Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis approach

Magali Bardet, Rocco Mora, Jean-Pierre Tillich
April 6, 2021

Sorbonne Université, INRIA Paris

Overview

Reed-Solomon decoding problem

Correcting up to Sudan bound

Beyond Sudan bound

Experiments and conclusions

Reed-Solomon decoding problem

Reed-Solomon code

A Reed-Solomon code of length n and dimension k over \mathbb{F}_{q} with support $\mathbf{a}=\left(a_{i}\right)_{1 \leq i \leq n} \in \mathbb{F}_{q}^{n}$ is

$$
\mathbf{R S}_{k}(\mathbf{a})=\left\{\left(P\left(a_{i}\right)\right)_{1 \leq i \leq n}: P \in \mathbb{F}_{q}[X], \operatorname{deg}(P)<k\right\} .
$$

Decoding problem

Given \mathbf{a} and \mathbf{b} (received word) and knowing that

$$
b_{\ell}=P\left(a_{\ell}\right)+e_{\ell}, \quad \ell \in \llbracket 1, n \rrbracket,
$$

with $t=\#\left\{i: e_{i} \neq 0\right\}$, retrieve P and $e_{\ell}, \quad \ell \in \llbracket 1, n \rrbracket$.

Expected \# of solutions $\mathcal{O}(1)$

Reed-Solomon decoding algorithms

(Beyond Berlekamp-Welch)

List decoding algorithms:

- Sudan '97: Sudan radius
- Guruswani, Sudan '98: Johnson radius

Power decoding algorithms:

- Schmidt, Sidorenko, Bossert '10: Sudan radius
- Nielsen '14: Sudan radius
- Nielsen '18: Johnson radius

Solving a bilinear system

Define

- $\Lambda(X) \stackrel{\text { def }}{=} \Pi_{i: e_{i} \neq 0}\left(X-a_{i}\right)=X^{t}+\sum_{j=0}^{t-1} \lambda_{j} X^{j}$

error locator polynomial,

- $P(X)=\sum_{i=0}^{k-1} p_{i} X^{i}$ corresponding to the codeword.

We can write n bilinear equations

$$
\underbrace{P\left(a_{\ell}\right)} \underbrace{\Lambda\left(a_{\ell}\right)}=\underbrace{b_{\ell}} \underbrace{\Lambda\left(a_{\ell}\right)}, \quad \ell \in \llbracket 1, n \rrbracket \quad P\left(a_{\ell}\right)=b_{\ell}, \quad e_{\ell}=0
$$

i.e.

$$
\sum_{i=0}^{k-1} \sum_{j=0}^{t} a_{\ell}^{i+j} p_{i} \lambda_{j}=\sum_{j=0}^{t} b_{\ell} a_{\ell}^{j} \lambda_{j}, \quad \ell \in \llbracket 1, n \rrbracket \text { and } \lambda_{t}=1
$$

Example: \#errors= $d / 2$

Parameters: $[n, k]_{q}=[9,3]_{31}$ RS code with $t=3$ errors.
$p_{0} \lambda_{0} p_{1} \lambda_{0} p_{2} \lambda_{0} p_{0} \lambda_{1} p_{1} \lambda_{1} p_{2} \lambda_{1} p_{0} \lambda_{2} p_{1} \lambda_{2} p_{2} \lambda_{2} p_{0} p_{1} p_{2} \lambda_{0} \lambda_{1} \lambda_{2} 1$
$\left(\begin{array}{cccccccccccccccc}1 & 8 & 2 & 8 & 2 & 16 & 2 & 16 & 4 & 16 & 4 & 1 & 13 & 11 & 26 & 22 \\ 1 & 15 & 8 & 15 & 8 & 27 & 8 & 27 & 2 & 27 & 2 & 30 & 9 & 11 & 10 & 26 \\ 1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 1 & 30 & 2 & 29 & 2 & 29 \\ 1 & 27 & 16 & 27 & 16 & 29 & 16 & 29 & 8 & 29 & 8 & 30 & 18 & 21 & 9 & 26 \\ 1 & 17 & 10 & 17 & 10 & 15 & 10 & 15 & 7 & 15 & 7 & 26 & 24 & 5 & 23 & 19 \\ 1 & 28 & 9 & 28 & 9 & 4 & 9 & 4 & 19 & 4 & 19 & 5 & 9 & 4 & 19 & 5 \\ 1 & 5 & 25 & 5 & 25 & 1 & 25 & 1 & 5 & 1 & 5 & 25 & 8 & 9 & 14 & 8 \\ 1 & 26 & 25 & 26 & 25 & 30 & 25 & 30 & 5 & 30 & 5 & 6 & 27 & 20 & 24 & 4 \\ 1 & 3 & 9 & 3 & 9 & 27 & 9 & 27 & 19 & 27 & 19 & 26 & 4 & 12 & 5 & 15\end{array}\right)$

Example: \#errors= $d / 2$

Parameters: $[n, k]_{q}=[9,3]_{31}$ RS code with $t=3$ errors.

REDUCTION

$p_{0} \lambda_{0} p_{1} \lambda_{0} p_{2} \lambda_{0} p_{0} \lambda_{1} p_{1} \lambda_{1} p_{2} \lambda_{1} p_{0} \lambda_{2} p_{1} \lambda_{2} p_{2} \lambda_{2} p_{0} p_{1} p_{2} \lambda_{0} \lambda_{1} \lambda_{2} 1$
$\left(\begin{array}{cccccccccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 26 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 29 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 28 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 24 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 29 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4\end{array}\right)$
$\Rightarrow \lambda_{0}+24=0, \quad \lambda_{1}+29=0, \quad \lambda_{2}+4=0$.

Example: Sudan radius

Parameters: $[n, k]_{q}=[29,5]_{61}$ RS code with $t=15$ errors (Sudan bound).

	\# equations	
	deg. 2	deg. 1
Bilinear system reduced	19	$1+9$
Multiply linear eq.s by p_{i} 's and reduce	59	$1+14$
Multiply linear eq.s by p_{i} 's and reduce	75	$5+15=k+\mathrm{t}$

SOLVED

General approach

Macaulay matrix

The Macaulay matrix $\mathcal{M}_{D}^{\text {acaulay }}(\mathcal{S})$ in degree D of a set $\mathcal{S}=\left\{f_{1}, \cdots, f_{m}\right\}$ of polynomials is
$\mathcal{M}_{D}^{\text {acaulay }}(\mathcal{S}) \stackrel{\text { def }}{=}(\square) \leftarrow \begin{aligned} & \text { monomials of degree } \leq D \\ & \operatorname{deg}\left(x^{\alpha} f_{i}\right) \leq D .\end{aligned}$

Algorithm D-Gröbner Basis

Input

D Maximal degree,
$\mathcal{S}=\left\{f_{1}, \cdots, f_{m}\right\}$ set of polynomials.
repeat
$\mathcal{S} \leftarrow \operatorname{Pol}\left(E c h e l o n F o r m\left(\mathcal{M}_{D}^{\text {acalay }}(\mathcal{S})\right)\right)$
until $\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{S}$ has not increased.
Output \mathcal{S}.

Fact

When D is fixed, computing a D-Gröbner basis has polynomial complexity.

Fact

For large enough D, a D-Gröbner basis is a Gröbner basis (Lazard '83).

Monomial orders

Admissible monomial order

An admissible monomial order < is an order on the monomials of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such that:

1. < is total,
2. for any $m_{1}, m_{2}, m_{3}, \quad m_{1}<m_{2} \Rightarrow m_{1} m_{3}<m_{2} m_{3}$
3. for any $m, 1<m$

Graded reverse lexicographic order (DRL) $x_{1}>\cdots>x_{n}$

$$
\begin{gathered}
\\
x^{\alpha}<_{\text {drI }} x^{\beta} \Longleftrightarrow \begin{array}{c}
\operatorname{deg}\left(x^{\alpha}\right)<\operatorname{deg}\left(x^{\beta}\right) \\
\vee \\
\left(\operatorname{deg}\left(x^{\alpha}\right)=\operatorname{deg}\left(x^{\beta}\right)\right. \\
\\
\left.\wedge \exists j \text { s.t. }\left(\alpha_{i}=\beta_{i}, \quad \forall i>j\right) \wedge \alpha_{j}>\beta_{j}\right)
\end{array} ~
\end{gathered}
$$

Gröbner basis

Given $f=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha}$,

- Leading Monomial: $L M(f) \stackrel{\text { def }}{=} \max _{c_{\alpha} \neq 0}\left(x^{\alpha}\right)$
- Leading Coefficient: $L C(f) \stackrel{\text { def }}{=} c_{\alpha}$, such that $L M(f)=x^{\alpha}$.
- Leading Term: $L T(f) \stackrel{\text { def }}{=} L C(f) L M(f)$.

Gröbner basis

Let \mathcal{I} be an ideal of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and $<$ a monomial order. Then $G=\left\{g_{1}, \cdots, g_{s}\right\} \subset \mathcal{I}$ is a Gröbner basis of \mathcal{I} if and only if

$$
\left\langle L M\left(g_{1}\right), \cdots, L M\left(g_{s}\right)\right\rangle=\langle L M(f): f \in \mathcal{I}\rangle
$$

Each ideal $\mathcal{I} \neq\{0\}$ admits a Gröbner basis (not unique).

Ideal Membership Problem

Given $f, g_{1}, \ldots, g_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, detemine if $f \in\left\langle g_{1}, \ldots, g_{s}\right\rangle$.
Alternatively, determine if $\exists f_{1}, \ldots f_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ s.t.
$f=\sum_{i=1}^{s} f_{i} g_{i}$.

- Not trivial as in the univariate case
- Solved by Gröbner basis techniques

If $L M\left(g_{i}\right) \mid L M(f)$ then f can be reduced by g_{i} :

$$
r \leftarrow f-\frac{L T(f)}{L T\left(g_{i}\right)} g_{i}
$$

and $r=0$ or $L M(r)<L M(f)$.

We can iterate this reduction until the remainder r is 0 or is no more divisible by any g_{i}.

Fact

If $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis, then $f \in \mathcal{I}$ if and only if the last remainder r is 0 .

Generalization of:

- Division in a univariate polynomial ring,
- Gaussian elimination.

Reduced Gröbner basis

Let G be a Gröbner basis for the ideal \mathcal{I} wrt $<$. Then G is reduced if:

- $L C(g)=1 \quad \forall g \in G$,
- For any $g \in G,\langle L T(G \backslash\{g\})\rangle$ does not contain any monomial of g.

Each ideal $\mathcal{I} \neq\{0\}$ admits a unique reduced Gröbner basis.
Consider the algebraic system

$$
\begin{cases}f_{1}\left(x_{1}, \cdots, x_{n}\right) & =0 \\ \cdots & = \\ f_{m}\left(x_{1}, \cdots, x_{n}\right) & =0\end{cases}
$$

Fact

If the system has a unique solution $\left(r_{1}, \cdots, r_{n}\right)$ and $\mathcal{I}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is radical then the reduced Gröbner basis is given by $\left\{x_{1}-r_{1}, \cdots, x_{n}-r_{n}\right\}$.

Here we are interested in graded orders.

Degree fall

A degree fall of degree s for $\mathcal{S}=\left\{f_{1}, \cdots, f_{m}\right\}$ is a polynomial combination $\sum_{i=1}^{m} g_{i} f_{i}$ which satisfies

$$
0<s \stackrel{\text { def }}{=} \operatorname{deg}\left(\sum_{i=1}^{m} g_{i} f_{i}\right)<m_{i=1}^{m} \operatorname{deg}\left(g_{i} f_{i}\right) .
$$

If we are able to predict non-trivial degree falls we can speed up Gröbner basis computation.

Another description

- $R(X)$ interpolator polynomial (degree $\leq n-1$)

$$
R\left(a_{\ell}\right)=b_{\ell}, \quad \ell \in \llbracket 1, n \rrbracket
$$

- $G(X) \stackrel{\text { def }}{=} \Pi_{\ell=1}^{n}\left(X-a_{\ell}\right)$ (can be precomputed)

Key equation implicit in Gao's decoder

$$
\Lambda(X) P(X) \equiv \Lambda(X) R(X) \quad \bmod G(X)
$$

Proposition

$$
\sum_{i=0}^{k-1} \sum_{j=0}^{t} a_{\ell}^{i+j} p_{i} \lambda_{j}=\sum_{j=0}^{t} b_{\ell} a_{\ell}^{j} \lambda_{j}, \quad \ell \in \llbracket 1, n \rrbracket
$$

and

$$
\Lambda(X) P(X) \equiv \Lambda(X) R(X) \quad \bmod G(X)
$$

are equivalent.
They can be obtained from each other by linear combinations.

Why do we use $\Lambda(X) P(X) \equiv \Lambda(X) R(X) \bmod G(X)$?

- More convenient to work with to understand Gröbner basis calculations.
- They give directly $n-k-t+1$ linear equations, since
- the coefficient of degree $d \in \llbracket t+k, n-1 \rrbracket$ coincides with the coefficient of the same degree in $-R(X) \wedge(X) \bmod G(X)$ since $\Lambda(X) P(X)$ is of degree $\leq t+k-1$;
- the coefficient of $S(X)$ of degree $t+k-1$ is equal to p_{k-1} - coeff $\left([\Lambda(X) R(X)]_{G(X)}, X^{t+k-1}\right)$ because $\Lambda(X)$ is monic and of degree t.

Correcting up to Sudan bound

Algorithm with $D=2$ can decode up to Sudan bound

The Algorithm, with input the original bilinear system and $D=2$, can decode up to Sudan decoding radius in polynomial time.

Symply powered key equations (Nielsen '14)

$$
\Lambda(X) P(X)^{u} \equiv \Lambda(X) R(X)^{u} \quad \bmod G(X), \quad u \in \mathbb{Z}_{+}
$$

Proposition

Let $q_{1} \stackrel{\text { def }}{=} \max \{u: t+(k-1) u \leq n-1\}=\left\lfloor\frac{n-t-1}{k-1}\right\rfloor$. All affine functions in the λ_{i} 's of the form coeff $\left(\left[\Lambda(X) R^{j}(X)\right]_{G(X)}, X^{u}\right)$ for $j \in \llbracket 1, q_{1} \rrbracket$ and $u \in \llbracket t+(k-1) j+1, n-1 \rrbracket$ are in the linear span of the set \mathcal{S} output by the Algorithm with $D=2$.

Proof (sketch)

- S contains the coefficients of

$$
\Lambda(X) P(X)-\Lambda(X) R(X) \quad \bmod G(X)
$$

and therefore
$\operatorname{coeff}\left([-\Lambda(X) R(X)]_{G(X)}, X^{u}\right)$ for all $u \in \llbracket t+k, n-1 \rrbracket$.

- By induction $(j \rightarrow j+1)$:

$$
\begin{aligned}
& \left(\Lambda P^{j+1}-\Lambda R^{j+1}\right) \quad \bmod G \\
= & \left(P\left(\Lambda P^{j}-\Lambda R^{j}\right)+R^{j}(\Lambda P-\Lambda R)\right) \bmod G \\
= & \left(P\left(\Lambda P^{j}-\Lambda R^{j} \bmod G\right)+R^{j}(\wedge P-\Lambda R \quad \bmod G)\right) \bmod G .
\end{aligned}
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

$$
R^{j}(\Lambda P-\Lambda R \bmod G) \quad \bmod G
$$

Split the sum:

$$
P(\underbrace{\wedge P^{j}-\Lambda R^{j} \bmod G}_{\text {s of degree in } \llbracket t+(k-1) j+1, n-1 \rrbracket \text { vanish }}) \quad \bmod G
$$

$$
R^{j}(\Lambda P-\Lambda R \bmod G) \bmod G
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

polynomial of degree $\leq t+(k-1)(j+1)$ after elimination of variables

$$
R^{j}(\Lambda P-\Lambda R \bmod G) \quad \bmod G
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

polynomial of degree $\leq t+(k-1)(j+1)$ after elimination of variables

$$
R^{j}(\Lambda P-\Lambda R \bmod G) \bmod G
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

polynomial of degree $\leq t+(k-1)(j+1)$ after elimination of variables

$$
R^{j}(\underbrace{\Lambda P-\Lambda R \bmod G}_{\text {initial polynomial equations }}) \bmod G
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

polynomial of degree $\leq t+(k-1)(j+1)$ after elimination of variables

$$
\underbrace{R^{j}(\Lambda P-\Lambda R \bmod G) \bmod G}_{\text {linear combination of equations in } S}
$$

Split the sum:

$$
P\left(\Lambda P^{j}-\Lambda R^{j} \quad \bmod G\right) \quad \bmod G
$$

polynomial of degree $\leq t+(k-1)(j+1)$ after elimination of variables

$$
R^{j}(\Lambda P-\Lambda R \bmod G) \bmod G
$$

linear combination of equations in S
\Rightarrow coeff $\left(\left[\Lambda(X) R^{j+1}(X)\right]_{G(X)}, X^{u}\right)$ are in the linear span of the set \mathcal{S} output by a 2 -Gröbner basis for
$u \in \llbracket t+(k-1)(j+1)+1, n-1 \rrbracket$.

Beyond Sudan bound

Example: above Sudan radius

Parameters: $[n, k]_{q}=[25,5]_{31}$ RS code with $t=15$ errors.

	\# equations		
	deg. 3	deg. 2	deg. 1
Reduced matrix deg. 2		18	7
Multiply by p_{i} 's and reduce	149	31	7
Multiply by λ_{i} 's and reduce	262	38	7
Multiply by λ_{i} 's and reduce	291	41	7
Multiply by λ_{i} 's and reduce	297	50	7
Multiply by λ_{i} 's and reduce	325	67	7
Multiply by λ_{i} 's and reduce	335	91	$20=t+k$

SOLVED

"Error evaluator" polynomial $\Omega(X)$

The "error evaluator" polynomial $\Omega(X)$ of degree $\leq t-1$ defined by

$$
\Omega\left(a_{\ell}\right)=-e_{\ell}, \text { for all } \ell \in \llbracket 1, n \rrbracket, e_{\ell} \neq 0
$$

We then have the identity

$$
\Lambda(P-R)=\Omega G
$$

Equivalent definition of Ω as

$$
\Omega \stackrel{\text { def }}{=}-\Lambda R \div G
$$

Fact

$\Omega(X)$'s coefficients are linear forms in the λ_{i} 's.

Low-degree equations in the λ_{i} 's

Generalization of Power decoding equations (Nielsen '18)

$$
\begin{aligned}
& \Lambda^{s} P^{u}=\sum_{i=0}^{u}\left(\Lambda^{s-i} \Omega^{i}\right)\binom{u}{i} R^{u-i} G^{i} \quad \stackrel{\text { def }}{=} \chi(s, u), \quad u \in \llbracket 1, s-1 \rrbracket, \\
& \Lambda^{s} P^{u} \equiv\left[\sum_{i=0}^{s-1}\left(\Lambda^{s-i} \Omega^{i}\right)\binom{u}{i} R^{u-i} G^{i}\right] \stackrel{\text { def }}{=} \chi(s, u), \quad u \in \llbracket s, v \rrbracket .
\end{aligned}
$$

From the identity

$$
\left(\Lambda^{s} P^{u}\right)\left(\Lambda^{s^{\prime}} P^{u^{\prime}}\right)=\Lambda^{s+s^{\prime}} P^{u+u^{\prime}}
$$

it is clear that

$$
\chi(s, u) \chi\left(s^{\prime}, u^{\prime}\right)-\chi\left(s+s^{\prime}, u+u^{\prime}\right)=0
$$

Trivially produced at degree $s+s^{\prime}+u+u^{\prime}$ by a Gröbner basis, but actually discovered at a rather smaller degree.

- Let $\mathcal{I}_{D}=\langle\mathcal{S}\rangle_{\mathbb{F}_{q}}$ where \mathcal{S} is the set output by the Algorithm with input D.
- $P \in_{\text {coef }} \mathcal{I}_{v}$ means that all the coefficients of P belong to \mathcal{I}_{v}.
- $\chi(s, u)_{H} \stackrel{\text { def }}{=} \sum_{i>t s+u(k-1)} a_{i} X^{i}$, where $\chi(s, u)=\sum_{i} a_{i} X^{i}$
- $q_{s} \stackrel{\text { def }}{=} \max \{u: s t+u(k-1) \leq s n-1\}$

Theorem

For all integers $1 \leq s, 1 \leq s^{\prime}, 0 \leq u \leq q_{s}, 0 \leq u^{\prime} \leq q_{s^{\prime}}$

$$
\begin{array}{rll}
\chi(s, u)_{H} & \epsilon_{\mathrm{coef}} & \mathcal{I}_{s+1} \\
\chi(s, u) \chi\left(s^{\prime}, u^{\prime}\right)-\chi\left(s+s^{\prime}, u+u^{\prime}\right) & \epsilon_{\mathrm{coef}} & \mathcal{I}_{s+s^{\prime}+1} .
\end{array}
$$

Example ($s=s^{\prime}=1, u=1, u^{\prime}=2$):

$$
[\Lambda R]_{G} \cdot\left[\Lambda R^{2}\right]_{G}-\left[\Lambda^{2} R^{3}+3 \Lambda R^{2} \Omega G\right]_{G^{2}} \in_{\text {coef }} \mathcal{I}_{3} .
$$

Lemma

For all integers $1 \leq s$ and $0 \leq u<q_{s}$

$$
\begin{array}{rcl}
\chi(s, u) P-\chi(s, u+1) & \epsilon_{\text {coef }} & \mathcal{I}_{s+1} \\
\chi(s, u+1)_{H} & \in_{\text {coef }} & \mathcal{I}_{s+1} .
\end{array}
$$

Generalization of linear equations at degree 2 (Sudan bound).

- linear (in λ_{i} 's) high coefficients \rightarrow degree-s (in λ_{i} 's) high coefficients,
- bilinear equations \rightarrow equations of bidegree $(1, s)$.

Proof (sketch) of the Theorem

By induction (on u_{1} and u_{2}).
Assume

$$
\chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in_{\operatorname{coef}} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

The degree is $s_{1}+s_{2}$, therefore

$$
P \chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-P \chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in_{\mathrm{coef}} \mathcal{I}_{s_{1}+s_{2}+1}
$$

By the previous Lemma,

$$
\chi\left(s_{1}, u_{1}+1\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}+1\right) \epsilon_{\text {coef }} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

Proof (sketch) of the Theorem

By induction (on u_{1} and u_{2}).
Assume

$$
\chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in_{\operatorname{coef}} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

The degree is $s_{1}+s_{2}$, therefore

$$
P \chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-P \chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in_{\mathrm{coef}} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

By the previous Lemma,

$$
\chi\left(s_{1}, u_{1}+1\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}+1\right) \in_{\text {coef }} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

Proof (sketch) of the Theorem

By induction (on u_{1} and u_{2}).
Assume

$$
\chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in_{\operatorname{coef}} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

The degree is $s_{1}+s_{2}$, therefore

$$
P \chi\left(s_{1}, u_{1}\right) \chi\left(s_{2}, u_{2}\right)-P \chi\left(s_{1}+s_{2}, u_{1}+u_{2}\right) \in \in_{\mathrm{coef}} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

By the previous Lemma,

$$
\chi\left(s_{1}, u_{1}+1\right) \chi\left(s_{2}, u_{2}\right)-\chi\left(s_{1}+s_{2}, u_{1}+u_{2}+1\right) \epsilon_{\text {coef }} \mathcal{I}_{s_{1}+s_{2}+1} .
$$

An alternative approach for Gröbner basis computation

1. Compute the polynomials in only λ_{i} 's from the theorem
2. Run the Algorithm with maximal degree D of the system generated in this way
3. Recover the p_{i} 's by solving a linear system once the λ_{i} 's have been retrieved.

Experiments and conclusions

Experimental results

For some parameters, quadratic equations involving only λ_{i} 's are enough to solve the system, and we don't need to go to degree 3 (unlike the bilinear system).

Table 1: $[n, k]_{q}=[64,27]_{64}$

t	$\# \lambda_{j}$	Eq.	\#Eq.	D	Max Matrix	\mathbb{C}
20	3	Bilinear system	$2: 46$	3	1522×1800	$2^{26.5}$
		System in λ_{i} 's	$2: 9$	2	47×28	$2^{24.4}$

Table 2: $[n, k]_{q}=[256,63]_{256}$

t	$\# \lambda_{j}$	Eq.	$\#$ Eq.	D	Max Matrix	\mathbb{C}
120	36	Bilinear system	$2: 182$	3	20023×128018	$2^{38.0}$
		System in $\lambda_{i}{ }^{\prime}$ s	$2: 85$	2	119×703	$2^{34.5}$

When the number of remaining λ_{j} 's is small compared to the number of p_{i} 's, even if the maximal degree D is larger than for the bilinear system, the number of variables is much smaller and the computation is faster.

Table 3: $[n, k]_{q}=[64,27]_{64}$

t	$\# \lambda_{j}$	Eq.	\#Eq.	D	Max Matrix	\mathbb{C}
23	9	Bilinear system	$2: 49$	5	428533×406773	$2^{45.4}$
		System in λ_{i} 's	$2: 4,3: 22$	5	1466×1641	$2^{30.1}$
24	11	Bilinear system	$2: 50$	≥ 6	-	-
		System in λ_{i} 's	$2: 1,3: 23$	7	28199×23536	$2^{35.8}$

Table 4: $[n, k]_{q}=[256,63]_{256}$

t	$\# \lambda_{j}$	Eq.	\#Eq.	D	Max Matrix	\mathbb{C}
124	48	Bilinear system	$2: 186$	≥ 4	-	-
		System in λ_{i} 's	$2: 117,3: 1,4: 189$	4	164600×270725	$2^{45.2}$

In some cases we can efficiently attain and even slightly pass Johnson bound.

Table 5: $[n, k]_{q}=[64,27]_{64}$

t	$\# \lambda_{j}$	Eq.	\#Eq.	D	Max Matrix	\mathbb{C}
23 (JB)	9	Bilinear system	$2: 49$	5	428533×406773	$2^{45.4}$
		System in λ_{i} 's	$2: 4,3: 22$	5	1466×1641	$2^{30.1}$
24	11	Bilinear system	$2: 50$	≥ 6	-	-
		System in λ_{i} 's	$2: 1,3: 23$	7	28199×23536	$2^{35.8}$

Table 6: $[n, k]_{q}=[37,5]_{61}$

t	$\# \lambda_{j}$	Eq.	\#Eq.	D	Max Matrix	\mathbb{C}
$24(\mathrm{JB})$	12	Bilinear system	$2: 28$	3	1065×1034	$2^{26.0}$
		System in λ_{i} 's	$2: 37$	3	454×454	$2^{28.0}$
25	15	Bilinear system	$2: 29$	3	2520×1573	$2^{28.0}$
		System in λ_{i} 's	$2: 25,3: 40$	4	3193×3311	$2^{34.3}$
26	18	Bilinear system	$2: 30$	4	20446×15171	$2^{33.1}$
		System in $\lambda_{i}{ }^{\prime}$'s	$2: 25,3: 37,4: 37$	5	38796×22263	$2^{38.1}$
27	21	Bilinear system	$2: 31$	4	27366×24894	$2^{36.0}$

Conclusions

- We proved that Gröbner bases can solve in polynomial time the bilinear system associated to the decoding problem of Reed-Solomon codes up to Sudan bound.
- We started to figure out why this Gröbner basis approach behaves much better here than for a random bilinear system (by predicting some unusual degree falls that may determine other degree falls).
- We proposed an alternative polynomial system to work with and showed that this is in some cases more convenient than taking the original bilinear system.
- We experimentally found several regions of parameters for which the Gröbner basis approach can decode efficiently up to and slightly beyond Johnson bound.

Thank you for your attention!

Questions?

