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surface codes I

Why Surface Codes? ° ) ° ° e ) ° ° ° ° ° ° ° ° ° ° ° ° e ° ° ° ® : :
* High noise threshold (about 1%). 0o
* Can beimplement with 2D local gates. ~ « « ¢ <« v o o e ol o ol ol ol e e o e

Mainissue: e e e e e e e e e e e e e e e e e e
e Encodeonly 1 logical qubit. .o e oo e oo o o e e e e
* Cost thousands of physical qubits.
(Here 1250 physical qubits) L o e e e e e e e e e e e e e e e e

Craig Gidney, Martin Ekera

25x25 surface code:
Physical error rate = 1073 = Logical error rate = 10712



The promise of

quantum LDPC
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Low Density Parity Check (LDPC) codes

2004: QLDPC codes outperform surface codes for Sparse Graph Codes for Quantum Error-Correction
quantum Communication David J.C. MacKay, Graeme Mitchison, Paul L. McFadden

Quantum LDPC codes with positive rate and minimum distance proportional to
n*{1/2}

Jean-Pierre Tillich, Gilles Zemor

2009: First satisfying QLDPC codes.

Fault-Tolerant Quantum Computation with Constant Overhead

2013: QLDPC codes asymptotically reduce the cost of
fault-tolerant quantum computing.

Daniel Gottesman

2020: High threshold for HGP codes (about 3% for Combining hard and soft decoders for hypergraph product codes
phenomen0|0gica| noise) Antoine Grospellier, Lucien Groués, Anirudh Krishna, Anthony Leverrier

Asymptotically Good Quantum and Locally Testable Classical LDPC Codes
2021: Good QLDPC codes exist!

Pavel Panteleev, Gleb Kalachev



Main results:

Question: They seem promising, but can we implement them with
a 2D grid of qubits?

* No, if we use only 2D local gates.

Because the syndrome extraction takes either too many gates or
too many qubits which results in a degradation of the
performance.

* Yes, if we allow for some long-range connection.
We propose a design based on a small number of layers of long-
range connections.
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Quantum LDPC codes

Quantum codes detect X errors and Z errors:

Classical code detect bit flips:

Flip

N

1 0 0

Quantum LDPC codes: Quantum codes defined by bounded degree graphs



Syndrome measurement circuits

Allowed operations:

e Preparations of |0) or |+).
e Single-qubit and two-qubit Pauli measurements.
e Single-qubit and two-qubit unitary Clifford gates.

e (lassically-controlled Pauli operations, applied
only if some subset of previous measurement out-
comes has parity 1.

e Output a set of classical bits obtained by comput-
ing the parity of some subsets of measurement out-
comes.
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Our circuit bounds and saturating circuits

Theorem: Consider local-expander quantum LDPC codes with

length n implemented with local gates on a grid of VN X VN
qubits. The depth of the syndrome extraction circuit satisfies:

depth > Q) (1)

VN
Constant depth Constant overhead
(# ancillas = O(n))
Bound: # ancilla 2 Q(n?) Depth > Q(/n)
Saturating circuits: Switch-based circuits HGP code circuits

(next slide)



Color-based circuit for fully connected qubits

Measurement of a single X check: Simultaneous measurement of all X checks:

1 2 3 4 Q\Q Q ? Q

é 5“5 |

1O N
1. Prepare a readout qubits in |+) for each check.

2 O D
2. For each color c do:

30 P 3. Apply a CNOT from each readout to its data qubit with color ¢
4. Measure each readout qubit in the X basis.




Switch-based circuit

< 5 6 7

QR Q9 090

ARG

\ :}\\\ : .-".: "\
Tanner graph of N &\\k oA
Hamming code \‘\\ N \“\,\__;\({

Place data qubits g4, ..., g, on top of the grid

Place readout qubits s4, ..., s, on the bottom of the grid
Prepare readout qubits in |+). Uses a sorting network

For each color c do: I
Build paths connecting each readout qubit with its data qubit.

Prepare a Bell state on each diagonal edge of a path.
Apply a long distance CNOT from each readout to its data qubit

© N O Uk wDh e

Measure each readout qubit in the X basis.



2D local vs fully connected implementation

¢ [625, 25]
® [5625, 225] ---- 2D Local
¢ [22500, 900] —— Fully connected
e 2D local syndrome extraction
10~ circuit with:
9 = n ancilla qubits
S 1072 = optimal depth Q(\/n).
=
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Main technical result

Cut

Theorem 1. Let C' be a Clifford circuit measuring com-
R muting Pauli operators Sy, ...,S,. Then, for any subset
of qubits L, we have

]
Ne
1 tv} C > cut ,
depth{C) = 64|0L
¢ * Nyt = humber of independent Si with
o support on Land R.
' e |0L| = maximum number of gates acting on
L and R in a single round.
’ 0
[

The previous bounds are corollaries of this result.




Proof strategy

Cut

Consider the correlations between L and R

Lemma 1 (Informal version)
# bits of correlations < 32 |0L|depth

Lemma 2 (Informal version)
Ncut

# bits of correlations >

Necut

Application: depth > oaloL|

Main difficulty: Find the right notion of correlation!:

109, EL; 0%, ErlOW)

1. See Section 4.1 of arxiv:2109.14599 for the complete proof strategy.



https://arxiv.org/abs/2109.14599

First Lemma: Upper bound on correlations

Lemma 1 (Informal version)

R
# bits of correlations < 32 |dL| depth
o
Sketch of proof:
* Only crossing gates (gates supported on L and R) can
o introduce correlations.

* The circuit contains |0L| depth crossing gates.

¢ e Each crossing gate introduces a bounded amount of

correlation.
o




Second Lemma: Lower bound on correlations

Cut Lemma 2 (Informal version)

Necut

# bits of correlations >

Sketch of proof:

* We repeat the measurement of all the S; twice so that the
second round of measurement gives the same outcome as
the first one.

* The two outcomes of the measurement of S; are

® ay + -t ag, + B+t By, (first round)
O a" +-+ag'+ B ++ Py (secondround)
S; . :
o where the a; are measured in L and the 5; in R.

* Then, we have Ya; + Ya; = XB; + X.5;.

® e Ifa; > 0andb; > 0, this induces one bit of correlation
between L and R.



Implementation of
quantum LDPC

codes with long
range connections




Naive layout with long-range
connectivity

Circular layout for QLDPC codes:

* Place the qubits on a circle

* Implement the color-based circuit using long-
range gates.

Issue: Crossing gates may induce correlated errors
and degrade the performance.

Goal: Design a syndrome extraction circuit with
e Short depth.
* A small number of crossing gates.

Circular layout for a graph with 100 vertices with degree 8



£-planar layout

Theorem 1. Let () be a CSS code such that each sta-
bilizer generator has weight at most 6 and each qubit is
involved in at most ¢ stabilizer generators. Then, one
can implement the measurement of all the stabilizer gen-
erators of () with a circuit with depth 20 + 2 using a
[0/2]-planar layout.



Key ingredient:
Connectivity
graph of a circuit
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Quantum circuit

Connectivity graph

Proposition 1. Let C be a circuit made with single-
qubit and two-qubit operations whose connectivity graph
has degree at most 6. Then, C can be implemented with
a [§/2]-planar layout.



Logical failure rate

Numerical results
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Noise threshold: 0.28%
(instead of 0.7% for the surface codes)

# physical qubits per logical qubit: 49
(instead of thousands for surface codes)

Logical failure rate 102 1022 10~1°

Logical qubits 1600 6400 18 496
Surface code physical qubits 387200 2880000 13354112
HGP code physical qubits 78400 313600 906 304
Improvement using HGP codes

1073
Physical error rate

1074



Conclusion




Conclusion

Main results:

* LDPC codes beat the surface code with realistic noise (circuit noise).

* LDPC codes implemented on 2D local quantum hardware are not competitive.

* Alayout for LDPC codes with a few planar layers on long-range connection in 2D.

Future work:

* Improve further the performance of QLDPC codes: with better codes, better decoders, better
measurement circuits.

* Design reliable long-range connections whose noise rate is independent of the distance
between the qubits.

* Design insulated layers of long-range connection with little crosstalk.
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Standard Pauli noise models

Perfect measurement model:

_._._._._ * Noise on data qubits
_._._._I-_ Phenomenological model:
L * Noise on data qubits
_. . . ._ * Noise on measurements
—P- . I g
—eresl

X plaquette circuit

Circuit noise:

* Noise on data qubits

* Noise on measurements
* Noise on ancilla qubits

* Noise on gates

* Noise on waiting qubits



Local expander graphs

. 0L
he(G) = min I
IL|<e|V]/2

A family of a-expander graphs is a family of graphs
(G;)ien such that h(G;) > « for all « € N. We consider
a generalization of this notion by considering expan-
sion over small subsets of vertices. A family of («a,¢)-
expander graphs is a family of graphs (G;);cn such that
he(G;) > « for all i € N.



Hypergraph Product Codes
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