a_i X^i \in \mathcal{R}$$
$$\mathbf{m}(X) = \mathbf{a}(X) = \sum_{i=0}^{n-1} a_i X^i \in \mathcal{R}$$
$$\mathbf{m}(X) = \mathbf{a}(X) = \mathbf{a}(X)$$

Structured versions of Decoding Problems

 \mathcal{R} Ring, e.g. $\mathbb{F}_q[X]/(X^n-1)$

Search version

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)} = \mathbf{m}\mathbf{a}^{(i)} + \mathbf{e}^{(i)})$ with same $\mathbf{m} \stackrel{\$}{\leftarrow} \mathcal{R}$, where $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{R}$, and $\mathbf{e}^{(i)} \leftarrow \mathcal{R}$ such that $|\mathbf{e}^{(i)}| = t$.

Goal. Find $m \in \mathcal{R}$.

Decisional version

Data. Samples $(a^{(i)}, b^{(i)})$ where either all $b^{(i)}$ are uniformly random, or are of the form $ma^{(i)} + e^{(i)}$.

Goal. Distinguish between these two cases.

NO known reduction...

Taking height

$$\underbrace{\mathbb{F}_{q}[X]/(X^{n}-1)}_{\text{World of Computations}} = \mathbb{F}_{q}[T][X]/(T, X^{n}+T-1) = \underbrace{\mathcal{O}_{K}/T\mathcal{O}_{K}}_{\text{World of Proofs}}$$

Idea:

- Get inspired by Euclidean lattices
- Number field Function field analogy

(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_q(T)$ share many properties.

$$\begin{array}{c|c} \mathbb{Q} & \mathbb{F}_q(T) \\ \mathbb{Z} & \mathbb{F}_q[T] \\ \text{Prime numbers } q \in \mathbb{Z} \\ \mathcal{K} = \mathbb{Q}[X]/(f(X)) & \mathcal{K} = \mathbb{F}_q(T)[X]/(f(T,X)) \\ \end{array} \\ \begin{array}{c} \mathcal{O}_{\mathcal{K}} & \mathcal{O}_{\mathcal{K}} \\ = \text{Integral closure of } \mathbb{Z} \\ \underline{\text{Dedekind domain}} \\ \hline \text{characteristic 0} & \text{characteristic p} \end{array}$$

Function Field Decoding Problem - FF-DP

- $K = \mathbb{F}_q(T)[X]/(f(T,X))$
- *O_K* ring of integers
- $Q \in \mathbb{F}_q[T]$ irreducible.
- ψ some probability distribution over O_K/QO_K.

\mathcal{O}_K _____ K ig| $\mathcal{Q} \in \mathbb{F}_q[T]$ _____ $\mathbb{F}_q(T)$

Search FF-DP

Data. Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)} = \mathbf{m}\mathbf{a}^{(i)} + \mathbf{e}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_K / Q\mathcal{O}_K$, $\mathbf{e}^{(i)} \leftarrow \psi$. **Goal.** Find $\mathbf{m} \in \mathcal{O}_K / Q\mathcal{O}_K$.

Decision FF-DP

- **Data.** Samples $(\mathbf{a}^{(i)}, \mathbf{b}^{(i)})$ with $\mathbf{a}^{(i)} \stackrel{\$}{\leftarrow} \mathcal{O}_{\mathcal{K}}/Q\mathcal{O}_{\mathcal{K}}$ and $\mathbf{b}^{(i)}$ either all random or $m\mathbf{a}^{(i)} + \mathbf{e}^{(i)}$.
- Goal. Distinguish between these two cases.

Main theorem

Let K be a function field with constant field \mathbb{F}_q , $Q \in \mathbb{F}_q[T]$ irreducible.

Assume that

(1) K is a Galois extension of $\mathbb{F}_q(T)$ of not too large degree n.

(2) Ideal $\mathfrak{P} \stackrel{\text{def}}{=} \mathcal{QO}_{\mathcal{K}}$ does not ramify and has not too large inertia f.

(3) For all $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

Main theorem

Let K be a function field with constant field \mathbb{F}_q , $Q \in \mathbb{F}_q[T]$ irreducible.

Assume that

(1) K is a <u>Galois</u> extension of $\mathbb{F}_q(T)$ of not too large degree n.

(2) Ideal $\mathfrak{P} \stackrel{\text{def}}{=} \mathcal{QO}_{\mathcal{K}}$ does not ramify and has not too large inertia f.

(3) For all $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

 $\varepsilon =$ decisional advantage, t = running time of distinguisher.

We can recover the secret in $\mathcal{O}_{\mathcal{K}}/\mathfrak{P}$ in time

$$O\left(\frac{n^4}{f^3} imes \frac{1}{\varepsilon^2} imes q^{f \deg(Q)} imes t\right).$$

How to instantiate FF-DP ?

What do we need ?

- Galois function field $K/\mathbb{F}_q(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Outline

2 Carlitz module

3 Instantiations & applications

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.

 $\mathbb{Q}[\zeta_n]$ is built by adding the *n*-th roots of 1. What about $\mathbb{F}_q(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_q(T)$ yields <u>extension of constants</u> \Rightarrow We get $\mathbb{F}_{q^m}(T)$.

Reduction needs an exhaustive search ...

Cyclotomic function field (Good idea)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z} -module structure by $n \cdot z \stackrel{\text{def}}{=} z^{n}$.
- $\mathbb{U}_n = \{z \in \overline{\mathbb{Q}} \mid z^n = 1\} = n$ -torsion elements.

Idea:

- $\mathbb{Z} \leftrightarrow \mathbb{F}_q[T] \Rightarrow$ Consider a new $\mathbb{F}_q[T]$ -module structure on $\overline{\mathbb{F}_q(T)}$.
- Add torsion elements to $\mathbb{F}_q(T)$.

Carlitz Polynomials

For $M \in \mathbb{F}_q[T]$ define $[M] \in \mathbb{F}_q(T)[X]$ by:

- [1](X) = X
- $[T](X) = X^q + TX$
- \mathbb{F}_{q} -Linearity + $[M_{1}M_{2}](X) = [M_{1}]([M_{2}](X))$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_q[T]$.

Examples:

• For $c \in \mathbb{F}_q$, [c](X) = cX

•
$$[T^2](X) = (X^q + TX)^q + T(X^q + TX) = X^{q^2} + (T^q + T)X^q + T^2X$$

Carlitz Module

Fact. $\mathbb{F}_q[T]$ acts on $\overline{\mathbb{F}_q(T)}$ by $M \cdot z = [M](z)$. $\overline{\mathbb{F}_q(T)}$ endowed with this action is called the \mathbb{F}_q -Carlitz module.

• $\Lambda_M \stackrel{\text{def}}{=} \{z \in \overline{\mathbb{F}_q(T)} \mid [M](z) = 0\}$ *M*-torsion elements $\simeq \mathbb{U}_n$.

•
$$\mathbb{F}_q(T)[\Lambda_M] = \underline{\text{cyclotomic}}$$
 function field.

• $\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq (\mathbb{F}_q[T]/(M))^{\times}$ (Efficiently computable).

Cyclotomic VS Carlitz

$\mathbb{Q}_{\mathbb{Z}}$ Prime numbers $\pmb{q}\in\mathbb{Z}$	$\mathbb{F}_q(\mathcal{T})\ \mathbb{F}_q[\mathcal{T}]$ Irreducible polynomials $Q\in \mathbb{F}_q[\mathcal{T}]$		
$\mathbb{U}_n = \langle \zeta angle \simeq \mathbb{Z}/(n)$ (groups)	$\Lambda_M = \langle \lambda angle \simeq \mathbb{F}_q[\mathcal{T}]/(M)$ (modules)		
$d \mid n \Leftrightarrow \mathbb{U}_d \subset \mathbb{U}_n$ (subgroups)	$D \mid M \Leftrightarrow \Lambda_D \subset \Lambda_M$ (submodules)		
$a \equiv b \mod n \Rightarrow \zeta^a = \zeta^b$	$A \equiv B \mod M \Rightarrow [A](\lambda) = [B](\lambda)$		
$egin{array}{lll} \mathcal{K} = \mathbb{Q}[\zeta] \ \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\zeta] \end{array}$	$egin{aligned} \mathcal{K} &= \mathbb{F}_q(\mathcal{T})[\lambda] \ \mathcal{O}_\mathcal{K} &= \mathbb{F}_q[\mathcal{T}][\lambda] \end{aligned}$		
$\operatorname{Gal}(K/\mathbb{Q})\simeq (\mathbb{Z}/(n))^{\times}$	$\operatorname{Gal}(K/\mathbb{F}_q(T))\simeq (\mathbb{F}_q[T]/(M))^{\times}$		
Cyclotomic	Carlitz		

Important example

$$[T](X) = X^q + TX$$

$$\Lambda_T = \{z \mid z^q + Tz = 0\} = \{0\} \cup \{z \mid z^{q-1} = -T\};$$

$$K = \mathbb{F}_q(T)(\Lambda_T) = \mathbb{F}_q(T)[X]/(X^{q-1} + T);$$

$$\mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[T][X]/(X^{q-1}+T);$$

 $\operatorname{Gal}(K/\mathbb{F}_q(T)) = (\mathbb{F}_q[T]/T)^{\times} = \mathbb{F}_q^{\times};$

 $\mathcal{O}_{\mathcal{K}}/((T+1)\mathcal{O}_{\mathcal{K}}) = \mathbb{F}_q[T][X]/(X^{q-1}+T,T+1) = \mathbb{F}_q[X]/(X^{q-1}-1).$

Outline

2 Carlitz module

3 Instantiations & applications

Quasi-Cyclic Decoding

- $\mathcal{K} = \mathbb{F}_q(T)[\Lambda_T],$ $\mathcal{O}_{\mathcal{K}}/(T+1)\mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[X]/(X^{q-1}-1).$
- $\operatorname{Gal}(K/\mathbb{F}_q(T)) = \mathbb{F}_q^{\times}$ acts on $\mathbb{F}_q[X]/(X^{q-1}-1)$ via
 - $\zeta \cdot P(X) = P(\zeta X) \Rightarrow$ Support is Galois invariant !

Search to decision reduction

Decision QC-decoding in $\mathbb{F}_q[X]/(X^{q-1}-1)$ is as hard as Search.

This assumption has also been used for MPC.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (*a*, *as* + *e*).
- What is the error distribution ?

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (*a*, *as* + *e*).
- What is the error distribution ?

 $e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$ with independent $e_i \leftarrow \mathcal{B}_q(p)$.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (*a*, *as* + *e*).
- What is the error distribution ?

$$e(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant ...

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (*a*, *as* + *e*).
- What is the error distribution ?

 $e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$ with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant ...

Idea: Change the basis

- $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.
 - Samples (a, as + e) where $e = e_0\beta_0 + \cdots + e_{r-1}\beta_{r-1}$ and $e_i \leftarrow \mathcal{B}_q(p)$.
- e.g. Canonical basis $(1, X, \ldots, X^{r-1})$.

 $p \in [0, 1/2)$, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (a, as + e) where $e = e_0\beta_0 + \cdots + e_{r-1}\beta_{r-1}$ and $e_i \leftarrow \mathcal{B}_q(p)$.
- e.g. Canonical basis $(1, X, \ldots, X^{r-1})$.

Normal Distribution Ring-LPN

- If $f_i(X)$ have the same degree d, then $\mathcal{R} \simeq \mathcal{O}_K / T \mathcal{O}_K$ where K is some explicit Carlitz extension in which T has inertia d and does not ramify.
- $\mathcal{O}_{\mathcal{K}}/\mathcal{T}\mathcal{O}_{\mathcal{K}}$ admits many \mathbb{F}_q -Galois invariant basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Conclusion

	Ring-LWE	FF-DP	
2010:	Cyclotomic number fields Special modulus	Galois function fields Special modulus	\checkmark
2014:	Any modulus	?	×
2017-2018:	Any number field Completely different technique: OHCP	?	×

Already useful for special QC codes used in MPC, or for particular Ring-LPN.

Extension to any function field would apply to codes like in BIKE or HQC.

Conclusion and perspectives

Perspectives.

- Extensions to more general function fields
- Develop a "Switching-Modulus" technique

For MPC we would like K such that

- $\mathcal{O}_K/\mathcal{TO}_K\simeq \mathbb{F}_2^N$ with $N\simeq 2^{20}$ or 2^{30}
- Efficient representation of *sparse* elements of \mathcal{O}_K or $\mathcal{O}_K/\mathcal{T}\mathcal{O}_K$
- Efficient multiplication.

Thank you for your attention.