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Reed-Solomon decoding problem



Reed-Solomon code
A Reed-Solomon code of length n and dimension k over [,
with support a = (a,')lg,'gn € FZ is

RSk(a) = {(P(ai))1<i<n : P € Fq4[X], deg(P) < k}.
Decoding problem
Given a and b (received word) and knowing that
by = P(ay) + e, € [1,n],

with t = #{i : e; # 0}, retrieve P and ¢;, ¢ € [1,n].

Unique solution Polynomial # of solutions def Kk
-~ A ~ A ~ R = =
0 f1-V2R 1-vR 1-R

~ Y

~
Expected # of solutions O(1)
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Reed-Solomon decoding algorithms

(Beyond Berlekamp-Welch)

R & K
Sudan  Johnson n
0 B 1-V2R 1-vVR 1-R 1

List decoding algorithms:

e Sudan '97: Sudan radius

e Guruswani, Sudan '98: Johnson radius
Power decoding algorithms:

e Schmidt, Sidorenko, Bossert '10: Sudan radius
e Nielsen '14: Sudan radius

e Nielsen '18: Johnson radius
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Solving a bilinear system

Define

o A(X) Z Migro(X — ai) = X+ Y725 A X
error locator polynomial,

o P(X)

We can write n bilinear equations

Pea) = b Ao, €T

k—

|_l

>

i=0 j=0

i+j
ap " Pi

t
No= b,

j=0

= fogol piX' corresponding to the codeword.

o Plag) =by, e,=0
° /\(a(/):O, 66750

¢e[1,n] and \¢ = 1.
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Example: #errors= d/2

Parameters: [n, k]q = [9,3]31 RS code with t = 3 errors.

PoAo P1A0 P2A0 PoA1 P1A1 P2A1 PoA2 p1A2 paA2 po p1 p2 Ao A1 Az 1

1 8 2 8 2 16 2 16 4 16 4 1 13112622
15 8 15 8 27 8 27 27 2 30 9 11 1026
30 1 30 1 30 1 30 301 30 2 29 229
27 16 27 16 29 16 29 20 8 301821 9 26
17 10 17 10 15 10 15 15 7 2624 5 2319
289 28 9 4 9 4 19 4195 9 4195
5 25 5 25 1 25 1 1 5258 9 14 8
260 25 26 25 30 25 30 5 305 6 2720244
3 9 3 9 27 9 27 19 271926 4 12 5 15

~N & = N

(€]

I T = T o o SO = S G
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Example: #errors= d/2

Parameters: [n, k]q = [9,3]31 RS code with t = 3 errors.
REDUCTION
PoAo P1A0 P2A0 PoA1 P1A1 p2A1 PoA2 piA2 paA2 po p1 p2(Ao A Ao 1
1 0 0 0 0 0 0 0 0O 0O 12
26

o
o

29

28
24
29

O O O O O o o o
O O O O O O o =+
O O O O O o+~ O
O O O O O O O+
O O O O O O+~ O
O O O O O+~ O O
O O O O O o+~ O
O O O O O+~ O O
O O O O+ O o O
O O O O O+~ O O
O O O O+ O O O
O O O r O O O O O
O O H O O O O o
O BN O O O O o o
_ O O O O O O © O
~l

:>)\0—|-24:0, /\1—|—29:0, A +4=0.
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Example: Sudan radius

Parameters: [n, k]q = [29,5]61 RS code with t = 15 errors (Sudan

bound).
# equations
deg. 2 deg. 1
Bilinear system reduced 19 149
Multiply linear eq.s by p;'s and reduce 59 1+14
Multiply linear eq.s by p;'s and reduce 75 5+15=k+t

SOLVED
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General approach

Macaulay matrix

The Macaulay matrix M5"(S) in degree D of a set
S={f, -, fm} of polynomials is

monomials of degree < D

x%f; such that

Macaulay S d:ef
o deg (x*f) < .

8/32



Algorithm D-Grobner Basis

Input

D Maximal degree,

S ={f, -, fm} set of polynomials.
repeat

S < Pol(EchelonForm(M7"(S)))
until dimp, S has not increased.
Output S.

Fact
When D is fixed, computing a D-Grobner basis has polynomial
complexity.

Fact

For large enough D, a D-Grobner basis is a Grobner basis
(Lazard '83).
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Monomial orders

Admissible monomial order
An admissible monomial order < is an order on the monomials
of K[x,...,xp] such that:

1. <is total,
2. for any miy,mp,mz, my < mp = mpms3 < MmMmyms

3. forany m, 1<m

Graded reverse lexicographic order (DRL) x; > -+ > x,

deg (x*) < deg (x?)
V
(deg (x*) = deg (x7)
Adj st (04;25,', Vi>j) AT >ﬁj)

X% <4y xP <~
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Given f = ZaeN" Cax?,

o Leading Monomial: LM(f) = maxc,-o(x®)
o Leading Coefficient: LC(f such that LM(f) = x“.

)< m
)% e,
e Leading Term: LT(f )d—efLC( )L ( )-

Grobner basis
Let Z be an ideal of K[x1, ..., Xxs] and < a monomial order. Then
G ={g1, --,8} CZis a Grobner basis of Z if and only if

(LM(g1),---,LM(gs)) = (LM(f): f €I).

Each ideal Z # {0} admits a Grobner basis (not unique).
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Ideal Membership Problem

Given f,g1,...,8s € K[x1,...,xp], detemine if f € (g1,...

Alternatively, determine if 3 f1,...f € K[x1,..., xp] s.t.

f=>1fgi

e Not trivial as in the univariate case

e Solved by Grobner basis techniques

If LM(g;) | LM(f) then f can be reduced by g;:

LT(f)
T IT(g)®

— f

and r =0 or LM(r) < LM(f).

7gS>'
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We can iterate this reduction until the remainder r is 0 or is no
more divisible by any g;.

Fact
If G={g1,...,8s} is a Grobner basis, then f € Z if and only if
the last remainder r is 0.

Generalization of:

e Division in a univariate polynomial ring,

e Gaussian elimination.
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Reduced Grobner basis
Let G be a Grobner basis for the ideal Z wrt <. Then G is
reduced if:

e [C(g)=1 Vgegq,

e Forany g € G, (LT(G \ {g})) does not contain any
monomial of g.

Each ideal Z # {0} admits a unique reduced Grobner basis.
f1(X1,~-,Xn) = 0

Consider the algebraic system =

fm(x1, -, xn) = 0

Fact

If the system has a unique solution (ri,- -, r,) and

Z = (f,...,fm) is radical then the reduced Grobner basis is given
by {x1 —r, -+, %xn— rn}.
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Here we are interested in graded orders.

Degree fall
A degree fall of degree s for S = {f;,---, fn} is a polynomial
combination 27;1 gif; which satisfies

def m
0 < s = deg (;g,f,) < maxdeg (gif;)

If we are able to predict non-trivial degree falls we can speed up
Grobner basis computation.
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Another description

e R(X) interpolator polynomial (degree < n—1)
R(a¢) = by, £ € [1,n]
e G(X) = M7 (X — ar) (can be precomputed)
Key equation implicit in Gao’s decoder

AX)P(X) = AX)R(X) mod G(X)
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Proposition

X

—1 & t
aéﬂp,-)\j = Z bgaje)\j, le [[1, n]]
Jj=0 Jj=0

1

Il
<}

and
AX)P(X) = ANX)R(X) mod G(X)

are equivalent.

They can be obtained from each other by linear combinations.
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Why do we use A(X)P(X) = A(X)R(X) mod G(X)?

e More convenient to work with to understand Grobner basis
calculations.
e They give directly n — k — t + 1 linear equations, since
e the coefficient of degree d € [t + k, n — 1] coincides with the
coefficient of the same degree in —R(X)A(X) mod G(X)
since A(X)P(X) is of degree < t + k — 1;
e the coefficient of S(X) of degree t + k — 1 is equal to
pi_1 — coeff ([/\(X)R(X)]G(X) ,Xt”*l) because A(X) is
monic and of degree t.
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Correcting up to Sudan bound




Algorithm with D = 2 can decode up to Sudan bound

The Algorithm, with input the original bilinear system and D = 2,

can decode up to Sudan decoding radius in polynomial time.

Symply powered key equations (Nielsen '14)

ANX)P(X)" = A(X)R(X)" mod G(X), u€Z,.

Proposition
Let g1 & max{u:t+(k—1u<n—-1} = [”k;f_llJ All affine

functions in the \;'s of the form coeff ([/\(X)RJ(X)] 6(X) ,X“)
forj€[1,q1] and u € [t + (k—1)j + 1, n — 1] are in the linear
span of the set S output by the Algorithm with D = 2.
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Proof (sketch)

e S contains the coefficients of
AX)P(X) — A(X)R(X) mod G(X)
and therefore
coeff ([—/\(X)R(X)]G(X) ,X“) for all u € [t + k, n — 1].
e By induction (j — j + 1):

(AP — ARITY) mod G
= (P(NP/ — AR') + RI(AP — AR))  mod G
= (P(NP/ = AR! mod G) + R(AP — AR mod G)) mod G.
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Split the sum:

P(APP —AR’ mod G) mod G

R/(AP —AR mod G) mod G
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Split the sum:

°
P(APP —AR’ mod G) mod G
coefficients of degree in [t + (k — 1)j + 1, n — 1] vanish

R/(AP —AR mod G) mod G
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Split the sum:

P(AP) —AR’ mod G) mod G

polynomial of degree < t + (k — 1)(j + 1) after elimination of variables

R/(AP —AR mod G) mod G
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Split the sum:

P(APP —AR’ mod G) mod G

polynomial of degree < t + (k — 1)(j + 1) after elimination of variables

R/(AP —AR mod G) mod G
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Split the sum:

P(APP —AR’ mod G) mod G

polynomial of degree < t + (k — 1)(j + 1) after elimination of variables

R/(AP —AR mod G) mod G

initial polynomial equations
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Split the sum:

P(APP —AR’ mod G) mod G

polynomial of degree < t + (k — 1)(j + 1) after elimination of variables

R/(AP —AR mod G) mod G

linear combination of equations in S
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Split the sum:

P(APP —AR’ mod G) mod G

polynomial of degree < t + (k — 1)(j + 1) after elimination of variables

R/(AP —AR mod G) mod G

linear combination of equations in S

= coeff ([A(X)RJH(X)] 0 ,x“) are in the linear span of the
set S output by a 2-Grobner basis for
uelt+(k—-1)(y+1)+1,n-1].
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Beyond Sudan bound




Example: above Sudan radius

Parameters: [n, k]q = [25,5]31 RS code with t = 15 errors.

# equations
deg. 3 | deg. 2 deg. 1
Reduced matrix deg. 2 18 7
Multiply by p;'s and reduce 149 31

Multiply by A\;'s and reduce | 262 38
Multiply by A;'s and reduce | 291 41
Multiply by A\;'s and reduce | 297 50
Multiply by A\;'s and reduce | 325 67
Multiply by A;'s and reduce | 335 91 20=t+k

AN IENEIENE IENE N

SOLVED
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“Error evaluator” polynomial Q(X)

The “error evaluator’ polynomial Q(X) of degree < t — 1 defined
by
Q(a¢) = —ey, forall £ € [1,n], e # 0.

We then have the identity
AP — R) =QG.

Equivalent definition of Q as

0¥ _AR=G.

Fact

Q(X)'s coefficients are linear forms in the \;’s.
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Low-degree equations in the \;’s

Generalization of Power decoding equations (Nielsen '18)

u

N PY = Z (A7) (7) RU=IG' (s u), wvell,s—1],

i=0

s—1
NPY = [Z (A7) <7>R”iGi] Ex(s,u), welsv].
Gs

i=0

From the identity
(/\SPU) (/\S’Pu’) _ /\ers”Dquu’7

it is clear that

X(s, u)x(s’,v') = x(s + s, u+ ) =0

Trivially produced at degree s + s’ + u + u’ by a Grébner basis, but

actually discovered at a rather smaller degree. 24/ 32



e Let Ip = (S)r, where S is the set output by the Algorithm
with input D.
e P €.t Z, means that all the coefficients of P belong to Z,.

o x(s,u)y = Zi>ts+u(k—1) a;iX', where x(s, u) Z aiX'
o gs Emax{u:st+ulk—1)<sn—1}
Theorem

For all integers 1 <s5,1<s,0<u<gs 0< v <qy

X(Sa U)H €coef Lst1
X(S, U)X(Slv Ul) - X(S + 5/7 u—+ U,) €coef Lstsit1-

Example (s =s' =1, u=1u =2):
[AR], - [/\Rﬂc - [°R* + 3nR%06] o> Ecoct T
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Lemma
For all integers 1 < s and 0 < u < gs

X(S?U)P_X(Sau+1) Ecoef Is+1
X(57U+1)H Ecoef Is—s—l'

Generalization of linear equations at degree 2 (Sudan bound).

e linear (in \;'s) high coefficients — degree-s (in A;'s) high
coefficients,

e bilinear equations — equations of bidegree (1, s).
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Proof (sketch) of the Theorem

By induction (on vy and up).
Assume

X(s1, u1)x(s2, u2) — x(51 + 82, U1 + U2) Ecoef Lsy+5p+1-
The degree is s; + sp, therefore
Px(st, u1) x(s2, t2) = Px(s1+ $2, 1 + t2) Ecoef Ls;+5p+1-
By the previous Lemma,

X(s1,u1 + 1) x(s2,u2) — x(s14 52,01 + U2 + 1) Ecoef Ls;+5,+1-
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Proof (sketch) of the Theorem

By induction (on vy and up).
Assume

X(s1, u1)x(s2, u2) — x(s1 + 2, U1 + U2) Ecoef Ls;+s,+1-

The degree is s; + sp, therefore

Px(s1, u1) [x(s2, u2) —’ Px(s1 + s2, u1 + up) ‘ Ecoef Ls;+sr+1-

By the previous Lemma,

X(s1,u1 + 1) [x(s2, u2) — ’ X(s1+ s2,u1 + w2+ 1) ‘ Eeactt T Ln il
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An alternative approach for Grobner basis computation

1. Compute the polynomials in only A;’s from the theorem

2. Run the Algorithm with maximal degree D of the system
generated in this way

3. Recover the p;'s by solving a linear system once the \;'s have
been retrieved.
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Experiments and conclusions




Experimental results

For some parameters, quadratic equations involving only A;'s are
enough to solve the system, and we don't need to go to degree 3
(unlike the bilinear system).

Table 1: [n, k]q = [64,27]64
t #EN Eq. #Eq. | D | Max Matrix C
20 | 3 | Bilinear system | 2:46 | 3 | 1522 x 1800 | 226
System in \;'s | 2:9 | 2 47 x 28 e

Table 2: [n, k], = [256, 63]256

t | #A Eq. #Eq. | D Max Matrix C
120 | 36 | Bilinear system | 2:182 | 3 | 20023 x 128018 | 2380
System in \;'s | 2:85 | 2 119 x 703 P

29 /32



When the number of remaining A;'s is small compared to the

number of p;'s, even if the maximal degree D is larger than for the

bilinear system, the number of variables is much smaller and the

computation is faster.

Table 3: [n, k]q = [64, 27]64

t N Eq. #Eq. D Max Matrix C
23 | 9 | Bilinear system 2:49 5 | 428533 x 406773 | 244
System in \;'s | 2:4,3:22 | 5 1466 x 1641 P01,

24 | 11| Bilinear system 2:50 >6 — —
System in \;'s | 2:1,3:23 | 7 28199 x 23536 | 2358

Table 4: [n, k] = [256, 63]256

t | #N Eq. #Eq. D Max Matrix C

124 | 48 Bilinear system 2:186 >4 - -
System in A;'s | 2:117, 3:1, 4189 | 4 164600 x 270725 | 2452
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In some cases we can efficiently attain and even slightly pass

Johnson bound.

Table 5: [n, k]q = [64, 27]64

t HNj Eq. #Eq. D Max Matrix C
23 (JB) | 9 | Bilinear system 2:49 5 | 428533 x 406773 | 2454
System in \;'s | 2:4,3:22 | 5 1466 x 1641 2

24 11 | Bilinear system 2:50 >6 - -
System in \;'s | 2:1,3:23 | 7 28199 x 23536 | 2358

Table 6: [n, k], = [37,5]61

t FHAj Eq. #Eq. D Max Matrix C
24 (JB) | 12 | Bilinear system 2:28 3 | 1065 x 1034 | 2260
System in \;'s 2:37 3 454 x 454 p2el
25 15 | Bilinear system 2:29 8 2520 x 1573 | 2280
System in A;'s 2:25, 3:40 4 | 3193 x 3311 | 233
26 18 | Bilinear system 2:30 4 | 20446 x 15171 | 2331
System in \;'s | 2:25, 3:37, 4:37 | 5 | 38796 x 22263 | 2381
27 21 | Bilinear system 2:31 4 | 27366 x 24894 | 2360
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Conclusions

e We proved that Grobner bases can solve in polynomial time
the bilinear system associated to the decoding problem of
Reed-Solomon codes up to Sudan bound.

e We started to figure out why this Grobner basis approach
behaves much better here than for a random bilinear system
(by predicting some unusual degree falls that may determine
other degree falls).

e We proposed an alternative polynomial system to work with
and showed that this is in some cases more convenient than
taking the original bilinear system.

o We experimentally found several regions of parameters for
which the Grobner basis approach can decode efficiently up to
and slightly beyond Johnson bound.
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Thank you for your attention!

Questions?
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