On Codes and Learning With Errors Over Function Fields

Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard
LIX, École Polytechnique \& Inria
GT Grace

March, 222022

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations \& applications

A hard computational problem

Error correcting code

- $\mathscr{C}=\left\{\boldsymbol{m} \boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}_{q}^{k}\right\} \subset \mathbb{F}_{q}^{n}$;
- Hamming weight: $\quad|\boldsymbol{x}| \stackrel{\text { def }}{=} \#\left\{i \mid x_{i} \neq 0\right\}$.
- Hamming distance: $d_{H}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}|\boldsymbol{x}-\boldsymbol{y}|$.

Decoding Problem - DP

Data. $(\boldsymbol{G}, \mathbf{y}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e})$ with $\boldsymbol{G} \stackrel{\$}{\leftarrow} \mathbb{F}_{q}^{k \times n}, \boldsymbol{m} \stackrel{\$}{\leftarrow} \mathbb{F}_{q}^{k}$ and $\boldsymbol{e} \leftarrow \mathbb{F}_{q}^{n}$ such that $|\boldsymbol{e}|=t$.
Goal. Find \boldsymbol{m}.

Code-based cryptography

Decoding Problem in cryptography

- McEliece (1978)
- Alekhnovich (2003)

Alekhnovich cryptosystem (2003)

$t \ll n$
$\mathscr{E}=\left\{(\mathscr{C}, \mathbf{s k}) \mid \mathscr{C}\right.$ is a code with sk $\in \mathscr{C}^{\perp}$ of weight $\left.t\right\}$
Encrypt one bit $\beta \in\{0,1\}$.

Alekhnovich cryptosystem (2003)

Encrypt one bit $\beta \in\{0,1\}$.

$$
\operatorname{Enc}(\beta)=\left\{\begin{array}{cc}
\boldsymbol{c}+\boldsymbol{e} & \text { if } \beta=0 \\
\text { random } & \text { if } \beta=1
\end{array}\right.
$$

Decryption

- $\langle\mathbf{s k}, \operatorname{Enc}(0)\rangle=\langle\mathbf{s k}, \boldsymbol{c}+\boldsymbol{e}\rangle=\langle\mathbf{s k}, \boldsymbol{e}\rangle=0$ w.h.p.
- $\langle\mathbf{s k}, \operatorname{Enc}(1)\rangle=\langle\mathbf{s k}$, random $\rangle=0$ with proba $\frac{1}{2}$.

Message Security

Hard to distinguish $\boldsymbol{c}+\boldsymbol{e}$ from random.

Decision Decoding Problem

- $(\boldsymbol{G}, \boldsymbol{y}) \leftarrow \mathcal{D}_{0}$ if $\boldsymbol{G} \stackrel{\Phi}{\leftarrow} \mathbb{F}_{q}^{k \times n}$ and $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e}$ where $\boldsymbol{m} \stackrel{\$}{\leftarrow} \mathbb{F}_{q}^{k}$ and $|\boldsymbol{e}|=t$.
- $(\boldsymbol{G}, \boldsymbol{y}) \leftarrow \mathcal{D}_{1}$ if $\boldsymbol{G} \stackrel{\Phi}{\leftarrow} \mathbb{F}_{q}^{k \times n}$ and $\boldsymbol{y} \stackrel{\$}{\leftarrow} \mathbb{F}_{q}^{n}$.

Decision Decoding Problem

Data. $\quad(\boldsymbol{G}, \boldsymbol{y}) \leftarrow \mathcal{D}_{b}$ where $b \stackrel{\$}{\leftarrow}\{0,1\}$.
Question. Is $b=0$ or $b=1$?
Goal. Good answer with proba $\frac{1}{2}+\varepsilon$.

Fisher, Stern (1996), Alekhnovich (2003)
Decision Decoding Problem is harder than Search Decoding Problem.

Efficiency?

Public-key $=$ Random code $=$ Random matrix
\Rightarrow Huge public key: $\Theta\left(n^{2}\right)$
$\Theta\left(\lambda^{4}\right)$ for security of 2^{λ}

Reducing the size of the key ?

Quasi-Cyclic codes

Idea: Use codes with many automorphisms, e.g. Quasi-Cyclic.

Codes having a generator (or parity-check) matrix formed by multiple circulant blocks

$$
G=\left(\begin{array}{ccc}
a^{(1)} & \cdots & a^{(r)} \\
\circlearrowright & \cdots & \circlearrowright
\end{array}\right)
$$

\Rightarrow Public key is now only one row.

Polynomial representation

$$
\mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{n}-1\right)
$$

Isomorphism between circulant matrices and polynomial ring.

$$
\begin{gathered}
\left(\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & \ldots & a_{n-1} \\
a_{n-1} & a_{0} & \ldots & \ldots & a_{n-2} \\
\vdots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{n-1} & a_{0}
\end{array}\right) \xrightarrow{\sim} \boldsymbol{a}(X)=\sum_{i=0}^{n-1} a_{i} X^{i} \in \mathcal{R} \\
\boldsymbol{m}\left(\begin{array}{cc}
\boldsymbol{a}^{(1)} & \boldsymbol{a}^{(2)} \\
\circlearrowright & \circlearrowright
\end{array}\right)+\left(\begin{array}{ll}
\boldsymbol{e}^{(1)} & \left.\boldsymbol{e}^{(2)}\right) \xrightarrow{\sim}\left\{\begin{array}{l}
\boldsymbol{m}(x) \mathbf{a}^{(1)}(X)+\boldsymbol{e}^{(1)}(X) \in \mathcal{R} \\
\boldsymbol{m}(x) \mathbf{a}^{(2)}(X)+\boldsymbol{e}^{(2)}(X) \in \mathcal{R}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}\right.
\end{gathered}
$$

Structured versions of Decoding Problems

$$
\mathcal{R} \text { Ring, e.g. } \mathbb{F}_{q}[X] /\left(X^{n}-1\right)
$$

Search version

Data. r samples ($\mathbf{a}, \mathbf{b}=\boldsymbol{m a}+\boldsymbol{e}$) with same $\boldsymbol{m} \stackrel{\$}{\leftarrow} \mathcal{R}$, where $\boldsymbol{a} \stackrel{\$}{\S}^{\$}$, and $\boldsymbol{e} \leftarrow \mathcal{R}$ such that $|\boldsymbol{e}|=t$.
Goal. Find \boldsymbol{m}.

Decision version

Data. r samples $(\boldsymbol{a}, \boldsymbol{b})$ where either all \boldsymbol{b} are uniformly random, or are of the form ma $+e$.
Goal. Distinguish between these two cases.

Structured versions of Decoding Problems

- Security of several code-based cryptosystems rely on the QC versions.
- No known search to decision reduction.
- "During the third round, NIST encourages further research into the relationship between the decision and search versions of the QCSD with parity problems" ~ Nist Second Round report.
- Ring-LPN is a special case when rate goes to zero, and error is Bernouilli.

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations \& applications

Learning With Errors (2005)

Search LWE

Data. Independent ($\mathbf{a}, b=\langle\boldsymbol{a}, \boldsymbol{s}\rangle+e \in \mathbb{Z} / q \mathbb{Z}$) with secret s, where \boldsymbol{a} random and e distributed according to some discrete Gaussian.
Goal. Recover s.

Decision LWE

Data. Independent (a, b) where either all b are uniformly random, or are of the form $\langle a, s\rangle+e \bmod q$.
Goal. Distinguish between these two cases.

Learning With Errors (2005)

$\begin{array}{lc}\text { Hard Problems in } & < \\ \text { Euclidean Lattices } & \text { (Quantum) }\end{array}$ Search LWE $=$ Decision LWE $<$ Crypto

Same issues as Alekhnovich

- Large key size
- Not very efficient
\Rightarrow Structured versions

Ring-LWE (2010)

- $K=\mathbb{Q}[X] /\left(X^{n}+1\right), n=2^{\ell}$ cyclotomic number field
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right)$, ring of integers

- $q \in \mathbb{Z}$ prime.

Search-RLWE

Data. Independent ($\mathbf{a}, \mathbf{b}=\mathbf{a s}+\mathbf{e}$) with $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / q \mathcal{O}_{K}, \mathbf{e} \leftarrow$ Gaussian.
Goal. Find s.

Decision-RLWE

Data. Independent (\mathbf{a}, \mathbf{b}) with $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / q \mathcal{O}_{K}$ and \mathbf{b} either random or as $+\mathbf{e}$.
Goal. Distinguish between these two cases.

Taking height

Idea:

- RLWE uses Number fields and ring of integers for proofs (Krull dimension 1).
- Can we lift $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ to dimension 1 ?

This Work

This work

- A new generic problem: Function Field Decoding Problem FF-DP,
- A new framework to make proofs,
- A search to decision reduction for QC-codes based on $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$,
- Search to decision reductions for structured versions of LPN,
- Applications to MPC.

Wishful thinking

Number field - Function field analogy
(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_{q}(T)$ share many properties.

\mathbb{Q}	$\mathbb{F}_{q}(T)$
$\mathbb{F}_{q}[T]$	
P	
Prime numbers $q \in \mathbb{Z}$	Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$
$K=\mathbb{Q}[X] /(f(X))$	$K=\mathbb{F}_{q}(T)[X] /(f(T, X))$
\mathcal{O}_{K}	\mathcal{O}_{K}
$=$ Integral closure of \mathbb{Z}	$=$Integral closure of $\mathbb{F}_{q}[T]$ Dedekind domain
Dedekind domain	

Function Field Decoding Problem - FF-DP

- $K=\mathbb{F}_{q}(T)[X] /(f(T, X))$
- \mathcal{O}_{K} ring of integers
- $Q \in \mathbb{F}_{q}[T]$ irreducible.
- ψ some probability distribution
 over $\mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Search FF-DP

Data. Samples ($\mathbf{a}, \mathbf{b}=\mathbf{a s}+\boldsymbol{e}$) with $\mathbf{a} \leftarrow^{\$} \mathcal{O}_{K} / Q \mathcal{O}_{K}, \boldsymbol{e} \leftarrow \psi$.
Goal. Find $\boldsymbol{s} \in \mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Decision FF-DP

Data. Samples ($\mathbf{a}, \boldsymbol{b}$) with $\mathbf{a} \leftarrow^{\S} \mathcal{O}_{K} / Q \mathcal{O}_{K}$ and \boldsymbol{b} either all random or as $+\mathbf{e}$.
Goal. Distinguish between these two cases.

An example

- $K=\mathbb{F}_{q}(T)[X] /\left(X^{n}+T-1\right)$
- $\mathcal{O}_{K}=\mathbb{F}_{q}[T][X] /\left(X^{n}+T-1\right)$
- $\mathcal{O}_{K} / T \mathcal{O}_{K}=\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$
- ψ uniform over Hamming weight t

- Search FF-DP = Quasi-Cyclic DP
- Decision FF-DP = Decision QC-DP

Goal: Search to decision reduction for FF-DP.

Main theorem

Let K be a function field with constant field $\mathbb{F}_{q}, Q \in \mathbb{F}_{q}[T]$ irreducible.
Assume that
(1) K is a Galois extension of $\mathbb{F}_{q}(T)$ of not too large degree.
(2) Ideal $\mathfrak{P}=Q \mathcal{O}_{K}$ does not ramify and has not too large inertia.
(3) For all $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.
(2) $\Leftrightarrow \mathfrak{P}=\mathfrak{P}_{1} \ldots \mathfrak{P}_{r}$ with \mathfrak{P}_{i} prime ideals and $\mathcal{O}_{K} / \mathfrak{P}_{i}=\mathbb{F}_{q^{\ell}}$ with ℓ small.

Search to decision reduction

$$
\text { as }+e \in \mathcal{O}_{K} / \mathfrak{P} \simeq \mathcal{O}_{K} / \mathfrak{P}_{1} \times \cdots \times \mathcal{O}_{K} / \mathfrak{P}_{r}
$$

With CRT notations,

$$
\mathcal{H}_{i}=\left\{\left(r_{1}, \ldots, r_{i}, \text { as }+e, \ldots, \text { as }+e\right) \mid r_{i}{ }^{\$} \mathcal{O}_{K} / \mathfrak{P}_{i}\right\}
$$

$$
\begin{array}{ll}
\mathcal{H}_{0}= & \text { Distribution of as }+e \\
\mathcal{H}_{r}= & \text { Uniform distribution }
\end{array}
$$

(Step 1) Hybrid Argument

If \mathscr{A} distinguishes \mathcal{H}_{0} from \mathcal{H}_{r} then \mathscr{A} distinguishes \mathcal{H}_{i} from \mathcal{H}_{i-1} for some i.

Search to decision reduction

$$
\begin{gathered}
a s+e \in \mathcal{O}_{K} / \mathfrak{P} \simeq \mathcal{O}_{K} / \mathfrak{P}_{1} \times \cdots \times \mathcal{O}_{K} / \mathfrak{P}_{r} \\
\mathcal{H}_{i}=\left\{\left(r_{1}, \ldots, r_{i}, \text { as }+e, \ldots, \text { as }+e\right) \mid r_{i} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / \mathfrak{P}_{i}\right\}
\end{gathered}
$$

(Step 2) Guess and search

- $\boldsymbol{g} \in \mathcal{O}_{K} / \mathfrak{P}_{i}$ guess for $s \bmod \mathfrak{P}_{i}$.
- $\boldsymbol{v} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / \mathfrak{P}_{i} \quad ; \quad \boldsymbol{h}=\operatorname{CRT}^{-1}\left(\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{\mathrm{i}-1}, 0, \ldots, 0\right)$
- $(\mathrm{a}, \mathrm{b}=\mathrm{a}+\boldsymbol{e}) \mapsto\left(\mathrm{a}^{\prime}, \boldsymbol{b}^{\prime}\right)=(\mathrm{a}+v, \mathrm{~b}+v g+\boldsymbol{h})$
- $\mathbf{a}^{\prime}=$ random
- $\boldsymbol{b}^{\prime}=\mathbf{a}^{\prime} \boldsymbol{s}+(\boldsymbol{g}-\boldsymbol{s}) \boldsymbol{v}+\boldsymbol{e}+\boldsymbol{h}$

$$
\boldsymbol{b}^{\prime}=\left\{\begin{array}{ccl}
\mathbf{a}^{\prime} \boldsymbol{s}+\boldsymbol{e} & \bmod \mathfrak{P}_{i} & \text { If guess is good } \\
\text { random } & \bmod \mathfrak{P}_{i} & \text { If guess is wrong }
\end{array}\right.
$$

Search to decision reduction

$$
\begin{gathered}
a s+e \in \mathcal{O}_{K} / \mathfrak{P} \simeq \mathcal{O}_{K} / \mathfrak{P}_{1} \times \cdots \times \mathcal{O}_{K} / \mathfrak{P}_{r} \\
\mathcal{H}_{i}=\left\{\left(r_{1}, \ldots, r_{i}, \text { as }+e, \ldots, \text { as }+e\right) \mid r_{i} \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / \mathfrak{P}_{i}\right\}
\end{gathered}
$$

(Step 2 cont'd) Guess and search

- $\mathbf{a}^{\prime}=$ random

$$
\boldsymbol{b}^{\prime} \leftarrow\left\{\begin{array}{cl}
\mathcal{H}_{i-1} & \text { If guess is good } \\
\mathcal{H}_{i} & \text { If guess is wrong }
\end{array}\right.
$$

- $\Rightarrow \mathscr{A}$ can tell whether we guessed correctly !

We can recover $\boldsymbol{s} \bmod \mathfrak{P}_{i}$ with an exhaustive search in $\mathcal{O}_{K} / \mathfrak{P}_{i}=\mathbb{F}_{q^{\ell}}$.

Search to decision reduction

$$
\text { as }+e \in \mathcal{O}_{K} / \mathfrak{P} \simeq \mathcal{O}_{K} / \mathfrak{P}_{1} \times \cdots \times \mathcal{O}_{K} / \mathfrak{P}_{r}
$$

We can recover $\boldsymbol{s} \bmod \mathfrak{P}_{i}$.

Fact. For any j there exists $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)$ such that $\sigma\left(\mathfrak{P}_{j}\right)=\mathfrak{P}_{i}$.

(Step 3) Permute the factors

$(\mathbf{a}, \mathbf{b}) \mapsto(\sigma(\mathbf{a}), \sigma(\mathbf{b}))$

- $\sigma(\mathbf{a}) \stackrel{\$}{\leftarrow} \mathcal{O}_{K} / \mathfrak{P} ;$
- $\sigma(\mathbf{b})=\sigma(\mathbf{a}) \sigma(\boldsymbol{s})+\sigma(\boldsymbol{e})$;
- If $\sigma(\boldsymbol{s}) \equiv s_{i} \bmod \mathfrak{P}_{i}$ then $\boldsymbol{s} \equiv \sigma^{-1}\left(s_{i}\right) \bmod \mathfrak{P}_{j}$;
- $\triangle \sigma$ needs to keep distribution of \boldsymbol{e}.

How to instantiate FF-DP ?

What do we need ?

- Galois function field $K / \mathbb{F}_{q}(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations \& applications

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.
$\mathbb{Q}\left[\zeta_{n}\right]$ is built by adding the n-th roots of 1 . What about $\mathbb{F}_{q}(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_{q}(T)$ yields extension of constants \Rightarrow We get $\mathbb{F}_{q^{m}}(T)$.

Reduction needs an exhaustive search ...

Cyclotomic function field (Good idea)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z}-module structure by $n \cdot z \stackrel{\text { def }}{=} z^{n}$.
- $\mathbb{U}_{n}=\left\{z \in \overline{\mathbb{Q}} \mid z^{n}=1\right\}=n$-torsion elements.

Idea:

- $\mathbb{Z} \leftrightarrow \mathbb{F}_{q}[T] \Rightarrow$ Consider a new $\mathbb{F}_{q}[T]$-module structure on $\overline{\mathbb{F}_{q}(T)}$.
- Add torsion elements to $\mathbb{F}_{q}(T)$.

Carlitz Polynomials

For $M \in \mathbb{F}_{q}[T]$ define $[M] \in \mathbb{F}_{q}(T)[X]$ by:

- $[1](X)=X$
- $[T](X)=X^{q}+T X$
- \mathbb{F}_{q}-Linearity $+\left[M_{1} M_{2}\right](X)=\left[M_{1}\right]\left(\left[M_{2}\right](X)\right)$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_{q}[T]$.

Examples:

- For $c \in \mathbb{F}_{q},[c](X)=c X$
- $\left[T^{2}\right](X)=\left(X^{q}+T X\right)^{q}+T\left(X^{q}+T X\right)=X^{q^{2}}+\left(T^{q}+T\right) X^{q}+T^{2} X$

Carlitz Module

Fact. $\mathbb{F}_{q}[T]$ acts on $\overline{\mathbb{F}_{q}(T)}$ by $M \cdot z=[M](z)$.
$\overline{\mathbb{F}_{q}(T)}$ endowed with this action is called the $\mathbb{F}_{q^{-}}$- Carlitz module.

- $\Lambda_{M} \stackrel{\text { def }}{=}\left\{z \in \overline{\mathbb{F}_{q}(T)} \mid[M](z)=0\right\} M$-torsion elements $\simeq \mathbb{U}_{n}$.
- $\mathbb{F}_{q}(T)\left[\Lambda_{M}\right]=$ cyclotomic function field.
- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{\times}($Efficiently computable $)$.

Cyclotomic VS Carlitz

$$
\begin{aligned}
& \mathbb{Q} \\
& \mathbb{Z}
\end{aligned}
$$

Prime numbers $q \in \mathbb{Z}$

$$
\begin{gathered}
\mathbb{U}_{n}=\langle\zeta\rangle \simeq \mathbb{Z} /(n) \text { (groups) } \\
d \mid n \Leftrightarrow \mathbb{U}_{d} \subset \mathbb{U}_{n} \text { (subgroups) } \\
a \equiv b \quad \bmod n \Rightarrow \zeta^{a}=\zeta^{b} \\
K=\mathbb{Q}[\zeta] \\
\mathcal{O}_{K}=\mathbb{Z}[\zeta] \\
\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} /(n))^{x}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{F}_{q}(T) \\
& \mathbb{F}_{q}[T]
\end{aligned}
$$

Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$

$$
\begin{gathered}
\Lambda_{M}=\langle\lambda\rangle \simeq \mathbb{F}_{q}[T] /(M) \text { (modules) } \\
D \mid M \Leftrightarrow \Lambda_{D} \subset \Lambda_{M}(\text { submodules }) \\
A \equiv B \bmod M \Rightarrow[A](\lambda)=[B](\lambda) \\
K=\mathbb{F}_{q}(T)[\lambda] \\
\mathcal{O}_{K}=\mathbb{F}_{q}[T][\lambda] \\
\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{x}
\end{gathered}
$$

Carlitz

Important example

$$
[T](X)=X^{q}+T X
$$

$$
\begin{aligned}
& \Lambda_{T}=\left\{z \mid z^{q}+T_{z}=0\right\}=\{0\} \cup\left\{z \mid z^{q-1}=-T\right\} ; \\
& K=\mathbb{F}_{q}(T)\left(\Lambda_{T}\right)=\mathbb{F}_{q}(T)[X] /\left(X^{q-1}+T\right) ; \\
& \mathcal{O}_{K}=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T\right) ; \\
& \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\left(\mathbb{F}_{q}[T] / T\right)^{\times}=\mathbb{F}_{q}^{\times} ; \\
& \mathcal{O}_{K} /\left((T+1) \mathcal{O}_{K}\right)=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T, T+1\right)=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) .
\end{aligned}
$$

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations \& applications

Quasi-Cyclic Decoding

- $K=\mathbb{F}_{q}(T)\left[\Lambda_{T}\right]$,

$$
\mathcal{O}_{K} /(T+1) \mathcal{O}_{K}=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) .
$$

- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\mathbb{F}_{q}^{\times}$acts on $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ via $\zeta \cdot P(X)=P(\zeta X) \Rightarrow$ Support is Galois invariant !

Search to decision reduction

Decision $Q C$-decoding in $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ is as hard as Search.

This assumption has also been used for MPC.

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?

$$
\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1} \text { with independent } e_{i} \leftarrow \mathcal{B}_{q}(p) .
$$

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?
$\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1}$ with independent $e_{i} \leftarrow \mathcal{B}_{q}(p)$.

Not Galois invariant ...

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$).
- What is the error distribution ?
$\boldsymbol{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1}$ with independent $e_{i} \leftarrow \mathcal{B}_{q}(p)$.

Not Galois invariant ...

Idea: Change the basis

Ring-LPN

$p \in[0,1 / 2)$, ring $\mathcal{R}=\mathbb{F}_{q}[X] /(f(X))$ with $f(X)=f_{1}(X) \cdots f_{r}(X)$.

- Samples (a, as $+\boldsymbol{e}$) where $\boldsymbol{e}=e_{0} \beta_{0}+\cdots+e_{r-1} \beta_{r-1}$ and $e_{i} \leftarrow \mathcal{B}_{q}(p)$. e.g. Canonical basis $\left(1, X, \ldots, X^{r-1}\right)$.

Normal Distribution Ring-LPN

- If $f_{i}(X)$ have the same degree d, then $\mathcal{R} \simeq \mathcal{O}_{K} / T \mathcal{O}_{K}$ where K is some explicit Carlitz extension in which T has inertia d and does not ramify.
- $\mathcal{O}_{K} / T \mathcal{O}_{K}$ admits many \mathbb{F}_{q}-Galois invariant basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Conclusion

	Ring-LWE		FF-DP	
2010:	Cyclotomic number fields Special modulus	Galois function fields Special modulus	\checkmark	
2014:	Any modulus	$?$	x	
2017-2018:	Completely different technique:	Any number field		
	OHCP			

Already useful for special QC codes used in MPC, or for particular Ring-LPN.

Extension to any function field would apply to codes like in BIKE or HQC.

Conclusion and perspectives

Perspectives.

- Extensions to more general function fields, and modulus.
- Study this problem on its own
- Inspect what happens at infinity ?

For MPC we would like K such that

- $\mathcal{O}_{K} / T \mathcal{O}_{K} \simeq \mathbb{F}_{2}^{N}$ with $N \simeq 2^{20}$ or 2^{30}
- Efficient representation of sparse elements of \mathcal{O}_{K} or $\mathcal{O}_{K} / T \mathcal{O}_{K}$
- Efficient multiplication.

Thank you for your attention.

