

OVERVIEW

- INTRODUCTION
 - ▶ WHAT IS COMPLEXITY?
 - ▶ 3-TENSORS
 - APPLICATIONS OF TENSOR DECOMPOSITION
- TENSOR RANK OF 3-TENSORS
 - ► TENSOR RANK OF 3-LAYER TENSORS
 - ightharpoonup TENSOR RANK OF (nm-s)-LAYER TENSORS
- TENSOR RANK OF \mathbb{F}_{q^m} -LINEAR CODES

WHAT IS COMPLEXITY?

Definition

The **complexity** of a *problem* is the cost of the optimal procedure among all the ones that solve the *problem* and fit into a given model of computation.

- It is allowed to freely use the intermediate results once they are computed.
- A computation is said to be **finished** if the quantities that the computation is supposed to compute are among the *intermediate results*.

WHAT IS COMPLEXITY?

- The cost of a *computation* that solves a problem is an **upper bound** on the complexity of that problem with respect to the given model.
- Lower bounds can be often obtain by establishing relations between the complexity of the problem and the invariants of the appropriate structure (algebraic, topological, geometric or combinatorial).
- We are interested in the so-called **nonscalar model** where additions, subtractions and scalar multiplications are free of charge. The (**nonscalar**) **cost** of an algorithm is therefore the number of multiplications and divisions needed to compute the result.

Let A, B be 2×2 following matrices

$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}.$$

The standard algorithm returns the matrix C = AB by computing the following intermediate results:

$$c_1 = a_1b_1 + a_2b_3,$$
 $c_2 = a_1b_2 + a_2b_4,$
 $c_3 = a_3b_1 + a_4b_3,$ $c_4 = a_3b_2 + a_4b_4.$

It requires 8 multiplications and 4 additions. Therefore, an upper bound for the complexity (in the nonscalar model) is 8.

AN EXAMPLE: MULTIPLICATION OF 2×2 MATRICES

We can compute C = AB using Strassen's algorithm, which gives

$$c_1 = S_1 + S_4 - S_5 + S_7,$$
 $c_2 = S_2 + S_4,$ $c_3 = S_3 + S_5,$ $c_4 = S_1 + S_3 - S_2 + S_6$

where the S_i 's are the intermediate steps

$$S_1 = (a_1 + a_4)(b_1 + b_4),$$
 $S_2 = (a_3 + a_4)b_1,$ $S_3 = a_1(b_3 - b_4),$ $S_4 = a_4(b_3 - b_1),$ $S_5 = (a_1 + a_2)b_4,$ $S_6 = (a_3 - a_1)(b_1 + b_2),$ $S_7 = (a_2 - a_4)(b_3 + b_4).$

It requires 7 multiplications and 18 additions.

AN EXAMPLE: MULTIPLICATION OF 2×2 MATRICES

Algorithm	# multiplications	# additions
standard	8	4
Strassen's	7	18

Remark

The complexity of multiplying 2×2 matrices (in the nonscalar model) is 7. The upper-bound is given by Strassen (1969), the lower bound was proved by Winograd (1971).

LINEAR MAPS

Let A, B be vector spaces over the same field \mathbb{K} and denote by A^* the **dual vector space** of A, i.e. $A^* := \{f : A \longrightarrow \mathbb{K} \mid f \text{ linear}\}$. For $\alpha \in A^*$ and $b \in B$, one can define a *rank one* linear map

$$\alpha \otimes b : A \longrightarrow B : a \longmapsto \alpha(a)b.$$

Definition

The **rank** $\tau(f)$ of a linear map $f: A \longrightarrow B$ is the smallest integer R such that there exist $\alpha_1, \ldots, \alpha_R \in A^*$ and $b_1, \ldots, b_R \in B$ such that

$$f = \sum_{i=1}^{R} \alpha_i \otimes b_i.$$

Let A, B, C be vector spaces over the same field \mathbb{K} . For $\alpha \in A^*$, $\beta \in B^*$ and $c \in C$, one can define a *rank one* bilinear map

$$\alpha \otimes \beta \otimes c : A \times B \longrightarrow C : (a,b) \longmapsto \alpha(a)\beta(b)c.$$

Definition

The **rank** $\tau(T)$ of a bilinear map $T: A \times B \longrightarrow C$ is the smallest integer R such that there exist $\alpha_1, \ldots, \alpha_R \in A^*$, $\beta_1, \ldots, \beta_R \in B^*$ and $c_1, \ldots, c_R \in C$ such that

$$T = \sum_{i=1}^{R} \alpha_i \otimes \beta_i \otimes c_i.$$

BILINEAR MAPS AND COMPLEXITY

- If a bilinear map T has rank R then T can be executed by performing R multiplications (and $\mathcal{O}(R)$ additions).
- The rank of a bilinear map gives a measure of its complexity.

BILINEAR MAPS AND COMPLEXITY

- If a bilinear map T has rank R then T can be executed by performing R multiplications (and $\mathcal{O}(R)$ additions).
- The rank of a bilinear map gives a measure of its complexity.

ExampleMatrix multiplication of $n \times n$ matrices is a bilinear map:

$$M_{n,n,n}: \mathbb{K}^{n\times n} \times \mathbb{K}^{n\times n} \longrightarrow \mathbb{K}^{n\times n}$$

 $M_{n,n,n}:\mathbb{K}^{n\times n}\times\mathbb{K}^{n\times n}\longrightarrow\mathbb{K}^{n\times n}.$ We observed that $R(M_{2,2,2})=7$ and it is known that $19\leq R(M_{3,3,3})\leq 23$.

3 - TENSORS

We assume n, m, k to be integers.

Definition

A 3-**tensor** is an element of $\mathbb{K}^k \otimes \mathbb{K}^n \otimes \mathbb{K}^m$.

If $\{a_1,\ldots,a_k\},\{b_1,\ldots,b_n\},\{c_1,\ldots,c_m\}$ are bases of $\mathbb{K}^k,\mathbb{K}^n,\mathbb{K}^m$, respectively, then a basis for $\mathbb{K}^k\otimes\mathbb{K}^n\otimes\mathbb{K}^m$ is

$$\{a_i\otimes b_j\otimes c_\ell: 1\leq i\leq k, 1\leq j\leq n, 1\leq \ell\leq m\}.$$

In particular we have $\dim(\mathbb{K}^k \otimes \mathbb{K}^n \otimes \mathbb{K}^m) = \dim(\mathbb{K}^k) \dim(\mathbb{K}^n) \dim(\mathbb{K}^m) = knm$.

COORDINATE TENSORS

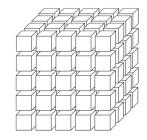
A tensor $X := \sum_r a_r \otimes b_r \otimes c_r$ can be represented as an array. That is as the map

$$X: \{1,\ldots,k\} \times \{1,\ldots,n\} \times \{1,\ldots,m\} \longrightarrow \mathbb{K}$$

given by
$$X = (X_{ij\ell} : 1 \le i \le k, 1 \le j \le n, 1 \le \ell \le m)$$
.

Therefore, X is related to the the 3-dimensional array

$$X_{ij\ell} = \sum_r a_{\ell r} b_{ir} c_{jr}.$$



$$a_r := (a_{\ell r} : 1 \le \ell \le k), b_r := (b_{ir} : 1 \le i \le n), c_r := (a_{jr} : 1 \le j \le m).$$

Remark

This representation of X is called **coordinate tensor** and allows to identify the space $\mathbb{K}^k \otimes \mathbb{K}^n \otimes \mathbb{K}^m$ with $\mathbb{K}^{k \times n \times m}$.

Consider the map $\mu: \mathbb{K}^k \times \mathbb{K}^{k \times n \times m} \longrightarrow \mathbb{K}^{k \times n \times m}: (v, X) \longmapsto \sum_r (v \cdot a_r) \otimes b_r \otimes c_r$, and notice that this map yields a 3-tensor of the form $\sum_r \lambda_r \otimes b_r \otimes c_r$, where $\lambda_r \in \mathbb{K}$, which can be identify as the 2-tensor $\sum_r \lambda_r b_r \otimes c_r$, since $\mathbb{K} \otimes \mathbb{K}^n$ and \mathbb{K}^n are isomorphic.

As a consequence, we can identify the tensor X with the array of $n \times m$ matrices $X = (X_1 \mid \ldots \mid X_k)$, where

$$X_s := \mu(e_s, X) = \sum_r (a_r)_s b_r \otimes c_r$$

and e_s is the s-th element of the canonical basis for \mathbb{K}^k , for all $1 \le s \le k$.

3-TENSORS

Let $X = (X_1 | \dots | X_k) \in \mathbb{K}^{k \times n \times m}$ be a 3-tensor.

Definition

The **first slice space** $ss_1(X)$ of X is defined as the span $\langle X_1, \ldots, X_k \rangle$ over \mathbb{K} . We say that $ss_1(X)$ is **nondegenerate** if $dim(ss_1(X)) = k$.

Definition

X is said to be **simple** (or **rank one**) if there exist $a \in \mathbb{K}^k$, $b \in \mathbb{K}^n$ and $c \in \mathbb{K}^m$ such that $X = a \otimes b \otimes c$.

Definition

The **tensor rank** trk(X) of X is defined as the smallest integer R such that X can be expressed as sum of R simple tensors.

PERFECT BASE

Let $X = (X_1 | \dots | X_k) \in \mathbb{K}^{k \times n \times m}$ be a 3-tensor.

Definition

Let $\mathcal{A}:=\{A_1,\ldots,A_R\}\subseteq\mathbb{K}^{n\times m}$ be a set of R linearly independent rank-1 matrices. We say that A is a **perfect base** (or R-base) for the tensor X if

$$ss_1(X) \leq \langle A_1, \ldots, A_R \rangle$$
.

The following are equivalent.

- trk(X) ≤ R.
 There exists an R-base for X.

AN EXAMPLE

Let $X \in \mathbb{F}_5^{2 \times 2 \times 2}$ be the 3-tensor defined as

$$X:=\left(\begin{array}{cc|c}1&0&0&1\\0&1&3&1\end{array}\right).$$

One can check that trk(X) = 3 and a 3-base for X is given by

$$\mathcal{A} := \left\{ \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix} \right\}.$$

In particular, we have

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} = 2 \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$$

EQUIVALENT 3-TENSORS

Let
$$X = (X_1 | \dots | X_k)$$
 and $Y = (Y_1 | \dots | Y_k)$ be 3-tensors in $\mathbb{K}^{k \times n \times m}$.

Definition

We say that X, Y are **equivalent** if there exist $P \in GL_n(\mathbb{K})$ and $Q \in GL_m(\mathbb{K})$ such that $ss_1(X) = P ss_1(Y) Q := \{P N Q : N \in ss_1(Y)\}.$

EQUIVALENT 3-TENSORS

Let $X = (X_1 | \dots | X_k)$ and $Y = (Y_1 | \dots | Y_k)$ be 3-tensors in $\mathbb{K}^{k \times n \times m}$.

Definition

We say that X, Y are **equivalent** if there exist $P \in GL_n(\mathbb{K})$ and $Q \in GL_m(\mathbb{K})$ such that $ss_1(X) = Pss_1(Y)Q := \{PNQ : N \in ss_1(Y)\}.$

Remark

For any pair of matrices $P \in GL_n(\mathbb{K})$ and $Q \in GL_m(\mathbb{K})$, if \mathcal{A} is a perfect base for X then $\{PAQ : A \in \mathcal{A}\}$ is a perfect base for the 3-tensor PXQ.

Cumulants (Statistics)

- ► Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- ▶ Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

$$K(t) = \sum_{i=0}^{\infty} \kappa_n \frac{t^n}{n!} = \mu t + \sigma^2 \frac{t^2}{2} + \cdots$$

- Cumulants (Statistics)
- ► Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

- Cumulants (Statistics)
- Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

- Cumulants (Statistics)
- Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

- Cumulants (Statistics)
- ► Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

- Cumulants (Statistics)
- ► Fluorescence spectroscopy (Chemistry)
- Interpretation of MRI (Medicine)
- Blind source separation (e.g. Cocktail Party Problem) (Digital Signal Processing)
- Storage and Encoding (Coding Theory)

Low tensor rank 3-tensors perform well in terms of storage and encoding complexity!

Existence: determine the rank of a tensor *X*.

Existence: determine the rank of a tensor *X*.

Tensor rank is np-complete, J. Håstad

International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Existence: determine the rank of a tensor *X*.

Tensor rank is np-complete, J. Håstad

International Colloquium on Automata, Languages, and Programming, Springer, 1989.

■ **Performing the decomposition**: find algorithms that exactly decompose a tensor *X* in terms of simple tensors.

Existence: determine the rank of a tensor *X*.

Tensor rank is np-complete, J. Håstad

International Colloquium on Automata, Languages, and Programming, Springer, 1989.

- **Performing the decomposition**: find algorithms that exactly decompose a tensor *X* in terms of simple tensors.
- **Uniqueness**: it is an important issue with problems coming from spectroscopy and signal processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Existence: determine the rank of a tensor *X*.

Tensor rank is np-complete, J. Håstad

International Colloquium on Automata, Languages, and Programming, Springer, 1989.

- **Performing the decomposition**: find algorithms that exactly decompose a tensor *X* in terms of simple tensors.
- **Uniqueness**: it is an important issue with problems coming from spectroscopy and signal processing. If the rank is sufficiently small, uniqueness is assured with probability one.
- **Noise:** in order to talk about noise in data, we must have a distance function. In some applications, these functions come from science, in other case they are chosen by convenience. For example, in signal processing, assuming that the noise has a certain behaviour (iid or Gaussian) can determine a distance function.

TENSOR RANK OF 3-LAYER TENSORS

In the following we let $2 \le n \le m$,

 $I_m \in \mathbb{K}^{m \times m}$ be the $m \times m$ identity matrix,

 $Y_n \in \mathbb{K}^{n \times m}$ be the matrix $Y_n := (I_n \mid 0)$,

 $E_{i,j} \in \mathbb{K}^{n \times m}$ be the matrix with 1 is position (i,j) and 0 elsewhere,

 $M \in \mathbb{K}^{m \times m}$ be the matrix

$$M:=\left(\begin{array}{c|c}0&I_{m-1}\\\hline a_1&a_2\ldots a_m\end{array}\right).$$

PRELIMINARIES AND NOTATION

In the following we let 2 < n < m,

 $I_m \in \mathbb{K}^{m \times m}$ be the $m \times m$ identity matrix,

 $Y_n \in \mathbb{K}^{n \times m}$ be the matrix $Y_n := (I_n \mid 0)$,

 $E_{i,j} \in \mathbb{K}^{n \times m}$ be the matrix with 1 is position (i,j) and 0 elsewhere,

 $M \in \mathbb{K}^{m \times m}$ be the matrix

$$M:=\left(\begin{array}{c|c}0&I_{m-1}\\\hline a_1&a_2\ldots a_m\end{array}\right).$$

Theorem (Jaja - 1979)

Let $|\mathbb{K}| \geq m$. We have that the tensor rank of $(I|M) \leq \mathbb{K}^{2 \times m \times m}$ is m if M is diagonalizable and m+1 otherwise.

Let $X := (I \mid M \mid M^{-1}) \in \mathbb{K}^{k \times n \times m}$ be a 3-tensor.

Theorem (Byrne, C.)

Let $|\mathbb{K}| \ge m+1$ and let $f=(x-\alpha_1)\cdots(x-\alpha_{m-\deg(g)})$ $g\in\mathbb{K}[x]$ be the characteristic polynomial of M, where $\deg(g)\le 1$ or $\deg(g)\ge 2$ and g is not decomposable into linear factors. There exist $P\in GL_m(\mathbb{K})$ and $A,B\in\mathbb{K}^{m\times m}$ of rank 1 such that the following hold.

- (1) If $0 \le \deg(g) \le 1$ then an *m*-base of *X* is $\{P^{-1}E_{i,i}P : i \in [m]\}$.
- (2) If $\deg(g) = 2$ then an (m+1)-base of X is $\{P^{-1}E_{i,i}P : i \in [m]\} \cup \{A\}$.
- (3) If $\deg(g) \ge 3$ then an (m+2)-base of X is $\{P^{-1}E_{i,i}P : i \in [m]\} \cup \{A,B\}$.

Let f := (x-1)g, where $g := x^3 + 3x + 3$ is irreducible over \mathbb{F}_5 , and h := (x-2)(x-3)(x-4) be polynomials in $\mathbb{F}_5[x]$. Let

$$M := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 2 & 1 \end{pmatrix}, \qquad M_g := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}, \qquad M_h := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 4 & 4 \end{pmatrix}$$

be the companion matrices of f, g and h respectively. Let $\overline{Q} \in GL_3(\mathbb{F}_5)$ and $Q, P \in GL_4(\mathbb{F}_5)$ be such that $\overline{Q}M_h\overline{Q}^{-1} = \operatorname{diag}(4,3,2)$, $Q := \operatorname{diag}(1,\overline{Q})$ and $PMP^{-1} = \operatorname{diag}(1,M_g)$, i.e.

$$Q := \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & \overline{Q} \end{array}\right) = \left(\begin{array}{c|c} 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 \\ 0 & 3 & 4 & 1 \\ 0 & 2 & 3 & 1 \end{array}\right), \qquad P := \left(\begin{array}{c|c} 3 & 3 & 0 & 1 \\ 4 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 4 & 1 \end{array}\right).$$

Define

$$D_1:=\left(\begin{array}{c|c}0&0\\\hline0&M_g-M_h\end{array}\right),\qquad\qquad D_2:=\left(\begin{array}{c|c}0&0\\\hline0&M_g^{-1}-M_h^{-1}\end{array}\right).$$

We have that an 6-base for $(I_4 \mid M \mid M^{-1})$ is given by

$$A := \{P^{-1}Q^{-1}E_{i,i}QP: i \in \{1,\ldots,4\}\} \cup \{P^{-1}D_1P, P^{-1}D_2P\}$$

that is

$$\mathcal{A} = \left\{ \begin{pmatrix} 4 & 4 & 0 & 3 \\ 4 & 4 & 0 & 3 \\ 4 & 4 & 0 & 3 \\ 4 & 4 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 & 4 \\ 3 & 2 & 3 & 2 \\ 1 & 4 & 1 & 4 \\ 3 & 2 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 4 & 3 \\ 4 & 3 & 1 & 2 \\ 3 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 \\ 4 & 2 & 1 & 3 \\ 2 & 1 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 0 & 4 & 2 \\ 4 & 0 & 4 & 2 \\ 4 & 0 & 4 & 2 \\ 1 & 0 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 2 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 0 & 1 & 3 & 1 \end{pmatrix} \right\}.$$

Let
$$n \in \{2,3\}$$
 and $X := (Y_n M^{-1} \mid Y_n \mid Y_n M \mid \cdots \mid Y_n M^{m-2}) \in \mathbb{K}^{k \times n \times m}$.

Corollary (Byrne, C.)

Let $|\mathbb{K}| \ge m+1$, $n \in \{2,3\}$, and let $f = (x-\alpha) \cdots (x-\alpha_{m-\deg(g)}) g \in \mathbb{K}[x]$ be the characteristic polynomial of M, where $\deg(g) \leq 1$ or $\deg(g) \geq 2$ and g is not decomposable into linear factors. There exist $P \in GL_m(\mathbb{K})$ and $A, B \in \mathbb{K}^{m \times m}$ such that the following hold.

- (1) If $0 \le \deg(g) \le 1$ then $\{Y_n P^{-1} E_{i,i} P : 1 \le i \le m\}$ is a m-base of X.
- (2) If $\deg(g) = 2$ then $\{Y_n P^{-1} E_{i,i} P : 1 \le i \le m\} \cup \{Y_n A\}$ is an (m+1)-base of X. (3) If $\deg(g) \ge 3$ then $\{Y_n P^{-1} E_{i,i} P : 1 \le i \le m\} \cup \{Y_n A, Y_n B\}$ is an (m+2)-base

TENSOR RANK OF (nm-2)-LAYER TENSORS

PRELIMINARIES AND NOTATION

Theorem (Atkinson, Lloyd - 1983)

Let char(\mathbb{K}) $\neq 2$ and $X \in \mathbb{K}^{(mn-2)\times n\times m}$ be a tensor. We have that $\operatorname{trk}(X) = mn-2$ unless X is such that $X_{j,1,1} + X_{j,2,2} = 0$ and $X_{j,1,2} = 0$ for all $1 \leq j \leq mn-2$.

Inspired by this result, we show that, for any $s \in \{1, \dots, m-1\}$, the tensor rank of the dual of some families of s-layer tensors in $\mathbb{K}^{s \times n \times m}$ is mn-s and we give and explicit construction for an (mn - s)-base for such tensors.

PRELIMINARIES AND NOTATION

Definition

The **dual** of $V \leq \mathbb{K}^{n \times m}$ is $V^{\perp} := \{ N \in \mathbb{K}^{n \times m} : \text{Tr}(MN^t) = 0 \ \ \forall \ M \in V \}.$

Definition (Atkinson, Lloyd - 1983)

A space of $n \times m$ matrices is said to be **perfect** if it is generated by rank-1 matrices.

PRELIMINARIES AND NOTATION

DefinitionThe **dual** of $V \leq \mathbb{K}^{n \times m}$ is $V^{\perp} := \{ N \in \mathbb{K}^{n \times m} : \text{Tr}(MN^t) = 0 \ \forall M \in V \}.$

Definition (Atkinson, Lloyd - 1983)
A space of $n \times m$ matrices is said to be **perfect** if it is generated by rank-1 matrices.

Let $\gamma \in \mathbb{K} \setminus \{0\}$. We denote by J and $\mathcal{E}(\gamma)$ the matrices of $\mathbb{K}^{m \times m}$ defined as

$$J:=\left(\begin{array}{c|cccc} 0 & 1 \\ \hline I_{m-1} & 0 \end{array}\right), \qquad \qquad \mathcal{E}(\gamma):=\left(\begin{array}{cccccc} \gamma^m & \gamma^{m-1} & \cdots & \gamma & 1 \\ \hline -\gamma^{m+1} & -\gamma^m & \cdots & -\gamma^2 & -\gamma \\ \hline & \mathbf{O} \end{array}\right).$$

Theorem (Byrne, C.)

Let $s \in \{1, \dots, m-1\}$, $|\mathbb{K}| \ge s+1$, $\mathcal{S} := \{1, \gamma_1, \dots, \gamma_{s-1}\}$ be a set of distinct elements of $\mathbb{K} \setminus \{0\}$ and $M \in \mathbb{K}^{m \times m}$ be invertible. Then

$$\left\langle I_m, M, \dots, M^{s-1} \right\rangle^{\perp} \leq \mathbb{K}^{m \times m}$$

is perfect and an $(m^2 - s)$ -base is

$$\begin{split} \mathcal{A}(\mathcal{S}) := & \{ J^i \, E_{1,j} \, (M^{-i})^t : s+1 \leq j \leq m, 0 \leq i \leq m-1 \} \\ & \cup \ \{ J^i \, \mathcal{E}(\gamma) \, (M^{-i})^t : 0 \leq i \leq m-2, \gamma \in \mathcal{S} \}. \end{split}$$

Let $|\mathbb{K}| \geq 4$ and $\mathcal{S} := \{1, \alpha, \beta\}$ be a set of distinct elements of $\mathbb{K} \setminus \{0\}$. Define the set $\mathcal{A} := \{A_i : 1 \leq i \leq 13\}$, where

and the remaining matrices of A are

$$\begin{split} A_5 &:= J A_1 \, \left(M^{-1}\right)^t, & A_6 &:= J A_2 \, \left(M^{-1}\right)^t, & A_7 &:= J A_3 \, \left(M^{-1}\right)^t, \\ A_8 &:= J A_4 \, \left(M^{-1}\right)^t, & A_9 &:= J^2 A_1 \, \left(M^{-2}\right)^t, & A_{10} &:= J^2 A_2 \, \left(M^{-2}\right)^t, \\ A_{11} &:= J^2 A_3 \, \left(M^{-2}\right)^t, & A_{12} &:= J^2 A_4 \, \left(M^{-2}\right)^t, & A_{13} &:= J^3 A_4 \, \left(M^{-3}\right)^t. \end{split}$$

We want to show that A is a 13-base for $\langle I, M, M^2 \rangle^{\perp}$.

Split A in the following disjoint subsets.

$$\mathcal{A}_0 := \{A_1, A_2, A_3, A_4\}, \quad \mathcal{A}_1 := \{A_5, A_6, A_7, A_8\}, \quad \mathcal{A}_2 := \{A_9, A_{10}, A_{11}, A_{12}\}, \quad \mathcal{A}_3 := \{A_{13}\}.$$

Define the matrices B_i 's whose rows are the vector representation of the non-zero rows of the matrices in A_i , for $0 \le i \le 3$. We have

$$\begin{split} B_0 &:= \left(\begin{array}{c|cccc} B_0^{(1)} & B_0^{(2)} \end{array} \right) = \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ \alpha^3 & \alpha^2 & \alpha & 1 & -\alpha^4 & -\alpha^3 & -\alpha^2 & \alpha \\ \beta^3 & \beta^2 & \beta & 1 & -\alpha^4 & -\alpha^3 & -\alpha^2 & \alpha \\ 0 & 0 & 0 & 1 & -\alpha^4 & \beta^3 & \beta^2 & \beta \\ 0 & 0 & 0 & 0 & 0 \end{array} \right), \\ B_1 &:= \left(\begin{array}{c|cccc} B_0^{(1)} & M^{-1} & B_0^{(2)} & M^{-1} \end{array} \right)^t \\ B_2 &:= \left(\begin{array}{c|cccc} B_0^{(1)} & M^{-2} & B_0^{(2)} & M^{-2} \end{array} \right)^t \\ B_3 &:= \left(\begin{array}{c|cccc} \overline{B_0}^{(1)} & M^{-3} \end{array} \right)^t \\ &= \left(\begin{array}{c|cccc} c_4 & b_4 & a_4 & 0 \end{array} \right) \end{split}$$

Let B the matrix whose rows are the vector representation of the matrices in A. Therefore, we can observe that

and

$$rk(B)=rk\left(B_{0}^{(1)}\right)+rk\left(B_{0}^{(1)}\left(M^{-1}\right)^{t}\right)+rk\left(B_{0}^{(1)}\left(M^{-2}\right)^{t}\right)+rk\left(\overline{B_{0}}^{(1)}\left(M^{-3}\right)^{t}\right)=13.$$

Corollary (Byrne, C.)

Let $s \in \{1, \dots m-1\}$, $|\mathbb{K}| \ge s+1$ and $\mathcal{S} := \{1, \gamma_1, \dots, \gamma_{s-1}\}$ be a set of distinct elements of $\mathbb{K} \setminus \{0\}$. Then $\langle Y_n, Y_n M, \dots, Y_n M^{s-1} \rangle^{\perp} \le \mathbb{K}^{n \times m}$ is perfect and an (nm - s)-base is

$$\begin{split} \mathcal{A}(\mathcal{S}) := & \{ Y_n J^j \, E_{1,j} \, (M^{-i})^t : s+1 \leq j \leq m, 0 \leq i \leq n-1 \} \\ & \cup \, \{ \, Y_n J^j \, \mathcal{E}(\gamma) \, (M^{-i})^t : 0 \leq i \leq n-2, \gamma \in \mathcal{S} \}. \end{split}$$

Corollary (Byrne, C.)

Let $s \in \{1, \dots m-1\}$, $|\mathbb{K}| \ge s+1$ and $\mathcal{S} := \{1, \gamma_1, \dots, \gamma_{s-1}\}$ be a set of distinct elements of $\mathbb{K} \setminus \{0\}$. Then $\langle Y_n, Y_n M, \dots, Y_n M^{s-1} \rangle^{\perp} \le \mathbb{K}^{n \times m}$ is perfect and an (nm-s)-base is

$$\begin{split} \mathcal{A}(\mathcal{S}) := & \{ Y_n J^i \, E_{1,j} \, (M^{-i})^t : s+1 \leq j \leq m, 0 \leq i \leq n-1 \} \\ & \cup \, \{ \, Y_n J^i \, \mathcal{E}(\gamma) \, (M^{-i})^t : 0 \leq i \leq n-2, \gamma \in \mathcal{S} \}. \end{split}$$

Proposition (Byrne, C.)

Let $M \in \mathbb{K}^{2 \times 2}$. Then $\langle I_2, M \rangle^{\perp}$ is perfect if $M_{2,1} = 0$ and $M_{2,2} \neq 0$ or $M_{2,1} \neq 0$ and the polynomial $M_{2,1} x^2 + M_{2,2} x - 1 \in \mathbb{K}[x]$ has two distinct roots in $\mathbb{K} \setminus \{0\}$.

TENSOR RANK OF \mathbb{F}_{q^m} -LINEAR CODES

RANK-METRIC CODES

Definition

A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_q^{n \times m}$. The minimum (rank) distance of a non-zero code \mathcal{C} is $d(\mathcal{C}) := \min(\{\operatorname{rk}(M) : M \in \mathcal{C}, M \neq 0\})$ and for $\mathcal{C} := \{0\}$, we define $d(\mathcal{C})$ to be n+1.

RANK-METRIC CODES

Definition

A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_q^{n \times m}$. The minimum (rank) distance of a non-zero code \mathcal{C} is $d(\mathcal{C}) := \min(\{\operatorname{rk}(M) : M \in \mathcal{C}, M \neq 0\})$ and for $\mathcal{C} := \{0\}$, we define $d(\mathcal{C})$ to be n+1.

It is well-know that the dual \mathcal{C}^{\perp} of \mathcal{C} is a code.

Definition

A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_q^{n \times m}$. The minimum (rank) dis**tance** of a non-zero code \mathcal{C} is $d(\mathcal{C}) := \min(\{\operatorname{rk}(M) : M \in \mathcal{C}, M \neq 0\})$ and for $\mathcal{C} := \{0\}$, we define $d(\mathcal{C})$ to be n + 1.

It is well-know that the dual \mathcal{C}^{\perp} of \mathcal{C} is a code.

Proposition (Kruskal - 1977)

We have that $\operatorname{trk}(\mathcal{C}) \geq \dim_{\mathbb{F}_q}(\mathcal{C}) + d(\mathcal{C}) - 1$.

Codes meeting this bound with equality are called MTR (Minimal Tensor Rank).

Let $\Gamma := \{\gamma_1, \dots, \gamma_m\}$ be a basis of \mathbb{F}_{q^m} over \mathbb{F}_q and $v \in \mathbb{F}_{q^m}^n$. We define by $\Gamma(v) \in \mathbb{F}_q^{n \times m}$ the vector defined by

$$v_i = \sum_{j=1}^m \Gamma(v)_{i,j} \, \gamma_j.$$

The map $v \mapsto \Gamma(v)$ is an \mathbb{F}_q -isomorphism. Moreover, for a subspace V of $\mathbb{F}_{q^m}^n$, we define $\Gamma(V) := \{\Gamma(v) : v \in V\}$.

Definition

A vector (rank-metric) code is a subspace $C \leq \mathbb{F}_{q^m}^n$. The minimum distance d(C) of C is the minimum distance of $\Gamma(C)$ for any choice of a basis Γ of $\mathbb{F}_{q^m}/\mathbb{F}_q$.

TENSOR RANK FOR \mathbb{F}_{q^m} -LINEAR CODES

PropositionA vector code C is MTR if and only if $trk(C) = dim_{\mathbb{F}_q}(C) + d(C) - 1$.

Proposition

A vector code C is MTR if and only if $trk(C) = dim_{\mathbb{F}_q}(C) + d(C) - 1$.

Proposition (Byrne, C.)

Let s be a positive integer such that $1 \leq s \leq n$. Let $\beta_1, \ldots, \beta_n \in \mathbb{F}_{q^m}$ such that $\langle \beta_1, \ldots, \beta_n \rangle_{\mathbb{F}_q}$ has dimension s. Suppose that $\langle \beta_1, \ldots, \beta_n \rangle_{\mathbb{F}_q} = \langle \beta_1, \ldots, \beta_s \rangle_{\mathbb{F}_q}$, then we have

$$\mathsf{trk}\left(\langle (\beta_1,\beta_2,\dots,\beta_n)\rangle_{\mathbb{F}_q}\right) = \mathsf{trk}\left(\langle (\beta_1,\beta_2,\dots,\beta_s)\rangle_{\mathbb{F}_q}\right).$$

Theorem (Byrne, C.)

Let $q \ge m+n-k-1$, α be a primitive element of \mathbb{F}_{q^m} , $\lambda_1,\ldots,\lambda_k \in \mathbb{F}_{q^m}$ and let $V \le \mathbb{F}_{q^m}^n$ be the k-dimensional space given by the row-space of

$$G := \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 & \lambda_1 \alpha & \cdots & \lambda_1 \alpha^{n-k} \\ 0 & \lambda_2 & \cdots & 0 & \lambda_2 \alpha^q & \cdots & \lambda_2 \alpha^{q(n-k)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_k & \lambda_k \alpha^{q^k} & \cdots & \lambda_k \alpha^{q^k(n-k)} \end{pmatrix} \in \mathbb{F}_{q^m}^{k \times n},$$

We have that $trk(V) \leq k(m+n-k)$.

Definition

Let $k \in \{1, ..., n\}$ and $\beta_1, ..., \beta_n \in \mathbb{F}_{q^m}$ be linearly independent over \mathbb{F}_q . The \mathbb{F}_{q^m} -linear Delsarte-Gabidulin code \mathcal{G}_k is defined as

$$\mathcal{G}_{k}(\beta_{1},\ldots,\beta_{n}):=\{(f(\beta_{1}),\ldots,f(\beta_{n})):f\in\mathcal{G}_{k}\},$$

where
$$\mathcal{G}_k:=\Big\{f_0x+f_1x^q+\cdots+f_{k-1}x^{q^{k-1}}:f_0,\ldots,f_{k-1}\in\mathbb{F}_{q^m}\Big\}.$$

Definition

Let $k\in\{1,\ldots,n\}$ and $\beta_1,\ldots,\beta_n\in\mathbb{F}_{q^m}$ be linearly independent over \mathbb{F}_q . The \mathbb{F}_{q^m} -linear Delsarte-Gabidulin code \mathcal{G}_k is defined as

$$\mathcal{G}_{k}(\beta_{1},\ldots,\beta_{n}):=\{(f(\beta_{1}),\ldots,f(\beta_{n})):f\in\mathcal{G}_{k}\},$$

where
$$\mathcal{G}_k:=\Big\{f_0x+f_1x^q+\cdots+f_{k-1}x^{q^{k-1}}:f_0,\ldots,f_{k-1}\in\mathbb{F}_{q^m}\Big\}.$$

Proposition (Sheekey - 2016)

Let β_1, \ldots, β_n be elements of \mathbb{F}_{q^m} linearly independent over \mathbb{F}_q . The dual of the code $\mathcal{G}_k(\beta_1, \ldots, \beta_n)$ is equivalent to $\mathcal{G}_{n-k}(\beta_1, \ldots, \beta_n)$.

Let k = 1 and α be a primitive element of \mathbb{F}_{5^3} . We have

$$\begin{split} C := \mathcal{G}_1(\alpha^4, \alpha^7) &= \left\{ (f(\alpha^4), f(\alpha^7)) : f \in \{f_0 x : f_0 \in \mathbb{F}_5\} \right\} \\ &= \{f_0(\alpha^4, \alpha^7) : f_0 \in \mathbb{F}_5\} = \left\langle (\alpha^4, \alpha^7) \right\rangle_{\mathbb{F}_5}. \end{split}$$

Let $\Gamma := \{1, \alpha, \alpha^2\}$ be a \mathbb{F}_5 -basis of \mathbb{F}_{5^3} , $N := \Gamma((\alpha^4, \alpha^7))$ and M the companion matrix of the minimal polynomial of α , i.e.

$$N := \begin{pmatrix} 0 & 2 & 2 \\ 3 & 2 & 3 \end{pmatrix}, \qquad M := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}.$$

One can check that

$$\Gamma(C) = \left\langle \mathsf{N}, \mathsf{N}\,\mathsf{M}, \mathsf{N}\,\mathsf{M}^2 \right\rangle_{\mathbb{F}_5} = \left\langle \begin{pmatrix} 0 & 2 & 2 \\ 3 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 4 & 2 \\ 1 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 3 & 4 \\ 4 & 0 & 4 \end{pmatrix} \right\rangle_{\mathbb{F}_5}.$$

Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

Let $q \ge m+n-2$ and α be primitive element of \mathbb{F}_{q^m} . For any integer $j \in \{0,\ldots,m-1\}$, we have $\operatorname{trk}(\mathcal{G}_1(1,\alpha^{q^j},\ldots,\alpha^{nq^j})) = m+n-1$

$$\mathsf{trk}(\mathcal{G}_1(\mathsf{1},lpha^{q^j},\ldots,lpha^{\mathsf{n}q^j})) = m+n-1$$

 $\operatorname{trk}(\mathcal{G}_1(1,\alpha^{q^j},\dots,\alpha^{nq^j}))=m+n-1$ and, in particular, $\mathcal{G}_1(1,\alpha^{q^j},\dots,\alpha^{nq^j})$ is MTR.

Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
Let $q \geq m+n-2$ and α be primitive element of \mathbb{F}_{q^m} . For any integer $j \in \{0,\ldots,m-1\}$, we have

$$\mathsf{trk}(\mathcal{G}_1(1, \alpha^{q^j}, \dots, \alpha^{nq^j})) = m + n - 1$$

and, in particular, $\mathcal{G}_1(1, \alpha^{q^j}, \dots, \alpha^{nq^j})$ is MTR.

Proposition (Byrne, C.)

Let $q \ge m+n-2$ and $n \in \{2,3\}$. Let α be primitive element of \mathbb{F}_{q^m} and $j \in \{0,\ldots,m-1\}$. There exist $P \in GL_m(\mathbb{F}_q)$ and $A,B \in \mathbb{F}_q^{n \times m}$ of rank 1 such that an (m+n-1)-base for $\mathcal{G}_1(1,\alpha^{q^j},\ldots,\alpha^{nq^j})$ is

(1)
$$\{Y_nP^{-1}E_{i,i}P: 1 \le i \le m\} \cup \{A\} \text{ if } n=2;$$

(2)
$$\{Y_nP^{-1}E_{i,i}P: 1 \le i \le m\} \cup \{A,B\}$$
 if $n=3$;

Proposition (Byrne, C.)

Let $q \geq m$ and α be primitive element of \mathbb{F}_{q^m} . For any $j \in \{0, \dots, m-1\}$, we have

$$\operatorname{trk}(\mathcal{G}_1(1,\alpha^{q^j},\ldots,\alpha^{nq^j})^{\perp}) = nm - m + 1$$

and, in particular, $\mathcal{G}_1(1,\alpha^{q^j},\ldots,\alpha^{nq^j})^{\perp}$ is MTR. Moreover, an (nm-m+1)-base for $\mathcal{G}_1(1,\alpha^{q^j},\ldots,\alpha^{nq^j})^{\perp}$ is

$$\begin{split} \mathcal{A}(\mathcal{S}) := & \{ Y_n J^i \, E_{1,m} \, (M^{-i})^t : 0 \leq i \leq n-1 \} \\ & \cup \, \{ \, Y_n J^i \, \mathcal{E}(\gamma) \, (M^{-i})^t : 0 \leq i \leq n-2, \gamma \in \mathcal{S} \}. \end{split}$$

where $\mathcal{S}:=\{1,\gamma_1,\ldots,\gamma_{m-2}\}$ is a set of distinct element of $\mathbb{F}_q\setminus\{0\}$.

FURTHER QUESTIONS

- Let $j \in \{0, ..., m-1\}$ and $n \notin \{2, 3\}$. Construct an (n+m-1)-base for the 1-dimensional Delsarte-Gabidulin code $\mathcal{G}_1(1, \alpha^{q^i}, ..., \alpha^{nq^i})$.
- Let $k \in \{2, ..., n-2\}$. Study the tensor rank of k-dimensional Delsarte-Gabidulin codes.
- Find new classes of MTR codes.

FURTHER QUESTIONS

- Let $j \in \{0, ..., m-1\}$ and $n \notin \{2, 3\}$. Construct an (n+m-1)-base for the 1-dimensional Delsarte-Gabidulin code $\mathcal{G}_1(1, \alpha^{q^j}, ..., \alpha^{nq^j})$.
- Let $k \in \{2, ..., n-2\}$. Study the tensor rank of k-dimensional Delsarte-Gabidulin codes.
- Find new classes of MTR codes.

Bilinear Complexity of 3-Tensors Linked to Coding Theory

E. Byrne, G. Cotardo arXiv: 2103.08544.

