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WHAT IS COMPLEXITY ?

Definition
The complexity of a problem is the cost of the optimal procedure among all the
ones that solve the problem and fit into a given model of computation.

It is allowed to freely use the intermediate results once they are computed.

A computation is said to be finished if the quantities that the computation is supposed
to compute are among the intermediate results.
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WHAT IS COMPLEXITY ?

The cost of a computation that solves a problem is an upper bound on the complexity
of that problem with respect to the given model.

Lower bounds can be often obtain by establishing relations between the complexity
of the problem and the invariants of the appropriate structure (algebraic, topological,
geometric or combinatorial).

We are interested in the so-called nonscalar model where additions, subtractions and
scalar multiplications are free of charge. The (nonscalar) cost of an algorithm is there-
fore the number of multiplications and divisions needed to compute the result.
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AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

Let A, B be 2 x 2 following matrices

a, dr b1 bz
A= B = .
(03 a4> ’ (ba b4>
The standard algorithm returns the matrix C = AB by computing the following intermediate
results:

¢1 = a1by + azba, C2 = by + azbg,

€3 = azby + asba, C4 = azby + asby.

It requires 8 multiplications and 4 additions. Therefore, an upper bound for the complexity
(in the nonscalar model) is 8.
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AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

We can compute C = AB using Strassen’s algorithm, which gives
¢ =5+5—-5+S5;, Cy = 5y + Sa4, c3 = 53+ Ss, Ca =S51+5S3—5+S¢
where the S;'s are the intermediate steps

S1 = (a1 + as)(b1 + ba), Sy = (az+as)br, Sz = ai(bs — ba),

S4 = as(bz — by), Ss = (a1 +az)bs,  S¢ = (az — a1)(b1 + by),
S7 = (az — 04)(b3 + b4).

It requires 7 multiplications and 18 additions.
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AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

Algorithm | # multiplications | # additions
standard 8 4

Strassen’s 7 18

@ Remark

The complexity of multiplying 2 x 2 matrices (in the nonscalar model) is 7. The
upper-bound is given by Strassen (1969), the lower bound was proved by Wino-
grad (1971).
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LINEAR MAPS

Let A, B be vector spaces over the same field K and denote by A* the dual vector space of
Aie A" :={f: A— K |f linear}. For @ € A* and b € B, one can define a rank one

linear map
a®b:A— B:a— aa)b.

Definition
The rank 7(f) of a linear map f : A — B is the smallest integer R such that there
exist a1,...,agr € A*and by, ..., bg € Bsuch that

R
f= Zai ® b;.
i—1
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BILINEAR MAPS

Let A, B, C be vector spaces over the same field K. For o € A*, 3 € B* and ¢ € C, one can
define a rank one bilinear map

a®@pB®c:AxB— C:(a,b)— afa)p(b)c.

Definition
The rank 7(T) of a bilinear map T : A x B — Cis the smallest integer R such that
there exist ay,...,ag € A*, By,...,8r € B*and ¢, ..., cg € Csuch that

R
T=) ai®pec¢

i=1
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BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications
(and O(R) additions).

The rank of a bilinear map gives a measure of its complexity.
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BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications
(and O(R) additions).

The rank of a bilinear map gives a measure of its complexity.

y@ Example

Matrix multiplication of n x n matrices is a bilinear map:

,\/’n’mr1 : KHXH % KHXH KHXH.

We observed that R(M2,2) = 7 and it is known that 19 < R(M3z33) < 23.
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3-TENSORS

We assume n, m, k to be integers.

Definition

A 3-tensor is an element of KK @ K" @ K™,

If {a1,...,ak},{b1,...,bn},{c1,...,cm} are bases of KK, K", K™, respectively, then a ba-
sis for Kk @ K" @ K™ is

{al®b}®CZ1§’§k71§]§n71§€§m}

In particular we have dim(KK @ K" ® K™) = dim(K¥) dim(K") dim(K™) = knm.
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COORDINATE TENSORS

Atensor X := ). ar ® by ® ¢, can be represented as an array. That is as the map

A A A A
XA kb x{1,...,n} x{1,...,m} — K .—;‘.—/.—/.—/.—"’

TLLT]

--__"

givenby X = (Xjjp : 1<i<k,1<j<n1<¢<m).

Therefore, X is related to the the 3-dimensional array

XijZ = Z aérbircjr'
r

ar:=(ag :1<0<k),b :=(bir : 1<i<n),c,:=(ap:1<j<m).

Q Remark

This representation of X is called coordinate tensor and allows to identify the
space Kk @ K" @ K™ with Kkxnxm,
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MATRIX REPRESENTATION

Consider the map p : KK x Kkxnxm _ gkxnxm . (y x) +— S~ (v-a,) ® by ® ¢, and
notice that this map yields a 3-tensor of the form Z, Ar @ by ® ¢, where )\, € K, which
can be identify as the 2-tensor > \/by ® ¢/, since K ® K" and K" are isomorphic.

As a consequence, we can identify the tensor X with the
array of n x m matrices X = (Xy | ... | X¢), where

Xs = p(es,X) = Z(ar)sbr X Cr

r

and es is the s-th element of the canonical basis for K, for
all1 <s <k H
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3-TENSORS

Let X = (X1 ... | Xk) € Kk*"M pe a 3-tensor.

Definition
The first slice space ss;(X) of X is defined as the span (X, ..., Xi) over K. We say
that ss1(X) is nondegenerate if dim(ss;(X)) = k.

Definition
X is said to be simple (or rank one) if there exist a € K", b € K" and ¢ € K™ such
that X =a® b @ c.

Definition
The tensor rank trk(X) of X is defined as the smallest integer R such that X can be
expressed as sum of R simple tensors.
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PERFECT BASE

Let X = (X1]| ... | Xk) € Kk*"*M be a 3-tensor.

Definition
Let A := {Aq,...,Ar} C K" be aset of R linearly independent rank-1 matrices.
We say that A is a perfect base (or R-base) for the tensor X if

SS1(X) < <A1, 000 ,AR> o

—o | Lemma

The following are equivalent.

> trk(X) <R.

» There exists an R-base for X.
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AN EXAMPLE

Let X € F2*2*2 be the 3-tensor defined as

1 0]0 1
X'_<O 1‘3 1)'

One can check that trk(X) = 3 and a 3-base for X is given by

446 o) G963}

(52 (%)
63262 GY6)

In particular, we have

N\
QO -
- O
~_—
Il
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EQUIVALENT 3-TENSORS

LetX = (Xi| ... [Xc)and Y = (V1] ... | Y) be 3-tensors in KKxnxm,

Definition
We say that X, Y are equivalent if there exist P € GL,(K) and Q € GLy(K) such
that ssq(X) = Pssy(Y)Q:= {PNQ: N € ssy(Y)}.
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EQUIVALENT 3-TENSORS

LetX = (Xi| ... [Xc)and Y = (V1] ... | Y) be 3-tensors in KKxnxm,

Definition
We say that X, Y are equivalent if there exist P € GL,(K) and Q € GLp,(K) such
that ssq(X) = Pssy(Y)Q:= {PNQ: N € ssy(Y)}.

Remark

For any pair of matrices P € GL,(K) and Q € GLn,(K), if A is a perfect base for X
then {PAQ: A € A} is a perfect base for the 3-tensor PX Q.
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APPLICATIONS OF TENSOR DECOMPOSITION

» Cumulants
(Statistics)

=t 2
K(t):Znnm:uiH—a Z
i=0 ’
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APPLICATIONS OF TENSOR DECOMPOSITION

» Cumulants
(Statistics)

» Fluorescence spectroscopy
(Chemistry)

» Interpretation of MRI
(Medicine)

» Blind source separation
(e.g. Cocktail Party Problem)

(Digital Signal Processing) Low tensor rank 3-tensors
perform well in terms of s’Forl:a\ge
> Storage and Encoding and encoding complexity:
(Coding Theory)
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

—~
<

Tensor rank is np-complete, J. Hdstad o
International Colloquium on Automata, Languages, and Programming, Springer, 1989. =
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

—
Tensor rank is np-complete, J. Hdstad "‘u'“
International Colloquium on Automata, Languages, and Programming, Springer, 1989. \—/

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

o~
S
Tensor rank is np-complete, J. Hdstad "‘u"\

International Colloguium on Automata, Languages, and Programming, Springer, 1989. =

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Giuseppe Cotardo GT Equipe GRACE November, 2021



ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X. g
a e

Tensor rank is np-complete, J. Hdstad o
International Colloguium on Automata, Languages, and Programming, Springer, 1989. =

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Noise: in order to talk about noise in data, we must have a distance function. In some
applications, these functions come from science, in other case they are chosen by con-
venience. For example, in signal processing, assuming that the noise has a certain be-
haviour (iid or Gaussian) can determine a distance function.
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TENSOR RANK OF 3-LAYER TENSORS




PRELIMINARIES AND NOTATION

In the followingwe let2 < n <m,

Im € K™*™M be the m x m identity matrix,
Yn € K™ be the matrix Y, := ( I, | 0 ),

Eij € K™™ be the matrix with 1is position (i, ) and O elsewhere,

M € KM*M pe the matrix
M= < 0 fn—1 ) .
day | dy...dm
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PRELIMINARIES AND NOTATION

In the followingwe let2 < n <m,

Im € K™*™M be the m x m identity matrix,
Yn € K™ be the matrix Y, := ( I, | 0 ),

Eij € K™™ be the matrix with 1is position (i, ) and O elsewhere,

M € KM*M pe the matrix
M= < 0 fn—1 ) .
day | dy...dm

-o—

~= | Theorem (Jaja - 1979)
—0—

Let |[K| > m. We have that the tensor rank of (1| M) < K2XMXM js m if M is
diagonalizable and m + 1 otherwise.
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TENSOR RANK FOR 3-LAYER TENSORS

Let X := (I | M| M™") € Kk*M*M be 3 3-tensor.

2= | Theorem (Byrne, C.)

Let K| > m+1andletf = (x—au) -+ (X—am_qeg(g)) 8 € K[X] be the character-
istic polynomial of M, where deg(g) < 1or deg(g) > 2 and g is not decomposable
into linear factors. There exist P € GLy(K) and A, B € K™*™ of rank 1 such that

the following hold.
(1) If 0 < deg(g) < 1then an m-base of Xis {P~"E;; P : i € [m]}.
(2) If deg(g) = 2 then an (m + 1)-base of Xis {P~'E;; P :i € [m]} U {A}.

(3) If deg(g) > 3 then an (m + 2)-base of Xis {P~"E;; P : i € [m]} U {A, B}.
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AN EXAMPLE

Letf := (x—1)g, where g := x*+3x+3isirreducible over Fs, and h := (x—2)(x—3)(x—4)
be polynomials in Fs[x]. Let

© 0 10
, Mg:=10 0 1], My, =
2 20

w O O O
»N OO
~O -
PN

o O o -

1
0
2

be the companion matrices of f, g and h respectively. Let Q € GL3(Fs) and Q, P € GL4(Fs)
be such that 6Mh571 = diag(4, 3,2), Q := diag(1, Q) and PMP~" = diag(1, M), i.e.

110 0 0 330 1
__(10>_o1o1 b |41 00
“\olq 0|3 4 1 | “loa 10

0|2 3 1 00 4 1
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AN EXAMPLE

Define

0 0 0| 0
Dy := , D, := ! = | -
0| Mg — M oMM,

We have that an 6-base for (14 | M | M~1) is given by

A={PQ QP i€ {1,..., 4} U{P'DiP, P! D, P}

that is
4 4 0 3 141 4 12 4 3 0000 4 0 4 2 0212
a4 403 32 3 2 4 3 1 2 4 2 1 3 40 4 2 013 1
“Yl4 40 3]'[1 41 4a]'|[31 2 4 213 4|40 4 2[°]o 1 31
4 4 0 3 323 2 0000 3 4 21 101 3 01 31
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TENSOR RANK FOR 3-LAYER TENSORS

Letn € {2,3} and X := (YnM71’Yn | YnM’...’yanfZ) c Kkxnxm,

2= | Corollary (Byrne, C.)

Let K| >m+1,n € {2,3},andletf = (x —a) -+ (X — Am_deg(g)) 8 € K[x] be
the characteristic polynomial of M, where deg(g) < 1or deg(g) > 2 and g is not
decomposable into linear factors. There exist P € GLy(K) and A, B € K™*™ such

that the following hold.
(1) If 0 < deg(g) < 1then {Y,P"E;;P:1<i< m}isam-base of X.
(2) If deg(g) = 2then {Y,P"E;;P:1<i<m}U{Y,A}isan (m + 1)-base of X.

(3) Ifdeg(g) > 3then {Y,P~"E;;P:1<i<m}U{Y,A,Y,B}isan (m+2)-base
of X.
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TENSOR RANK OF (nm — 2)-LAYER TENSORS




PRELIMINARIES AND NOTATION

-o—

~= | Theorem (Atkinson, Lloyd - 1983)
——

Let char(K) # 2and X € K(mn=2)xnxm he 3 tensor. We have that trk(X) = mn—2
unless X is such that Xj ;1 + Xj 22, = 0and Xj1o, = Oforall1<j <mn — 2.

Inspired by this result, we show that, forany s € {1,...,m—1}, the tensor rank of the dual
of some families of s-layer tensors in KS*"*™ is mn —s and we give and explicit construction
for an (mn — s)-base for such tensors.
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PRELIMINARIES AND NOTATION

Definition

The dual of V < K™ M is V4 := {N € K™™ : Tr(MN!) =0 VM € V}.

Definition (Atkinson, Lloyd - 1983)

A space of n x m matrices is said to be perfect if it is generated by rank-1 matrices.
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PRELIMINARIES AND NOTATION

Definition
The dual of V < K™ M is V4 := {N € K™™ : Tr(MN!) =0 VM € V}.

Definition (Atkinson, Lloyd - 1983)

A space of n x m matrices is said to be perfect if it is generated by rank-1 matrices.

Lety € K\ {O}. We denote by J and £(~) the matrices of K™*™ defined as

’y o oe.
0 1 At _am -
] = ’ E(y) = 2 2 v 2
Im—110

Giuseppe Cotardo GT Equipe GRACE November, 2021



TENSOR RANK FOR (m?-s) - LAYER TENSORS

~= | Theorem (Byrne, C.)

letse {1,....m—1}, |K| > s+1,8 := {1,m,...,7—1} be a set of distinct
elements of K \ {0} and M € K™*™ be invertible. Then

(hmy M, ..., ME™T) T < KX
is perfect and an (m? — s)-base is

AS) ={/Ej(MT ) is+1<j<mO0<i<m-—1}
U{JEM@) (M :0<i<m-2~yeS}
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PROOF FOR (I, M, M?) "

Let K| > 4and S := {1,a, 8} be a set of distinct elements of K \ {O}. Define the set
A= {A; :1<i <13}, where

11 11 o a2 a 1 g g2 B 1
-1 -1 =1 —a* —a® —-a? —a B4 =B —p2 —p

A=l g 0 0 o |0 T 0o o o o |0 AT o o0 o o |MMT
0 0 0 O 0o 0 o0 © o o0 0 o

and the remaining matrices of A are

O O oo
O O oo
O O oo

O OO -
N—

As = A (M), As = Ay (M), A i=JAs (MY,
Ag = JA; (M), Ag =12 A (M72)F A = J2A; (M)
An =12 A (M72)F, A =128, (M2)' A i=1%A, (M)

We want to show that A is a 13-base for (I, M, M2>L.
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PROOF FOR (I, M, M?) "

Split A in the following disjoint subsets.
Ao i= {A1,A2,A3,As}, A= {As,As, A7, Ag}, Az = {Ag, A0, An, A}, Az = {As}.

Define the matrices B;’s whose rows are the vector representation of the non-zero rows of
the matrices in A;, for 0 < j < 3. We have

1T 1 1 1) 1 -1 -1 -1
o ()6 ) = | o G 51 e B s o5 |
0 0 o0 1] O 0] 0] 0
B1=(B(1) Nt | s M1)t)
B2 1= (8 (M%) [ 8 (M2)" )

Bsi= (B (M~)' ) = (cu be as O)
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PROOF FOR (I, M, M?) "

Let B the matrix whose rows are the vector representation of the matrices in A. Therefore,
we can observe that

1 2
g{" YY) 0

ef) ()" | &f? ()

By (M?)" | BS (M~)'

and

rk(B) = rk (BQ)) +rk (BQ) (M*1)t) +rk (BQ) (M*z)t) +rk (B_o“) (M*3)t) — 13
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TENSOR RANK FOR (nm -s) - LAYER TENSORS

2= | Corollary (Byrne, C.)
Letse {1,...m—1},|K| >s+1and S := {1,m,...,7s—1} be a set of distinct
elements of K \ {0}. Then (Y,, YoM, ..., Y,,M5_1>L < K™ is perfect and an
(nm — s)-base is
AS) ={YJEij(M ) :s+1<j<mO0<i<n—1}
U{YJER) (M :0<i<n-2~y€eS)
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TENSOR RANK FOR (nm -s) - LAYER TENSORS

2= | Corollary (Byrne, C.)

—o0—
Letse {1,...m—1},|K| >s+1and S := {1,m,...,7s—1} be a set of distinct
elements of K \ {0}. Then (Y,, YoM, ..., Y,,M5_1>L < K™M js perfect and an
(nm — s)-base is

AS) ={YJEij(M ) :s+1<j<mO0<i<n—1}
U{YJER) (M :0<i<n-2~y€eS)

2= | Proposition (Byrne, C.)

—0—
Let M € K2%2. Then (I, M)L is perfect if M 1 = O and M, , # O or M, 4 # 0 and
the polynomial M, 1 x2 + My, x — 1 € K][x] has two distinct roots in K \ {0}.
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TENSOR RANK OF F,m-LINEAR CODES




RANK-METRIC CODES

Definition
A (matrix rank-metric) code is a subspace C < IFZX”". The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(M) : M € C,M # 0}) and for
C := {0}, we define d(C) to be n + 1.
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RANK-METRIC CODES

Definition
A (matrix rank-metric) code is a subspace C < IFZX”". The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(M) : M € C,M # 0}) and for
C := {0}, we define d(C) to be n + 1.

It is well-know that the dual C+ of C is a code.
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RANK-METRIC CODES

Definition
A (matrix rank-metric) code is a subspace C < IFZX’". The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(M) : M € C,M # 0}) and for
C := {0}, we define d(C) to be n + 1.

It is well-know that the dual C+ of C is a code.

-o—

= Proposition (Kruskal - 1977)
We have that trk(C) > dimp,(C) 4 d(C) — 1.

Codes meeting this bound with equality are called MTR (Minimal Tensor Rank).
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[Fgm-LINEAR RANK-METRIC CODES

Let [ := {m,...,ym} be a basis of F4n over Fq and v € Fj.. We define by I'(v) € Fp*"
the vector defined by

m

vi=Y TV

=1

The map v — ['(v) is an F4-isomorphism. Moreover, for a subspace V of Fgm, we define
r(v):={r(v):vevt.

Definition

A vector (rank-metric) code is a subspace C < IFgm. The minimum distance d(C)
of C is the minimum distance of I'(C) for any choice of a basis ' of Fgm /IFg.
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TENSOR RANK FOR [;»-LINEAR CODES

2= | Proposition
—0—

A vector code C is MTR if and only if trk(C) = dimg,(C) + d(C) — 1.
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TENSOR RANK FOR [;»-LINEAR CODES

== | Proposition

A vector code C is MTR if and only if trk(C) = dimg,(C) + d(C) — 1.

Z= | Proposition (Byrne, C.)

Let s be a positive integer such that 1 < s < n. Let 3;,..., 8p € Fgn such that
(B1, .., Bn)g, has dimension s. Suppose that (51, ..., Bn)g, = (Brs-- ., Bs)p,»
then we have

trk (((51,52, . ,ﬁn)>Fq) = trk (((51,52, . ,65))Fq) .
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TENSOR RANK FOR [;»-LINEAR CODES

~= | Theorem (Byrne, C.)

Letg > m+n —k —1, a be a primitive element of Fgm, A1, ..., A € Fgm and let
V< Fgm be the k-dimensional space given by the row-space of

M O oo 0 Mo e >\10£n_k
0 X -+ 0 Xad - Npadn=k
- kxn
G=1|. . . I . . €l
0 0 - M Mad o \ad(=K

We have that trk(V) < k(m + n — k).
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DELSARTE-GABIDULIN CODES

Definition
Letk € {1,...,n} and Sy,..., s € Fgn be linearly independent over F,. The
Fg4m-linear Delsarte-Gabidulin code Gy is defined as

Gi(Br, -+ Bn) = {(F(B1), -, F(Bn)) : f € G},

where Gy 1= {fox+ﬁxq oo @ 3 oo i Iqu}.
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DELSARTE-GABIDULIN CODES

Definition
Letk € {1,...,n} and Sy,..., s € Fgn be linearly independent over F,. The
Fg4m-linear Delsarte-Gabidulin code Gy is defined as

G(Brs -+ Bn) = A{(F(B1), -, F(Bn)) - F € Gi},

where Gy 1= {fox+ﬁxq to @ o, fir € qu}.

Proposition (Sheekey - 2016)

Let 31, ..., Bn be elements of Fym linearly independent over F,. The dual of the
code Gx(fr, - - ., Bn) is equivalent to G, (1, - - -, Bn)-
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AN EXAMPLE

Let k = 1and « be a primitive element of 's3. We have

C:=Gi(a*, o) = {(f(a*),f(a”)) : f € {fox : fo € Fs}}
= {fo(a*,a”) : fo € Fs} = ((a*,a”))p, -

Let I := {1, a, @} be a Fs-basis of Fs3, N := [((a*,a’)) and M the companion matrix of
the minimal polynomial of o, i.e.

P4

Il
7N
w O
NN
w N
N~

<

Il
N O O
N O =
o -~ 0

One can check that

) = (N,NM,NM?), =

|
/\
7 N
w O
NN

2) (442) (434>>
3/°\1 4 2)°\4 0 4 :
Fs
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DELSARTE-GABIDULIN CODES

: Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
Let g > m + n — 2 and a be primitive element of Fym. For any integer j €

{0,...,m — 1}, we have

trk(g1(1, aqi, .. ,a”qj)) =m4n—1

and, in particular, G(1, oﬂj, e a”“j) is MTR.

November, 2021
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DELSARTE-GABIDULIN CODES

: Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
Let g > m + n — 2 and a be primitive element of Fgm.

{0,...,m — 1}, we have

trk(Gi(1,0?,...,a")) =m+n—1

For any integer j €

and, in particular, Gi(1, oﬂj, ... ,oz”“j) is MTR.

E Proposition (Byrne, C.)
letg > m+n—2andn € {2,3}. Let a be primitive element of Fgm and j €

{0,...,m —1}. There exist P € GL(FF5) and A, B € Fg*™ of rank 1 such that an
(m + n — 1)-base for Gi(1,a%,...,a")is

(1) {YaPT'E;;P:1<i<m}uU{A}ifn=2;

(2) {YoaP'E;P:1<i<m}U{AB}ifn=3;

November, 2021
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DELSARTE-GABIDULIN CODES

2= | Proposition (Byrne, C.)

—o0—
Let g > m and « be primitive element of Fgm. For any j € {0,...,m — 1}, we
have

trk(g1(’|,oﬂ;, e a”qj)l) =nm-—m+1

and, in particular, Gi(1, o, .. ,oz"‘*")L is MTR. Moreover, an (hm — m + 1)-base
for Gi(1,09, ..., ")t is

AS) ={Y S Exm(MT):0<i<n—1}
U{YJER) (M :0<i<n—-2~y€eS)

where S := {1,711, ..., Ym—2} is a set of distinct element of F, \ {O}.
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FURTHER QUESTIONS

Letj € {O,...,m—1}andn ¢ {2, 3}. Construct an (n+m—1)-base for the 1-dimensional
Delsarte-Gabidulin code Gy(1, a9, ..., a").

Letk € {2,...,n—2}. Study the tensor rank of k-dimensional Delsarte-Gabidulin codes.

Find new classes of MTR codes.
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FURTHER QUESTIONS

Letj € {O,...,m—1}andn ¢ {2, 3}. Construct an (n+m—1)-base for the 1-dimensional
Delsarte-Gabidulin code G;(1, a7, ..., a"®).

Letk € {2,...,n—2}. Study the tensor rank of k-dimensional Delsarte-Gabidulin codes.

Find new classes of MTR codes.

Wil

Bilinear Complexity of 3-Tensors
Linked to Coding Theory
E. Byrne, G. Cotardo THA N K YO U )‘

arXiv: 2103.08544.
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