Quantum Period Finding against Symmetric Primitives

Xavier Bonnetain

January 26, 2021

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Outline

- 2 Simon's algorithm
- **3** The Offline Simon's Algorithm
- Output Control Cont

5 Conclusion

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusio
•00	00000000	000000000	000000000000000000000000000000000000000	000000

Quantum Computing $\circ \bullet \circ$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum computing

Classical computing		Quantum computing		
X	Input	$ x\rangle$	Input	
↓ a, b,	Intermediate values	$\ket{a,b,\ldots} \ \downarrow$	Intermediate state	
ў У	Final result	$ y angle \longrightarrow y$	Final measurement	

Differences

- More possibilities $|0\rangle,~|1\rangle,~|0\rangle-|1\rangle\dots$
- Reversible computing
- New operators $H: \ket{b} \mapsto rac{1}{\sqrt{2}} \left(\ket{0} + (-1)^b \ket{1} \right)$

The Offline Simon's Algorithm

Ciphers and Circuits Co

Conclusion

Amplitude Amplification

Unstructured Search problem

- $f: \{0,1\}^n \to \{0,1\}$, with M inputs x such that f(x) = 1
- Goal : find any x such that f(x) = 1, given oracle access to f.

Classical resolution

Brute force search, in $\Theta(2^n/M)$ samples.

Quantum resolution

Amplitude amplification, in
$$\Theta\left(\sqrt{2^n/M}\right)$$
 quantum queries

Ex: A single-target key search on AES-128 requires 2^{82} quantum operations.

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	00000000	000000000	000000000000000000000000000000000000000	000000

Simon's algorithm

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Simon's problem

Simon's problem

- $f: \{0,1\}^n \to \{0,1\}^n$
- $s \in \{0,1\}^n$
- $\forall x, y, f(y) = f(x) \Leftrightarrow x \oplus y \in \{0, s\}$
- f hides the period s
- Goal : find s, given oracle access to f.

Classical resolution

Find a collision, in $\Omega(2^{n/2})$ samples.

Quantum resolution

Simon's algorithm, in $\mathcal{O}\left(n\right)$ quantum queries, $\mathcal{O}\left(n^{3}\right)$ classical operations

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

Quantum circuit

• Start from $|0\rangle \, |0\rangle$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0
 angle$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

- Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0
 angle$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus s\rangle)$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $rac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\ket{x}\ket{f(x)}$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus s\rangle)$
- Reapply H: $\frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} \ket{y} + (-1)^{(x_0 \oplus s) \cdot y} \ket{y}$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

Quantum circuit

- \bullet Start from $\left|0\right\rangle \left|0\right\rangle$
- Apply H: $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |0\rangle$
- Apply O_f : $\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle |f(x)\rangle$
- Measure the second register: get $f(x_0)$ and project to $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus s\rangle)$
- Reapply H: $\frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} \ket{y} + (-1)^{(x_0 \oplus s) \cdot y} \ket{y}$
- The state is $\frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{x_0 \cdot y} (1 + (-1)^{s \cdot y}) \ket{y}$

The y_0 we measure must satisfy $1 + (-1)^{s \cdot y_0} \neq 0 \Rightarrow y_0 \cdot s = 0$.

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon's algorithm [Sim94]

Simon's problem

- $f: \{0,1\}^n \to \{0,1\}^n$, $s \in \{0,1\}^n$
- $\forall x, y, f(y) = f(x) \Leftrightarrow x \oplus y \in \{0, s\}$
- Goal : find s, given oracle access to f.

Simon's algorithm

- Superposition queries $\sum_{x} \ket{x} \ket{f(x)}$
- Sample $y: \mathbf{s} \cdot y = \mathbf{0}$
- Repeat O(n) times and solve the system
- Requires n + 2 queries on average

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon-based cryptanalysis

General idea

Create a periodic function from a cipher, whose period is a secret.

Characteristics

- Polynomial time, only $\mathcal{O}(n)$ queries
- Require quantum queries

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

The Even-Mansour Cipher

Built from a random permutation $P : \{0,1\}^n \rightarrow \{0,1\}^n$.

$$E_{k_1,k_2}(x) = k_2 \oplus P(x \oplus k_1)$$

Classical security

Any attack needs Time \times Data $\geq 2^n$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 12/

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 12/

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 12/

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum attack [KM12]

Quantum attack

$$f(x) = E_{\mathbf{k}_1, \mathbf{k}_2}(x) \oplus P(x)$$
 satisfies $f(x \oplus \mathbf{k}_1) = f(x)$.

Even-Mansour is broken in polynomial time, with quantum query access.

Xavier Bonnetain

Simon's algorithm ○○○○○○●○ The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A technical issue [Bon20]

- $f(x) = E_{k_1,k_2}(x) \oplus P(x)$
- We may have f(x) = f(y) and $x \neq y \oplus k_1$

Simon's algorithm ○○○○○○●○ The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A technical issue [Bon20]

Periodic function

- $f(x) = E_{\mathbf{k_1},\mathbf{k_2}}(x) \oplus P(x)$
- We may have f(x) = f(y) and $x \neq y \oplus k_1$

• Soundness is not affected

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A technical issue [Bon20]

- $f(x) = E_{\mathbf{k_1}, \mathbf{k_2}}(x) \oplus P(x)$
- We may have f(x) = f(y) and $x \neq y \oplus k_1$
- Soundness is not affected
- Biaises appear in the sampled values.

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A technical issue [Bon20]

- $f(x) = E_{k_1,k_2}(x) \oplus P(x)$
- We may have f(x) = f(y) and $x \neq y \oplus k_1$
- Soundness is not affected
- Biaises appear in the sampled values.

• Worst case:
$$f(x) = \begin{cases} 1 & \text{if } x \in \{0, s\} \\ 0 & \text{otherwise} \end{cases}$$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A technical issue [Bon20]

- $f(x) = E_{\mathbf{k_1}, \mathbf{k_2}}(x) \oplus P(x)$
- We may have f(x) = f(y) and $x \neq y \oplus k_1$
- Soundness is not affected
- Biaises appear in the sampled values.
- Worst case: $f(x) = \begin{cases} 1 & \text{if } x \in \{0, s\} \\ 0 & \text{otherwise} \end{cases}$
- For almost all functions, requires only n + 3 queries on average

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon-based cryptanalysis

- Distinguishers on Feistel constructions
- Multiple quantum slide attacks
- AEZ
- Multiple modes of operation
- Quantum related-key attacks
- . . .

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Simon-based cryptanalysis

- Distinguishers on Feistel constructions
- Multiple quantum slide attacks
- AEZ
- Multiple modes of operation
- Quantum related-key attacks
- . . .

Require quantum queries

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	000000000	00000000	000000000000000000000000000000000000000	000000

The Offline Simon's Algorithm

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Example: FX construction

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Example: FX construction

Quantum attack: "Grover-meet-Simon" [LM17]

- Quantum search for k
- Checking: Kuwakado and Morii's attack works the guess of k is correct

Total time is

$$\underbrace{poly(n)}_{\text{Simon's algo}} \times \underbrace{}_{\text{G}}$$

$$\underbrace{\frac{2^{|k|/2}}{\text{Grover's iterates}}}$$

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Our remark on FX [BHNSS19]

The function:

$$f_z(x) = \mathsf{FX}_{\mathbf{k_1}, \mathbf{k_2}, \mathbf{k}}(x) \oplus E_z(x)$$

has $f_z(x \oplus k_1) = f_z(x)$ if z = k (the good one). f_z is a sum:

$$f_z(x) = \underbrace{\mathsf{FX}_{k_1,k_2,k}(x)}_{\text{Independent}} \oplus \underbrace{E_z(x)}_{\text{Grover search}} \\ \text{of } z: \text{ online} \\ \text{function } f \\ function g$$

For one query to f_z

- Do one quantum query to $FX_{k_1,k_2,k}(x)$ (fixed!)
- Add $E_z(x)$ (only depends on public information)

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 17/

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

A new test algorithm

- **9** Begin with $\mathcal{O}(\mathbf{n})$ states of the form $\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$
- 2 Make queries to g and build: $\sum_{x \in \{0,1\}^n} |x\rangle | (f \oplus g)(x) \rangle$
- Revert the computations, query g again, put the "sample states" back to

 $\sum_{x \in \{0,1\}^{\mathsf{n}}} \ket{x} \ket{f(x)}$

This emulates a reversible quantum circuit that tests for the periodicity of $f \oplus g$, with only preprocessed queries to f.

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Our Q2 attack on FX

The queries to $FX_{k_1,k_2,k}(x)$ are made beforehand.

Test function

- Fetch the sample states $\sum_{x \in \{0,1\}^n} \ket{x} \ket{\mathsf{FX}_{\mathsf{k}_1,\mathsf{k}_2,\mathsf{k}}(x)}$
- Create the Simon states $\sum_{x \in \{0,1\}^n} \ket{x} \ket{\mathsf{FX}_{\mathsf{k}_1,\mathsf{k}_2,\mathsf{k}}(x) \oplus \mathsf{E}_z(x)}$
- Test if there is a period
- Revert the operations and get back the sample states

Quantum search cost

- Time unchanged
- Queries reduced from $\mathcal{O}\left(n2^{|k|/2}\right)$ to $\mathcal{O}\left(n\right)$
- Needs $\mathcal{O}\left(n^{2}\right)$ Qubits

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Back to the Even-Mansour cipher

Producing the sample states with Q1 queries is possible... in time 2^n , with the whole codebook.

 \implies not an attack.
Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Q1 attack on Even-Mansour

We separate k_1 in two parts.

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Q1 attack on Even-Mansour (ctd.)

$$f(x)=E_{k_1,k_2}(x\|0^{\mathsf{n}-\mathsf{u}})\oplus P(x\|\mathsf{k}_1^{(2)})$$
 has period $\mathsf{k}_1^{(1)}$

- Produce the sample states $\sum_{x} |x\rangle |E_{k_1,k_2}(x||0^{n-u})\rangle$
- 2 Search the good $k_1^{(2)}$ (n u bits)

Data: 2^{u} Memory: $\mathcal{O}(nu)$ Time: $2^{u} + 2^{(n-u)/2}$ Balances when Data = Time = $2^{n/3}$

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 22/

Simon's algorithm

The Offline Simon's Algorithm 000000000

Ciphers and Circuits

Conclusion

Q1 attack on the FX construction

We do the same, with more guesses in Grover's algorithm: Data = Time = $2^{(n+m)/3}$.

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Summary

The offline approach

We reuse the quantum queries for each iteration of Simon's algorithm when the periodic function allows it.

Consequences

- Drastically reduces the number of quantum queries.
- Allows to convert a Q2 attack into a Q1 attack.
- Provides the best known Q1 attacks

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	00000000	000000000	•00000000000000000000000000000000000000	000000

Ciphers and Circuits

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum Operations/Gates

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Quantum Operations/Gates

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

In-place vs. Out-of-place

In-place:

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

In-place vs. Out-of-place

In-place:

Conclusion: In-place multiplication as expensive as division

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

In-place vs. Out-of-place

In-place:

Out-of-place:

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
Q#				

- We wrote the linear algebra and block ciphers in Q#, a quantum programming language
- Simulates and tests X, CNOT, Toffoli, And, up to thousands of qubits
- Counts resource use with some rudimentary optimization
- The library is available: https://github.com/sam-jaques/ offline-quantum-period-finding

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Shape of the circuit

Ciphers and Circuits

Conclusion

Linear Algebra [BJ20]

Circuit to find the rank of an $m \times n$ binary matrix, with m > n:

- Compute a triangular basis and reduce the input vectors in-place.
- Depth: $O((m+n) \lg n)$
- Gates: $mn^2 + mn$ Toffoli gates
- Qubits: *mn* as input, plus $m + \frac{n(3n-1)}{2}$ extra qubits

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce input

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce input

The Simon-function oracle looks like:

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce input

The Simon-function oracle looks like:

• Precompute g once for all ciphers

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce input

The Simon-function oracle looks like:

- Precompute g once for all ciphers
- Even better: g is a permutation, so don't compute it at all

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce Output

We only need 11 bits of output:

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce Output

We only need 11 bits of output:

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Optimization: Reduce Output

We only need 11 bits of output:

Ciphers and Circuits

Conclusion

Optimizations at the end

Ciphers and Circuits

Conclusion

Optimizations at the end

Ciphers and Circuits

Conclusion

Optimizations at the end

Ciphers and Circuits

Conclusion

Optimizations at the end

Primitive: Chaskey

- Lightweight MAC, ISO standard
- At most 2⁴⁸ message blocks with the same key.

ARX construction

- Addition: Easily in-place; cheap circuits are well-studied
- Rotation: Done "in-software" by re-labelling qubits
- Xor: Just CNOT gates

Conclusion

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Chaskey Circuits

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Chaskey Circuits

Last 2 rounds:

Xavier Bonnetain

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Primitive: PRINCE

Block cipher, used to encrypt memory in microcontrollers

Components of Prince-core

- Linear layer
- Constant additions
- Non-linear S-box (function in $\{0,1\}^4 \rightarrow \{0,1\}^4$)

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

PRINCE: Linear Layer

We follow [JNRV20] and use a PLU decomposition:

$$M = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = P \cdot L \cdot U$$

(a) Invertible linear transformation ${\cal M}$ and its PLU decomposition.

 Quantum Computing
 Simon's algorithm
 The Offline Simon's Algorithm
 Ciphers and Circuits
 Conclusion

 000
 000000000
 000000000
 000000000
 00000000
 00000000
 00000000

PRINCE: S-box

We use an expression from secure hardware implementations [BKN18]:

$$S(x) = A_1 \circ Q_{294} \circ A_2 \circ Q_{294} \circ A_3 \circ Q_{294} \circ A_4$$

- A_i: Affine (use PLU decomposition)
- Q₂₉₄: Quadratic function

PRINCE: S-box

We use an expression from secure hardware implementations [BKN18]:

$$S(x) = A_1 \circ Q_{294} \circ A_2 \circ Q_{294} \circ A_3 \circ Q_{294} \circ A_4$$

• A_i: Affine (use PLU decomposition)

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	00000000	000000000	000000000000000000000000000000000000000	000000

PRINCE: S-box

We use an expression from secure hardware implementations [BKN18]:

$$S(x) = A_1 \circ Q_{294} \circ A_2 \circ Q_{294} \circ A_3 \circ Q_{294} \circ A_4$$

- A_i: Affine (use PLU decomposition)
- Q_{294} : Quadratic function

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion

Elephant

- Authenticated encryption, NIST LWC candidate
- 128 bits of key, 3 state sizes: 160, 176, 200
- Data limitation, respectively 247, 247, 269 blocks.
- 160 and 176 use the SpongeNT permutation
- 200 uses Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: SpongeNT

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: SpongeNT

- Round constants Just X gates
- S: Use secure hardware decomposition
- PLayer: Decompose into swaps

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: SpongeNT S-Box

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

 $\underbrace{\iota} \circ \chi \circ \underbrace{\pi \circ \rho \circ \theta}$ round constant non-linear use PLU decomposition

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Elephant: Keccak χ function

(based on optimized classical Keccak χ and χ^{-1} implementations)

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Overall Cipher Costs

Cipher	Block		Opera	ations	De	Qubits		
Cipiloi	Size	CNOT	1QC	Т	М	Т	All	quono
Chaskey-8	128	$1.81\cdot 2^{14}$	$1.14\cdot 2^{13}$	$1.63\cdot 2^{12}$	$1.75\cdot 2^{10}$	$1.68\cdot 2^{10}$	$1.37\cdot2^{14}$	160
Chaskey-12	128	$1.46\cdot 2^{15}$	$1.82\cdot 2^{13}$	$1.31\cdot 2^{13}$	$1.38\cdot 2^{11}$	$1.36\cdot 2^{11}$	$1.11\cdot 2^{15}$	160
PRINCE	64	$1.22\cdot 2^{15}$	$1.60\cdot 2^{12}$	$1.68\cdot 2^{13}$	0	$1.41\cdot 2^9$	$1.64\cdot 2^{11}$	128
	160	$1.71\cdot2^{18}$	$1.17\cdot 2^{16}$	$1.34\cdot 2^{17}$	0	$1.56\cdot 2^{11}$	$1.29\cdot2^{14}$	160
Elephant	176	$1.05\cdot 2^{19}$	$1.45\cdot 2^{16}$	$1.66\cdot 2^{17}$	0	$1.76\cdot 2^{11}$	$1.68\cdot 2^{14}$	176
	200	$1.07\cdot 2^{19}$	$1.08\cdot 2^{16}$	$1.13\cdot 2^{15}$	$1.72\cdot 2^{12}$	$1.34\cdot 2^8$	$1.29\cdot 2^{17}$	400

 $``1\mathsf{QC}''$ are single-qubit Clifford operations and $``\mathsf{M}''$ are measurements.

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	00000000	000000000	000000000000000000000000000000000000000	•00000

Conclusion

Xavier Bonnetain

Quantum Period Finding against Symmetric Primitives 45/

Quantum Computing	Simon's algorithm	The Offline Simon's Algorithm	Ciphers and Circuits	Conclusion
000	000000000	000000000	000000000000000000000000000000000000000	00000

Overall Results

Target	Bitlength	Offline	Opera	ations	De	pth	Qubits	Source		
	2.0.0.80	Queries	All	Т	All	Т	th Qubits - 12.6 53.9 14.5 54.1 14.5 53.8 14.0 70.4 14.8 78.5 15.1 79.3 16.4 71.6 10.7	000.00		
RSA	2048	-	_	31	31	_	12.6	[GE19]		
Chaskey-8	128	48	64.9	64.4	56.0	53.9	14.5			
Chaskey-12	128	48	65.1	64.5	56.4	54.1	14.5			
PRINCE	64	-	65.0	64.5	55.2	53.8	14.0	ours		
	160	47	84.1	82.5	72.6	70.4	14.8			
Elephant	176	47	92.5	90.9	80.8	78.5	15.1			
	200	69	93.6	91.7	83.7	79.3	16.4			
AES	128	1	82.3	80.4	74.7	71.6	10.7	[DP20]		

Mitigation 1: Limit Queries

The cost of the attack decreases with the number of queries (up to $\widetilde{\mathcal{O}}(2^{n/3})$). If we limit queries:

Target	Bitlength	Offline	Offline Operations		De	pth	Qubits	Query Limit
0		Queries	All	Т	All	Т	4	
Chaskey-8	128	48	64.9	64.4	56.0	53.9	14.5	limited
Chaskey-12	128	48	65.1	64.5	56.4	54.1	14.5	Innited
Chaskey-8	128	50	64.3	64.0	55.5	54.4	14.5	unlimitad
Chaskey-12	128	51	64.5	64.2	55.9	55.2	14.5	unimited

Mitigation 1: Limit Queries

The cost of the attack decreases with the number of queries (up to $\widetilde{\mathcal{O}}(2^{n/3})$). If we limit queries:

Target	Bitlength	Offline	ine Operations		De	pth	Qubits	Querv Limit
		Queries	All	Т	All	Т	L	、
	160	47	84.1	82.5	72.6	70.4	14.8	
Elephant	176	47	92.5	90.9	80.8	78.5	15.1	limited
	200	69	93.6	91.7	83.7	79.3	16.4	
	160	63	76.9	76.3	67.3	67.1	14.8	
Elephant	176	68	82.6	81.7	72.4	72.1	15.1	unlimited
	200	76	90.7	89.7	81.1	80.1	16.4	

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits

Conclusion

Mitigation 2: Change the cipher

PRINCEv2 uses a different construction and is immune:

Simon's algorithm

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Mitigation 3: Larger State Sizes

Target	Bitlength	Offline	Operations		Depth		Qubits	Attack	
laiget	Britingin	Queries	All	Т	All	Т	quono	, itteen	
	160	47	84.1	82.5	72.6	70.4	14.8		
Elephant	176	47	92.5	90.9	80.8	78.5	15.1	Offline Simon	
	200	69	93.6	91.7	83.7	79.3	16.4		
	160	0	85.1	83.1	80.2	77.3	9.6	E handing	
Elephant	176	0	85.4	83.4	80.4	77.5	9.8		
	200	0	85.1	81.0	83.0	74.0	10.0	quantum key search	

The Offline Simon's Algorithm

Ciphers and Circuits Conclusion

Mitigation 3: Larger State Sizes

Target	Ritlength	Offline	Operations		Depth		Qubits	Attack	
laiget	Britiongin	Queries	All	Т	All	Т	quono	, itten	
	160	47	84.1	82.5	72.6	70.4	14.8		
Elephant	176	47	92.5	90.9	80.8	78.5	15.1	Offline Simon	
	200	69	93.6	91.7	83.7	79.3	16.4		
	160	0	85.1	83.1	80.2	77.3	9.6	E la sulta	
Elephant	176	0	85.4	83.4	80.4	77.5	9.8		
	200	0	85.1	81.0	83.0	74.0	10.0	quantum key search	

All figures in log base 2 except bitlength.

• Elephant needs an increase to *both* key and state size to increase quantum security.

Conclusion ○○○○○●

Conclusion: Thanks for listening!

Target	Bitlength	Offline	Oper	ations	De	pth	Qubits	Source
	2.00.80	Queries	All	Т	All	Т	quanto	oouroo
RSA	2048	-	_	31	31	-	12.6	[GE19]
Chaskey-8	128	48	64.9	64.4	56.0	53.9	14.5	
Chaskey-12	128	48	65.1	64.5	56.4	54.1	14.5	
PRINCE	64	48	65.0	64.5	55.2	53.8	14.0	ours
	160	47	84.1	82.5	72.6	70.4	14.8	
Elephant	176	47	92.5	90.9	80.8	78.5	15.1	
	200	69	93.6	91.7	83.7	79.3	16.4	
AES	128	1	82.3	80.4	74.7	71.6	10.7	[DP20]
	A 11 C			~				