On Codes and Learning With Errors Over Function Fields

Maxime Bombar, Alain Couvreur, Thomas Debris-Alazard

LIX, École Polytechnique & Inria

GT Grace

March, 22 2022

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations & applications

A hard computational problem

Error correcting code

- $\mathscr{C} = \{ \boldsymbol{m}\boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}_q^k \} \subset \mathbb{F}_q^n$;
- Hamming weight: $|\mathbf{x}| \stackrel{\text{def}}{=} \#\{i \mid x_i \neq 0\}.$
- Hamming distance: $d_H(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} |\mathbf{x} \mathbf{y}|$.

Decoding Problem - DP

Data. (G, y = mG + e) with $G \stackrel{\$}{\leftarrow} \mathbb{F}_q^{k \times n}$, $m \stackrel{\$}{\leftarrow} \mathbb{F}_q^k$ and $e \leftarrow \mathbb{F}_q^n$ such that |e| = t. **Goal.** Find m.

Code-based cryptography

Decoding Problem in cryptography

- McEliece (1978)
- Alekhnovich (2003)

Alekhnovich cryptosystem (2003)

$$\begin{split} t \ll n \\ \mathscr{E} &= \{ (\mathscr{C}, \mathbf{sk}) \mid \mathscr{C} \text{ is a code with } \mathbf{sk} \in \mathscr{C}^{\perp} \text{ of weight } t \} \end{split}$$

Encrypt one bit $\beta \in \{0, 1\}$.

Alekhnovich cryptosystem (2003)

Encrypt one bit $\beta \in \{0,1\}$.

$$Enc(\beta) = \left\{ egin{array}{ll} oldsymbol{c} + oldsymbol{e} & ext{if } eta = 0 \ ext{random} & ext{if } eta = 1 \end{array}
ight.$$

Decryption

- $\langle \mathbf{sk}, Enc(0) \rangle = \langle \mathbf{sk}, \mathbf{c} + \mathbf{e} \rangle = \langle \mathbf{sk}, \mathbf{e} \rangle = 0 \ \underline{\text{w.h.p.}}$
- $\langle \mathbf{sk}, \mathit{Enc}(1) \rangle = \langle \mathbf{sk}, \mathit{random} \rangle = 0$ with proba $\frac{1}{2}$.

Message Security

Hard to distinguish c + e from random.

Decision Decoding Problem

- $(G, y) \leftarrow \mathcal{D}_0$ if $G \stackrel{\$}{\leftarrow} \mathbb{F}_q^{k \times n}$ and y = mG + e where $m \stackrel{\$}{\leftarrow} \mathbb{F}_q^k$ and |e| = t.
- lacksquare $(G,y) \leftarrow \mathcal{D}_1$ if $G \stackrel{\$}{\leftarrow} \mathbb{F}_q^{k \times n}$ and $y \stackrel{\$}{\leftarrow} \mathbb{F}_q^n$.

Decision Decoding Problem

Data. $(\mathbf{G}, \mathbf{y}) \leftarrow \mathcal{D}_b \text{ where } b \stackrel{\$}{\leftarrow} \{0, 1\}.$

Question. Is b = 0 or b = 1?

Goal. Good answer with proba $\frac{1}{2} + \varepsilon$.

Fisher, Stern (1996), Alekhnovich (2003)

Decision Decoding Problem is harder than Search Decoding Problem.

Efficiency?

```
Public-key = Random code = Random matrix \Rightarrow Huge public key: \Theta(n^2) \Theta(\lambda^4) for security of 2^{\lambda}
```

Reducing the size of the key?

Quasi-Cyclic codes

Idea: Use codes with many automorphisms, e.g. Quasi-Cyclic.

Codes having a generator (or parity-check) matrix formed by multiple circulant blocks

$$G = \begin{pmatrix} \boldsymbol{a}^{(1)} & \cdots & \boldsymbol{a}^{(r)} \\ \circlearrowright & \cdots & \circlearrowright \end{pmatrix}$$

 \Rightarrow Public key is now only one row.

Polynomial representation

$$\mathcal{R} = \mathbb{F}_q[X]/(X^n - 1)$$

Isomorphism between circulant matrices and polynomial ring.

$$\begin{pmatrix} a_0 & a_1 & \dots & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix} \stackrel{\sim}{\to} \boldsymbol{a}(X) = \sum_{i=0}^{n-1} a_i X^i \in \mathcal{R}$$

$$m{m}egin{pmatrix} m{a}^{(1)} & m{a}^{(2)} \\ \circlearrowright & \circlearrowright \end{pmatrix} + egin{pmatrix} m{e}^{(1)} & m{e}^{(2)} \end{pmatrix} \overset{\sim}{ o} \left\{ egin{array}{c} m{m}(x)m{a}^{(1)}(X) + m{e}^{(1)}(X) \in \mathcal{R} \\ m{m}(x)m{a}^{(2)}(X) + m{e}^{(2)}(X) \in \mathcal{R} \end{array}
ight.$$

Structured versions of Decoding Problems

$$\mathcal{R}$$
 Ring, e.g. $\mathbb{F}_q[X]/(X^n-1)$

Search version

Data. r samples $(\mathbf{a}, \mathbf{b} = \mathbf{ma} + \mathbf{e})$ with $\underline{\text{same}} \ \mathbf{m} \xleftarrow{\$} \mathcal{R}$, where $\mathbf{a} \xleftarrow{\$} \mathcal{R}$, and $\mathbf{e} \leftarrow \mathcal{R}$ such that $|\mathbf{e}| = t$.

Goal. Find m.

Decision version

Data. r samples (a, b) where either all b are uniformly random, or are of the form ma + e.

Goal. Distinguish between these two cases.

Structured versions of Decoding Problems

- Security of several code-based cryptosystems rely on the QC versions.
- No known search to decision reduction.
- "During the third round, NIST encourages further research into the relationship between the decision and search versions of the QCSD with parity problems" ~ Nist Second Round report.
- Ring-LPN is a special case when rate goes to zero, and error is Bernouilli.

Outline

Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations & applications

Learning With Errors (2005)

$$\begin{pmatrix} a_1 \cdots a_r \\ \\ \end{pmatrix}, \begin{pmatrix} a_1 \cdots a_r \\ \\ \\ \end{pmatrix} \begin{pmatrix} s \\ \\ \\ \end{cases} + \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ e_r \end{pmatrix}^n$$

Search LWE

Data. Independent $(a, b = \langle a, s \rangle + e \in \mathbb{Z}/q\mathbb{Z})$ with secret s, where a random and e distributed according to some discrete Gaussian.

Goal. Recover **s**.

Decision LWE

Data. Independent (a, b) where either all b are uniformly random, or are of the form $\langle a, s \rangle + e \mod q$.

Goal. Distinguish between these two cases.

Maxime Rombar FF-DP March. 22 2022

Learning With Errors (2005)

```
Hard Problems in < Search LWE = Decision LWE < Crypto
```

Same issues as Alekhnovich

- Large key size
- Not very efficient

⇒ Structured versions

Ring-LWE (2010)

- $K = \mathbb{Q}[X]/(X^n + 1)$, $n = 2^{\ell}$ cyclotomic number field
- $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$, ring of integers
- $q \in \mathbb{Z}$ prime.

Search-RLWE

Data. Independent $(\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e})$ with $\mathbf{a} \xleftarrow{\$} \mathcal{O}_K / q \mathcal{O}_K$, $\mathbf{e} \leftarrow \mathsf{Gaussian}$.

Goal. Find s.

Decision-RLWE

Data. Independent (\mathbf{a}, \mathbf{b}) with $\mathbf{a} \xleftarrow{\$} \mathcal{O}_K / q \mathcal{O}_K$ and \mathbf{b} either random or as $+ \mathbf{e}$.

Goal. Distinguish between these two cases.

Taking height

Idea:

- RLWE uses *Number fields* and *ring of integers* for proofs (*Krull* dimension 1).
- Can we lift $\mathbb{F}_q[X]/(X^n-1)$ to dimension 1?

This Work

This work

- A new generic problem: Function Field Decoding Problem FF-DP,
- A new framework to make proofs,
- A search to decision reduction for QC-codes based on $\mathbb{F}_q[X]/(X^{q-1}-1)$,
- Search to decision reductions for structured versions of LPN,
- Applications to MPC.

Wishful thinking

Number field - Function field analogy

(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_q(T)$ share many properties.

$$\mathbb{Q}$$
 \mathbb{Z}

Prime numbers $q \in \mathbb{Z}$

$$K = \mathbb{Q}[X]/(f(X))$$

Oĸ

 $= \begin{array}{c} \text{Integral closure of } \mathbb{Z} \\ \underline{\text{Dedekind}} \ \text{domain} \end{array}$

characteristic 0

$$\mathbb{F}_q(T)$$

 $\mathbb{F}_q[T]$

Irreducible polynomials $Q \in \mathbb{F}_q[T]$

$$K = \mathbb{F}_q(T)[X]/(f(T,X))$$

 \mathcal{O}_{K}

 $= \text{Integral closure of } \mathbb{F}_q[T] \\ \underline{\text{Dedekind domain}}$

characteristic p

Function Field Decoding Problem - FF-DP

- $K = \mathbb{F}_q(T)[X]/(f(T,X))$
- \mathcal{O}_K ring of integers
- $Q \in \mathbb{F}_q[T]$ irreducible.
- ψ some probability distribution over $\mathcal{O}_K/Q\mathcal{O}_K$.

Search FF-DP

Data. Samples $(\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e})$ with $\mathbf{a} \leftarrow \mathcal{O}_K / Q\mathcal{O}_K$, $\mathbf{e} \leftarrow \psi$.

Goal. Find $\mathbf{s} \in \mathcal{O}_K/Q\mathcal{O}_K$.

Decision FF-DP

Data. Samples (\mathbf{a}, \mathbf{b}) with $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{O}_K / Q \mathcal{O}_K$ and \mathbf{b} either all random or as $+ \mathbf{e}$.

Goal. Distinguish between these two cases.

An example

•
$$K = \mathbb{F}_q(T)[X]/(X^n + T - 1)$$

$$\quad \bullet \quad \mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[T][X]/(X^n + T - 1)$$

•
$$\mathcal{O}_K/T\mathcal{O}_K = \mathbb{F}_q[X]/(X^n-1)$$

• ψ uniform over Hamming weight t

$$\mathcal{O}_{\mathcal{K}}$$
 $\qquad \qquad \mathcal{K}$ $\qquad \qquad \mid$ $\qquad \qquad \mathcal{T} \in \mathbb{F}_q[T]$ $\qquad \qquad \qquad \mathbb{F}_q(T)$

21 / 40

- Search FF-DP = Quasi-Cyclic DP
- Decision FF-DP = Decision QC-DP

Goal: Search to decision reduction for FF-DP.

Main theorem

Let K be a function field with constant field \mathbb{F}_q , $Q \in \mathbb{F}_q[T]$ irreducible.

Assume that

- (1) K is a Galois extension of $\mathbb{F}_q(T)$ of not too large degree.
- (2) Ideal $\mathfrak{P} = Q\mathcal{O}_K$ does not ramify and has not too large inertia.
- (3) For all $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

 $(2) \Leftrightarrow \mathfrak{P} = \mathfrak{P}_1 \dots \mathfrak{P}_r \text{ with } \mathfrak{P}_i \text{ prime ideals and } \mathcal{O}_K/\mathfrak{P}_i = \mathbb{F}_{q^\ell} \text{ with } \ell \text{ small.}$

$$as + e \in \mathcal{O}_K/\mathfrak{P} \simeq \mathcal{O}_K/\mathfrak{P}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{P}_r$$

With CRT notations,

$$\mathcal{H}_i = \{ (\textbf{r}_1, \dots, \textbf{r}_i, \textbf{as} + \textbf{e}, \dots, \textbf{as} + \textbf{e}) \mid \textbf{r}_i \xleftarrow{\$} \mathcal{O}_K / \mathfrak{P}_i \}$$

 $\mathcal{H}_0 =$ Distribution of as + e $\mathcal{H}_r =$ Uniform distribution

(Step 1) Hybrid Argument

If \mathscr{A} distinguishes \mathcal{H}_0 from \mathcal{H}_r then \mathscr{A} distinguishes \mathcal{H}_i from \mathcal{H}_{i-1} for some i.

$$as + e \in \mathcal{O}_K/\mathfrak{P} \simeq \mathcal{O}_K/\mathfrak{P}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{P}_r$$

$$\mathcal{H}_i = \{(r_1, \dots, r_i, \textit{as} + e, \dots, \textit{as} + e) \mid r_i \overset{\$}{\leftarrow} \mathcal{O}_K/\mathfrak{P}_i\}$$

(Step 2) Guess and search

- $\mathbf{g} \in \mathcal{O}_K/\mathfrak{P}_i$ guess for $\mathbf{s} \mod \mathfrak{P}_i$.
- $\mathbf{v} \stackrel{\$}{\leftarrow} \mathcal{O}_K/\mathfrak{P}_i$; $\mathbf{h} = \mathrm{CRT}^{-1}(\mathbf{r_1}, \dots, \mathbf{r_{i-1}}, 0, \dots, 0)$
- $(\mathbf{a}, \mathbf{b} = \mathbf{a}\mathbf{s} + \mathbf{e}) \mapsto (\mathbf{a}', \mathbf{b}') = (\mathbf{a} + \mathbf{v}, \mathbf{b} + \mathbf{v}\mathbf{g} + \mathbf{h})$
- a' = random
- b' = a's + (g s)v + e + h

$$m{b}' = \left\{egin{array}{ll} \mathbf{a}' m{s} + m{e} \mod \mathfrak{P}_i & ext{ If guess is good} \\ ext{random} \mod \mathfrak{P}_i & ext{ If guess is wrong} \end{array}
ight.$$

$$as + e \in \mathcal{O}_K/\mathfrak{P} \simeq \mathcal{O}_K/\mathfrak{P}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{P}_r$$

$$\mathcal{H}_i = \{(r_1, \dots, r_i, as + e, \dots, as + e) \mid r_i \stackrel{\$}{\leftarrow} \mathcal{O}_K/\mathfrak{P}_i\}$$

(Step 2 cont'd) Guess and search

- a' = random

$$m{b}' \leftarrow \left\{ egin{array}{ll} \mathcal{H}_{i-1} & ext{ If guess is good} \\ \mathcal{H}_{i} & ext{ If guess is wrong} \end{array}
ight.$$

 \bullet \Rightarrow \mathscr{A} can tell whether we guessed correctly!

We can recover $s \mod \mathfrak{P}_i$ with an exhaustive search in $\mathcal{O}_K/\mathfrak{P}_i = \mathbb{F}_{\sigma^\ell}$.

$$as + e \in \mathcal{O}_K/\mathfrak{P} \simeq \mathcal{O}_K/\mathfrak{P}_1 imes \cdots imes \mathcal{O}_K/\mathfrak{P}_r$$

We can recover $s \mod \mathfrak{P}_i$.

Fact. For any j there exists $\sigma \in \operatorname{Gal}(K/\mathbb{F}_{\sigma}(T))$ such that $\sigma(\mathfrak{P}_i) = \mathfrak{P}_i$.

(Step 3) Permute the factors

$$(\mathbf{a}, \mathbf{b}) \mapsto (\sigma(\mathbf{a}), \sigma(\mathbf{b}))$$

- $\sigma(\mathbf{a}) \stackrel{\$}{\leftarrow} \mathcal{O}_K/\mathfrak{P}$;
- $\sigma(\mathbf{b}) = \sigma(\mathbf{a})\sigma(\mathbf{s}) + \sigma(\mathbf{e})$;
- If $\sigma(s) \equiv s_i \mod \mathfrak{P}_i$ then $s \equiv \sigma^{-1}(s_i) \mod \mathfrak{P}_i$;
- $\triangle \sigma$ needs to keep distribution of e.

How to instantiate FF-DP?

What do we need?

- Galois function field $K/\mathbb{F}_q(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Outline

1 Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations & applications

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.

 $\mathbb{Q}[\zeta_n]$ is built by adding the *n*-th roots of 1.

What about $\mathbb{F}_q(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_q(T)$ yields extension of constants

 \Rightarrow We get $\mathbb{F}_{q^m}(T)$.

Reduction needs an exhaustive search ...

Cyclotomic function field (Good idea)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z} -module structure by $n \cdot z \stackrel{\text{def}}{=} z^{n}$.
- $\mathbb{U}_n = \{z \in \overline{\mathbb{Q}} \mid z^n = 1\} = n$ -torsion elements.

Idea:

- $\mathbb{Z} \leftrightarrow \mathbb{F}_q[T] \Rightarrow$ Consider a new $\mathbb{F}_q[T]$ -module structure on $\overline{\mathbb{F}_q(T)}$.
- Add torsion elements to $\mathbb{F}_q(T)$.

Carlitz Polynomials

For $M \in \mathbb{F}_q[T]$ define $[M] \in \mathbb{F}_q(T)[X]$ by:

- [1](X) = X
- $[T](X) = X^q + TX$
- \mathbb{F}_q -Linearity + $[M_1M_2](X) = [M_1]([M_2](X))$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_q[T]$.

Examples:

- For $c \in \mathbb{F}_q$, [c](X) = cX
- $[T^2](X) = (X^q + TX)^q + T(X^q + TX) = X^{q^2} + (T^q + T)X^q + T^2X$

Carlitz Module

Fact.
$$\mathbb{F}_q[T]$$
 acts on $\overline{\mathbb{F}_q(T)}$ by $M \cdot z = [M](z)$.

 $\overline{\mathbb{F}_a(T)}$ endowed with this action is called the \mathbb{F}_a -Carlitz module.

- $\Lambda_M \stackrel{\text{def}}{=} \{z \in \overline{\mathbb{F}_q(T)} \mid [M](z) = 0\}$ *M*-torsion elements $\simeq \mathbb{U}_n$.
- $\mathbb{F}_q(T)[\Lambda_M] = \underline{\text{cyclotomic}}$ function field.
- $\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq (\mathbb{F}_q[T]/(M))^{\times}$ (Efficiently computable).

Cyclotomic VS Carlitz

$$\mathbb{Q}$$
 \mathbb{Z}

Prime numbers $q \in \mathbb{Z}$

$$\mathbb{U}_n = \langle \zeta \rangle \simeq \mathbb{Z}/(n)$$
 (groups)

$$d \mid n \Leftrightarrow \mathbb{U}_d \subset \mathbb{U}_n$$
 (subgroups)

$$a \equiv b \mod n \Rightarrow \zeta^a = \zeta^b$$

$$K = \mathbb{Q}[\zeta]$$
$$\mathcal{O}_K = \mathbb{Z}[\zeta]$$

$$\mathrm{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/(n))^{x}$$

Cyclotomic

$$\mathbb{F}_q(T)$$

 $\mathbb{F}_q[T]$

Irreducible polynomials $Q \in \mathbb{F}_q[T]$

$$\Lambda_M = \langle \lambda \rangle \simeq \mathbb{F}_q[T]/(M)$$
 (modules)

$$D \mid M \Leftrightarrow \Lambda_D \subset \Lambda_M \text{ (submodules)}$$

$$A \equiv B \mod M \Rightarrow [A](\lambda) = [B](\lambda)$$

$$K = \mathbb{F}_q(T)[\lambda]$$

$$\mathcal{O}_K = \mathbb{F}_q[T][\lambda]$$

$$\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq (\mathbb{F}_q[T]/(M))^{\times}$$

Carlitz

Important example

$$[T](X) = X^q + TX$$

$$\Lambda_T = \{z \mid z^q + Tz = 0\} = \{0\} \cup \{z \mid z^{q-1} = -T\};$$

$$K = \mathbb{F}_q(T)(\Lambda_T) = \mathbb{F}_q(T)[X]/(X^{q-1} + T);$$

$$\mathcal{O}_K = \mathbb{F}_q[T][X]/(X^{q-1} + T);$$

$$\operatorname{Gal}(K/\mathbb{F}_q(T)) = (\mathbb{F}_q[T]/T)^x = \mathbb{F}_q^x$$

$$\mathcal{O}_{K}/((T+1)\mathcal{O}_{K}) = \mathbb{F}_{q}[T][X]/(X^{q-1}+T,T+1) = \mathbb{F}_{q}[X]/(X^{q-1}-1).$$

Outline

Motivations

2 Function Field Decoding Problem

3 Carlitz module

4 Instantiations & applications

Quasi-Cyclic Decoding

•
$$K = \mathbb{F}_q(T)[\Lambda_T],$$
 $\mathcal{O}_K/(T+1)\mathcal{O}_K = \mathbb{F}_q[X]/(X^{q-1}-1).$

■ $\operatorname{Gal}(K/\mathbb{F}_q(T)) = \mathbb{F}_q^{\times}$ acts on $\mathbb{F}_q[X]/(X^{q-1}-1)$ via $\zeta \cdot P(X) = P(\zeta X) \Rightarrow$ Support is Galois invariant!

Search to decision reduction

Decision QC-decoding in $\mathbb{F}_q[X]/(X^{q-1}-1)$ is as hard as Search.

This assumption has also been used for MPC.

$$p \in [0, 1/2)$$
, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (a, as + e).
- What is the error distribution ?

$$p \in [0, 1/2)$$
, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (a, as + e).
- What is the error distribution ?

$$e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_{\sigma}(p)$.

$$p \in [0, 1/2)$$
, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (a, as + e).
- What is the error distribution ?

$$e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant

$$p \in [0, 1/2)$$
, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

- Samples (a, as + e).
- What is the error distribution ?

$$e(X) = e_0 + e_1 X + \cdots + e_{r-1} X^{r-1}$$
 with independent $e_i \leftarrow \mathcal{B}_q(p)$.

Not Galois invariant ...

Idea: Change the basis

$$p \in [0, 1/2)$$
, ring $\mathcal{R} = \mathbb{F}_q[X]/(f(X))$ with $f(X) = f_1(X) \cdots f_r(X)$.

• Samples (a, as + e) where $e = e_0\beta_0 + \cdots + e_{r-1}\beta_{r-1}$ and $e_i \leftarrow \mathcal{B}_q(p)$. e.g. Canonical basis $(1, X, \dots, X^{r-1})$.

Normal Distribution Ring-LPN

- If $f_i(X)$ have the <u>same</u> degree d, then $\mathcal{R} \simeq \mathcal{O}_K/T\mathcal{O}_K$ where K is some explicit Carlitz extension in which T has inertia d and does not ramify.
- $\mathcal{O}_K/T\mathcal{O}_K$ admits many \mathbb{F}_q -Galois invariant basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Conclusion

	Ring-LWE	FF-DP	
2010:	Cyclotomic number fields Special modulus	Galois function fields Special modulus	√
2014:	Any modulus	?	X
2017-2018:	Any number field Completely different technique: OHCP	?	X

Already useful for special QC codes used in MPC, or for particular Ring-LPN.

Extension to any function field would apply to codes like in BIKE or HQC.

Conclusion and perspectives

Perspectives.

- Extensions to more general function fields, and modulus.
- Study this problem on its own
- Inspect what happens at infinity?

For MPC we would like K such that

- $\mathcal{O}_K/T\mathcal{O}_K\simeq \mathbb{F}_2^N$ with $N\simeq 2^{20}$ or 2^{30}
- Efficient representation of *sparse* elements of \mathcal{O}_K or $\mathcal{O}_K/T\mathcal{O}_K$
- Efficient multiplication.

Thank you for your attention.