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The need for quantum error correction
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Surface codes

Why surface codes?
• High noise threshold (about 1%).
• Can be implement with 2D local gates.

Main issue:
• Encode only 1 logical qubit.
• Cost thousands of physical qubits. 
(Here 1250 physical qubits)

25x25 surface code:
Physical error rate = 10−3 ⇒ Logical error rate = 10−12



The promise of 
quantum LDPC 
codes



Low Density Parity Check (LDPC) codes

• 2004: QLDPC codes outperform surface codes for 
quantum communication

• 2009: First satisfying QLDPC codes.

• 2013: QLDPC codes asymptotically reduce the cost of 
fault-tolerant quantum computing.

• 2020: High threshold for HGP codes (about 3% for 
phenomenological noise)

• 2021: Good QLDPC codes exist!



Main results:

Question: They seem promising, but can we implement them with 
a 2D grid of qubits?

• No, if we use only 2D local gates.
Because the syndrome extraction takes either too many gates or 
too many qubits which results in a degradation of the 
performance.

• Yes, if we allow for some long-range connection.
We propose a design based on a small number of layers of long-
range connections.



Obstacles to a 2D 
implementation of 
quantum LDPC 
codes



Quantum LDPC codes

Classical code detect bit flips:

Flip

1 0 0

X Z

1 0 1

0 1 1

Quantum codes detect X errors and Z errors:

Quantum LDPC codes: Quantum codes defined by bounded degree graphs



Syndrome measurement circuits

Allowed operations:



Our circuit bounds and saturating circuits 

Constant depth Constant overhead
(# ancillas = O(n))

Bound: # ancilla ≥ Depth ≥ 

Saturating circuits: Switch-based circuits
(next slide)

HGP code circuits

Theorem local-expander quantum LDPC codes with 
length n implemented with local gates on a grid of 𝑁 × 𝑁
qubits. The depth of the syndrome extraction circuit satisfies:

depth ≥ 𝛀
𝒏

𝑵



Color-based circuit for fully connected qubits

Measurement of a single X check:
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Simultaneous measurement of all X checks:



Switch-based circuit 

paths connecting each readout qubit with its data qubit



2D local vs fully connected implementation

• 2D local syndrome extraction 
circuit with:
▪ n ancilla qubits
▪ optimal depth 𝛀( 𝒏).

• Simulation with circuit-level noise
Cost of locality



Proof of our circuit 
bound



Main technical result

𝑆𝑖



Proof strategy

𝑆𝑖

Lemma 1 (Informal version) 

# bits of correlations ≤ 32 𝜕𝐿 depth

Lemma 2 (Informal version) 

# bits of correlations ≥
𝒏𝐜𝐮𝐭

𝟐

Application: depth ≥
𝒏𝐜𝐮𝐭

𝟔𝟒 𝜕𝐿

Main difficulty:

1. arxiv:2109.14599

https://arxiv.org/abs/2109.14599


First Lemma: Upper bound on correlations

Lemma 1 (Informal version) 

# bits of correlations ≤ 32 |𝜕𝐿| depth

Sketch of proof:

• Only crossing gates (gates supported on L and R) can 
introduce correlations.

• The circuit contains |𝜕𝐿| depth crossing gates.

• Each crossing gate introduces a bounded amount of 
correlation.



Second Lemma: Lower bound on correlations

Lemma 2 (Informal version) 

# bits of correlations ≥
𝒏𝐜𝐮𝐭

𝟐

Sketch of proof: 

• We repeat the measurement of all the 𝑆𝑖 twice so that the 
second round of measurement gives the same outcome as 
the first one.

• The two outcomes of the measurement of 𝑆𝑖 are 

𝛼1 +⋯+ 𝛼𝑎𝑖 + 𝛽1 +⋯+ 𝛽𝑏𝑖 (first round)

𝛼1′ + ⋯+ 𝛼𝑎𝑖′ + 𝛽1′ + ⋯+ 𝛽𝑏𝑖′ (second round)

where the 𝛼𝑖 are measured in L and the 𝛽𝑖 in R.

• Then, we have ∑𝛼𝑖 + ∑𝛼𝑖
′ = ∑𝛽𝑖 + ∑𝛽𝑖

′.

• If 𝑎𝑖 > 0 and 𝑏𝑖 > 0, this induces one bit of correlation 
between L and R.

𝑆𝑖



Implementation of 
quantum LDPC 
codes with long 
range connections



Naïve layout with long-range 
connectivity

Circular layout for a graph with 100 vertices with degree 8 

Circular layout for QLDPC codes:
• Place the qubits on a circle
• Implement the color-based circuit using long-

range gates.

Issue: Crossing gates may induce correlated errors 
and degrade the performance.

Goal: Design a syndrome extraction circuit with
• Short depth.
• A small number of crossing gates.



ℓ-planar layout



Key ingredient: 
Connectivity 
graph of a circuit
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Quantum circuit Connectivity graph



Numerical results

Noise threshold: 0.28% 
(instead of 0.7% for the surface codes)

# physical qubits per logical qubit: 49
(instead of thousands for surface codes)



Conclusion



Conclusion

Main results:
• LDPC codes beat the surface code with realistic noise (circuit noise).
• LDPC codes implemented on 2D local quantum hardware are not competitive.
• A layout for LDPC codes with a few planar layers on long-range connection in 2D.

Future work:
• Improve further the performance of QLDPC codes: with better codes, better decoders, better 

measurement circuits.
• Design reliable long-range connections whose noise rate is independent of the distance 

between the qubits.
• Design insulated layers of long-range connection with little crosstalk.
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Standard Pauli noise models

Perfect measurement model:
• Noise on data qubits

Phenomenological model:
• Noise on data qubits
• Noise on measurements

Circuit noise:
• Noise on data qubits
• Noise on measurements
• Noise on ancilla qubits
• Noise on gates
• Noise on waiting qubits
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Local expander graphs



Hypergraph Product Codes


