Decoding Reed-Solomon codes by solving a bilinear system with a Gröbner basis approach

Magali Bardet, **Rocco Mora**, Jean-Pierre Tillich April 6, 2021

Sorbonne Université, INRIA Paris

Reed-Solomon decoding problem

Correcting up to Sudan bound

Beyond Sudan bound

Experiments and conclusions

Reed-Solomon decoding problem

Reed-Solomon code

A **Reed-Solomon code** of length *n* and dimension *k* over \mathbb{F}_q with support $\mathbf{a} = (a_i)_{1 \le i \le n} \in \mathbb{F}_q^n$ is

$$\mathbf{RS}_k(\mathbf{a}) = \{(P(a_i))_{1 \le i \le n} : P \in \mathbb{F}_q[X], \deg(P) < k\}.$$

Decoding problem

Given a and b (received word) and knowing that

$$b_{\ell} = P(a_{\ell}) + e_{\ell}, \ \ell \in [\![1, n]\!],$$

with $t = \#\{i : e_i \neq 0\}$, retrieve P and e_ℓ , $\ell \in \llbracket 1, n \rrbracket$.

Reed-Solomon decoding algorithms

(Beyond Berlekamp-Welch)

List decoding algorithms:

- Sudan '97: Sudan radius
- Guruswani, Sudan '98: Johnson radius

Power decoding algorithms:

- Schmidt, Sidorenko, Bossert '10: Sudan radius
- Nielsen '14: Sudan radius
- Nielsen '18: Johnson radius

Solving a bilinear system

Define

•
$$\Lambda(X) \stackrel{\text{def}}{=} \prod_{i:e_i \neq 0} (X - a_i) = X^t + \sum_{j=0}^{t-1} \lambda_j X^j$$

error locator polynomial,

• $P(X) = \sum_{i=0}^{k-1} p_i X^i$ corresponding to the codeword.

We can write n bilinear equations

$$\underbrace{P(a_{\ell})}_{\ell} \bigwedge(a_{\ell}) = \underbrace{b_{\ell}}_{\ell} \bigwedge(a_{\ell}), \quad \ell \in \llbracket 1, n \rrbracket \qquad \bullet \ P(a_{\ell}) = b_{\ell}, \quad e_{\ell} = 0$$
$$\bullet \quad \bigwedge(a_{\ell}) = 0, \quad e_{\ell} \neq 0$$

i.e.

$$\sum_{i=0}^{k-1} \sum_{j=0}^t a_\ell^{i+j} p_i \lambda_j = \sum_{j=0}^t b_\ell a_\ell^j \lambda_j, \quad \ell \in \llbracket 1, n \rrbracket \text{ and } \lambda_t = 1.$$

Example: #errors= d/2

Parameters: $[n, k]_q = [9, 3]_{31}$ RS code with t = 3 errors.

	$p_0\lambda_0$	$p_1\lambda_0$	$p_2\lambda_0$	$p_0\lambda_1$	$p_1\lambda_1$	$p_2\lambda_1$	$p_0\lambda_2$	$p_1\lambda_2$	$p_2\lambda_2$	p 0	<i>p</i> 1	p 2	λ_0	λ_1	λ_2	1
(1	8	2	8	2	16	2	16	4	16	4	1	13	11	26	22\
	1	15	8	15	8	27	8	27	2	27	2	30	9	11	10	26
	1	30	1	30	1	30	1	30	1	30	1	30	2	29	2	29
	1	27	16	27	16	29	16	29	8	29	8	30	18	21	9	26
	1	17	10	17	10	15	10	15	7	15	7	26	24	5	23	19
	1	28	9	28	9	4	9	4	19	4	19	5	9	4	19	5
	1	5	25	5	25	1	25	1	5	1	5	25	8	9	14	8
	1	26	25	26	25	30	25	30	5	30	5	6	27	20	24	4
	1	3	9	3	9	27	9	27	19	27	19	26	4	12	5	15/

Example: #errors= d/2

Parameters: $[n, k]_q = [9, 3]_{31}$ RS code with t = 3 errors. REDUCTION

 $p_0\lambda_0 p_1\lambda_0 p_2\lambda_0 p_0\lambda_1 p_1\lambda_1 p_2\lambda_1 p_0\lambda_2 p_1\lambda_2 p_2\lambda_2 p_0 p_1 p_2 \underbrace{\lambda_0 \lambda_1 \lambda_2 \mathbf{1}}_{\lambda_0 \lambda_1 \lambda_2 \mathbf{1}}$

/	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 12
	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0 26
	0	0	1	0	1	0	1	0	0	0	0	0	0	0	02
	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0 29
	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0 7
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0 28
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0 24
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0 29
$\left(\right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 4

 $\Rightarrow \lambda_0 + 24 = 0, \quad \lambda_1 + 29 = 0, \quad \lambda_2 + 4 = 0.$

Parameters: $[n, k]_q = [29, 5]_{61}$ RS code with t = 15 errors (Sudan bound).

	# equations		
	deg. 2	deg. 1	
Bilinear system reduced	19	1+9	
Multiply linear eq.s by p_i 's and reduce	59	1+14	
Multiply linear eq.s by p_i 's and reduce	75	5+15=k+t	

SOLVED

Macaulay matrix

The **Macaulay matrix** $\mathcal{M}_D^{\text{acaulay}}(S)$ in degree D of a set $S = \{f_1, \cdots, f_m\}$ of polynomials is

Input

- D Maximal degree,
- $\mathcal{S} = \{f_1, \cdots, f_m\}$ set of polynomials.

repeat

 $\mathcal{S} \leftarrow \text{Pol}(\text{EchelonForm}(\mathcal{M}_D^{\text{acaulay}}(\mathcal{S})))$ **until** dim_{\mathbb{F}_q} \mathcal{S} has not increased. Output \mathcal{S} .

Fact

When D is fixed, computing a D-Gröbner basis has polynomial complexity.

Fact

For large enough *D*, a *D*-Gröbner basis is a Gröbner basis (Lazard '83).

Monomial orders

Admissible monomial order

An **admissible monomial order** < is an order on the monomials of $\mathbb{K}[x_1, \ldots, x_n]$ such that:

- $1.\ < {\sf is total},$
- 2. for any $m_1, m_2, m_3, \quad m_1 < m_2 \Rightarrow m_1 m_3 < m_2 m_3$
- 3. for any m, 1 < m

Graded reverse lexicographic order (DRL) $x_1 > \cdots > x_n$

$$\begin{array}{ccc} \deg\left(x^{\alpha}\right) < \deg\left(x^{\beta}\right) \\ & \lor \\ x^{\alpha} <_{\mathsf{drl}} x^{\beta} \iff & & \lor \\ & \left(\deg\left(x^{\alpha}\right) = \deg\left(x^{\beta}\right) \\ & \land \exists j \quad \mathsf{s.t.} \ \left(\alpha_{i} = \beta_{i}, \quad \forall i > j\right) \land \ \alpha_{j} > \beta_{j}\right) \end{array}$$

Gröbner basis

Given $f = \sum_{\alpha \in \mathbb{N}^n} c_{\alpha} x^{\alpha}$,

- Leading Monomial: $LM(f) \stackrel{\text{\tiny def}}{=} \max_{c_{\alpha} \neq 0}(x^{\alpha})$
- Leading Coefficient: $LC(f) \stackrel{\text{\tiny def}}{=} c_{\alpha}$, such that $LM(f) = x^{\alpha}$.
- Leading Term: $LT(f) \stackrel{\text{def}}{=} LC(f)LM(f)$.

Gröbner basis

Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and < a monomial order. Then $G = \{g_1, \cdots, g_s\} \subset \mathcal{I}$ is a **Gröbner basis** of \mathcal{I} if and only if

$$\langle LM(g_1), \cdots, LM(g_s) \rangle = \langle LM(f) : f \in \mathcal{I} \rangle.$$

Each ideal $\mathcal{I} \neq \{0\}$ admits a Gröbner basis (not unique).

Ideal Membership Problem Given $f, g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$, detemine if $f \in \langle g_1, \ldots, g_s \rangle$. Alternatively, determine if $\exists f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ s.t. $f = \sum_{i=1}^s f_i g_i$.

- Not trivial as in the univariate case
- Solved by Gröbner basis techniques

If $LM(g_i) \mid LM(f)$ then f can be **reduced** by g_i :

$$r \leftarrow f - \frac{LT(f)}{LT(g_i)}g_i$$

and r = 0 or LM(r) < LM(f).

We can iterate this reduction until the remainder r is 0 or is no more divisible by any g_i .

Fact

If $G = \{g_1, \ldots, g_s\}$ is a Gröbner basis, then $f \in \mathcal{I}$ if and only if the last remainder r is 0.

Generalization of:

- Division in a univariate polynomial ring,
- Gaussian elimination.

Reduced Gröbner basis

Let G be a Gröbner basis for the ideal \mathcal{I} wrt <. Then G is **reduced** if:

•
$$LC(g) = 1 \quad \forall g \in G$$
,

 For any g ∈ G, ⟨LT(G \ {g})⟩ does not contain any monomial of g.

Each ideal $\mathcal{I} \neq \{0\}$ admits a **unique** reduced Gröbner basis.

Consider the algebraic system

$$\begin{array}{rcl} f_1(x_1,\cdots,x_n) &=& 0\\ \cdots & &=\\ f_m(x_1,\cdots,x_n) &=& 0 \end{array}$$

Fact

If the system has a unique solution (r_1, \dots, r_n) and $\mathcal{I} = \langle f_1, \dots, f_m \rangle$ is radical then the reduced Gröbner basis is given by $\{x_1 - r_1, \dots, x_n - r_n\}$. Here we are interested in graded orders.

Degree fall

A **degree fall** of degree *s* for $S = \{f_1, \dots, f_m\}$ is a polynomial combination $\sum_{i=1}^m g_i f_i$ which satisfies

$$0 < s \stackrel{\text{\tiny def}}{=} \deg\left(\sum_{i=1}^m g_i f_i\right) < \max_{i=1}^m \deg\left(g_i f_i\right).$$

If we are able to predict non-trivial degree falls we can speed up Gröbner basis computation.

• R(X) interpolator polynomial (degree $\leq n-1$)

$$R(a_\ell) = b_\ell, \ \ell \in \llbracket 1, n
rbracket$$

•
$$G(X) \stackrel{\text{\tiny def}}{=} \prod_{\ell=1}^{n} (X - a_{\ell})$$
 (can be precomputed)

Key equation implicit in Gao's decoder

 $\Lambda(X)P(X) \equiv \Lambda(X)R(X) \mod G(X)$

Proposition

$$\sum_{i=0}^{k-1}\sum_{j=0}^{t}a_{\ell}^{i+j}p_{i}\lambda_{j}=\sum_{j=0}^{t}b_{\ell}a_{\ell}^{j}\lambda_{j}, \ \ell\in\llbracket 1,n\rrbracket$$

 $\quad \text{and} \quad$

$$\Lambda(X)P(X) \equiv \Lambda(X)R(X) \mod G(X)$$

are equivalent.

They can be obtained from each other by linear combinations.

Why do we use $\Lambda(X)P(X) \equiv \Lambda(X)R(X) \mod G(X)$?

- More convenient to work with to understand Gröbner basis calculations.
- They give directly n k t + 1 linear equations, since
 - the coefficient of degree d ∈ [[t + k, n − 1]] coincides with the coefficient of the same degree in −R(X)Λ(X) mod G(X) since Λ(X)P(X) is of degree ≤ t + k − 1;
 - the coefficient of S(X) of degree t + k 1 is equal to p_{k-1} - coeff ([Λ(X)R(X)]_{G(X)}, X^{t+k-1}) because Λ(X) is monic and of degree t.

Correcting up to Sudan bound

The Algorithm, with input the original bilinear system and D = 2, can decode up to Sudan decoding radius in polynomial time.

Symply powered key equations (Nielsen '14)

 $\Lambda(X)P(X)^u \equiv \Lambda(X)R(X)^u \mod G(X), \ u \in \mathbb{Z}_+.$

Proposition

Let $q_1 \stackrel{\text{def}}{=} \max\{u : t + (k-1)u \le n-1\} = \left\lfloor \frac{n-t-1}{k-1} \right\rfloor$. All affine functions in the λ_i 's of the form coeff $\left(\left[\Lambda(X)R^j(X) \right]_{G(X)}, X^u \right)$ for $j \in [\![1, q_1]\!]$ and $u \in [\![t + (k-1)j + 1, n-1]\!]$ are in the linear span of the set S output by the Algorithm with D = 2.

• S contains the coefficients of

$$\Lambda(X)P(X) - \Lambda(X)R(X) \mod G(X)$$

and therefore

$$\operatorname{coeff}\left(\left[-\Lambda(X)R(X)\right]_{G(X)}, X^u\right) \text{ for all } u \in \llbracket t+k, n-1 \rrbracket.$$

• By induction $(j \rightarrow j + 1)$:

$$(\Lambda P^{j+1} - \Lambda R^{j+1}) \mod G$$

= $(P(\Lambda P^j - \Lambda R^j) + R^j(\Lambda P - \Lambda R)) \mod G$
= $(P(\Lambda P^j - \Lambda R^j \mod G) + R^j(\Lambda P - \Lambda R \mod G)) \mod G.$

۰

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

•

 $P(\underbrace{\Lambda P^{j} - \Lambda R^{j} \mod G}_{\text{coefficients of degree in } [t + (k-1)j + 1, n-1]} \mod G$

 $R^{j}(\Lambda P - \Lambda R \mod G) \mod G$

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

polynomial of degree $\leq t + (k-1)(j+1)$ after elimination of variables

$R^{j}(\Lambda P - \Lambda R \mod G) \mod G$

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

polynomial of degree $\leq t + (k-1)(j+1)$ after elimination of variables

 $R^{j}(\Lambda P - \Lambda R \mod G) \mod G$

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

polynomial of degree $\leq t + (k-1)(j+1)$ after elimination of variables

$$R^{j}(\underbrace{\Lambda P - \Lambda R \mod G}) \mod G$$

initial polynomial equations

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

polynomial of degree $\leq t + (k-1)(j+1)$ after elimination of variables

$$R^{j}(\Lambda P - \Lambda R \mod G) \mod G$$

linear combination of equations in ${\boldsymbol{S}}$

$P(\Lambda P^j - \Lambda R^j \mod G) \mod G$

polynomial of degree $\leq t + (k-1)(j+1)$ after elimination of variables

$$R^{j}(\Lambda P - \Lambda R \mod G) \mod G$$

linear combination of equations in S

 $\Rightarrow \operatorname{coeff}\left(\left[\Lambda(X)R^{j+1}(X)\right]_{G(X)}, X^{u}\right) \text{ are in the linear span of the set } \mathcal{S} \text{ output by a 2-Gröbner basis for } u \in [t + (k-1)(j+1) + 1, n-1]].$

Beyond Sudan bound

Parameters: $[n, k]_q = [25, 5]_{31}$ RS code with t = 15 errors.

		# equat	ions
	deg. 3	deg. 2	deg. 1
Reduced matrix deg. 2		18	7
Multiply by <i>p_i</i> 's and reduce	149	31	7
Multiply by λ_i 's and reduce	262	38	7
Multiply by λ_i 's and reduce	291	41	7
Multiply by λ_i 's and reduce	297	50	7
Multiply by λ_i 's and reduce	325	67	7
Multiply by λ_i 's and reduce	335	91	20 = t + k

SOLVED

The "**error evaluator**" polynomial $\Omega(X)$ of degree $\leq t - 1$ defined by

$$\Omega(a_\ell) = -e_\ell$$
, for all $\ell \in \llbracket 1, n
rbracket$, $e_\ell \neq 0$.

We then have the identity

$$\Lambda(P-R)=\Omega G.$$

Equivalent definition of $\boldsymbol{\Omega}$ as

$$\Omega \stackrel{\text{\tiny def}}{=} -\Lambda R \div G.$$

Fact

 $\Omega(X)$'s coefficients are linear forms in the λ_i 's.

Low-degree equations in the λ_i 's

Generalization of Power decoding equations (Nielsen '18)

$$\Lambda^{s} P^{u} = \sum_{i=0}^{u} \left(\Lambda^{s-i} \Omega^{i}\right) \begin{pmatrix} u \\ i \end{pmatrix} R^{u-i} G^{i} \qquad \stackrel{\text{def}}{=} \chi(s, u), \quad u \in \llbracket 1, s-1 \rrbracket,$$
$$\Lambda^{s} P^{u} \equiv \left[\sum_{i=0}^{s-1} \left(\Lambda^{s-i} \Omega^{i}\right) \begin{pmatrix} u \\ i \end{pmatrix} R^{u-i} G^{i} \right]_{G^{s}} \stackrel{\text{def}}{=} \chi(s, u), \quad u \in \llbracket s, v \rrbracket.$$

From the identity

$$\left(\Lambda^{s}P^{u}\right)\left(\Lambda^{s'}P^{u'}\right)=\Lambda^{s+s'}P^{u+u'},$$

it is clear that

$$\chi(s,u)\chi(s',u')-\chi(s+s',u+u')=0$$

Trivially produced at degree s + s' + u + u' by a Gröbner basis, but actually discovered at a rather smaller degree. 24/32

- Let $\mathcal{I}_D = \langle S \rangle_{\mathbb{F}_q}$ where S is the set output by the Algorithm with input D.
- $P \in_{\operatorname{coef}} \mathcal{I}_{v}$ means that all the coefficients of P belong to \mathcal{I}_{v} .
- $\chi(s, u)_H \stackrel{\text{def}}{=} \sum_{i > ts + u(k-1)} a_i X^i$, where $\chi(s, u) = \sum_i a_i X^i$

•
$$q_s \stackrel{\text{\tiny def}}{=} \max\{u: st + u(k-1) \leq sn-1\}$$

Theorem

For all integers $1 \leq s$, $1 \leq s'$, $0 \leq u \leq q_s$, $0 \leq u' \leq q_{s'}$

$$\begin{split} \chi(s,u)_{\mathcal{H}} &\in_{\operatorname{coef}} \quad \mathcal{I}_{s+1} \\ \chi(s,u)\chi(s',u') - \chi(s+s',u+u') &\in_{\operatorname{coef}} \quad \mathcal{I}_{s+s'+1}. \end{split}$$

Example
$$(s = s' = 1, u = 1, u' = 2)$$
:
 $[\Lambda R]_G \cdot [\Lambda R^2]_G - [\Lambda^2 R^3 + 3\Lambda R^2 \Omega G]_{G^2} \in_{\operatorname{coef}} \mathcal{I}_3$

Lemma

For all integers $1 \leq s$ and $0 \leq u < q_s$

$$\chi(s, u)P - \chi(s, u+1) \in_{coef} \mathcal{I}_{s+1}$$

 $\chi(s, u+1)_H \in_{coef} \mathcal{I}_{s+1}.$

Generalization of linear equations at degree 2 (Sudan bound).

- linear (in λ_i 's) high coefficients \rightarrow degree-*s* (in λ_i 's) high coefficients,
- bilinear equations \rightarrow equations of bidegree (1, s).

By induction (on u_1 and u_2). Assume

$$\chi(s_1, u_1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

The degree is $s_1 + s_2$, therefore

 $P\chi(s_1, u_1) \chi(s_2, u_2) - P\chi(s_1 + s_2, u_1 + u_2) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$

By the previous Lemma,

 $\chi(s_1, u_1 + 1) \ \chi(s_2, u_2) - \ \chi(s_1 + s_2, u_1 + u_2 + 1) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$

By induction (on u_1 and u_2). Assume

$$\chi(s_1, u_1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

The degree is $s_1 + s_2$, therefore

$$P\chi(s_1, u_1) \chi(s_2, u_2) - P\chi(s_1 + s_2, u_1 + u_2) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

By the previous Lemma,

$$\chi(s_1, u_1 + 1) \ \chi(s_2, u_2) - \ \chi(s_1 + s_2, u_1 + u_2 + 1) \ \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

By induction (on u_1 and u_2). Assume

$$\chi(s_1, u_1)\chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

The degree is $s_1 + s_2$, therefore

$$P\chi(s_1, u_1)\chi(s_2, u_2) - P\chi(s_1 + s_2, u_1 + u_2) \in_{coef} \mathcal{I}_{s_1 + s_2 + 1}.$$

By the previous Lemma,

$$\chi(s_1, u_1 + 1) \chi(s_2, u_2) - \chi(s_1 + s_2, u_1 + u_2 + 1) \in_{\operatorname{coef}} \mathcal{I}_{s_1 + s_2 + 1}.$$

- 1. Compute the polynomials in only λ_i 's from the theorem
- 2. Run the Algorithm with maximal degree *D* of the system generated in this way
- 3. Recover the p_i 's by solving a linear system once the λ_i 's have been retrieved.

Experiments and conclusions

For some parameters, quadratic equations involving only λ_i 's are enough to solve the system, and we don't need to go to degree 3 (unlike the bilinear system).

t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
20	3	Bilinear system	2:46	3	1522 imes 1800	2 ^{26.5}
		System in λ_i 's	2:9	2	47 imes 28	2 ^{24.4}

Table 1: $[n, k]_q = [64, 27]_{64}$

Table 2: $[n, k]_q = [256, 63]_{256}$

t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
120	36	Bilinear system	2:182	3	20023×128018	2 ^{38.0}
		System in λ_i 's	2:85	2	119 imes703	2 ^{34.5}

When the number of remaining λ_j 's is small compared to the number of p_i 's, even if the maximal degree D is larger than for the bilinear system, the number of variables is much smaller and the computation is faster.

t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
23	9	Bilinear system	2:49	5	428533×406773	2 ^{45.4}
		System in λ_i 's	2:4, 3:22	5	1466 imes 1641	2 ^{30.1}
24	11	Bilinear system	2:50	≥ 6	-	-
		System in λ_i 's	2:1, 3:23	7	28199×23536	2 ^{35.8}

Table 3: $[n, k]_q = [64, 27]_{64}$

Table 4: $[n, k]_q = [256, 63]_{256}$

t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
124	48	Bilinear system	2:186	≥ 4	-	-
		System in λ_i 's	2:117, 3:1, 4:189	4	164600×270725	2 ^{45.2}

In some cases we can efficiently attain and even slightly pass Johnson bound.

			1		-	
t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
23 (JB)	9	Bilinear system	2:49	5	428533 × 406773	2 ^{45.4}
		System in λ_i 's	2:4, 3:22	5	1466 imes 1641	2 ^{30.1}
24	11	Bilinear system	2:50	≥ 6	-	-
		System in λ_i 's	2:1, 3:23	7	28199×23536	2 ^{35.8}

Table 5: $[n, k]_q = [64, 27]_{64}$

Table 6: $[n, k]_q = [37, 5]_{61}$

t	$\#\lambda_j$	Eq.	#Eq.	D	Max Matrix	\mathbb{C}
24 (JB)	12	Bilinear system	2:28	3	1065 imes 1034	2 ^{26.0}
		System in λ_i 's	2:37	3	454 imes454	2 ^{28.0}
25	15	Bilinear system	2:29	3	2520 imes 1573	2 ^{28.0}
		System in λ_i 's	2:25, 3:40	4	3193 imes 3311	2 ^{34.3}
26	18	Bilinear system	2:30	4	20446×15171	2 ^{33.1}
		System in λ_i 's	2:25, 3:37, 4:37	5	38796 × 22263	2 ^{38.1}
27	21	Bilinear system	2:31	4	27366×24894	2 ^{36.0}

Conclusions

- We proved that Gröbner bases can solve in polynomial time the bilinear system associated to the decoding problem of Reed-Solomon codes up to Sudan bound.
- We started to figure out why this Gröbner basis approach behaves much better here than for a random bilinear system (by predicting some unusual degree falls that may determine other degree falls).
- We proposed an alternative polynomial system to work with and showed that this is in some cases more convenient than taking the original bilinear system.
- We experimentally found several regions of parameters for which the Gröbner basis approach can decode efficiently up to and slightly beyond Johnson bound.

Thank you for your attention! Questions?