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Quantum computing

Classical computing

x

a, b, . . .
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Input

Intermediate values

Final result

Quantum computing
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|a, b, . . .〉

|y〉 y

Input

Intermediate state
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Differences
More possibilities |0〉, |1〉, |0〉 − |1〉 . . .
Reversible computing
New operators H : |b〉 7→ 1√

2

(
|0〉+ (−1)b |1〉

)
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Amplitude Amplification

Unstructured Search problem
f : {0, 1}n → {0, 1}, with M inputs x such that f (x) = 1
Goal : find any x such that f (x) = 1, given oracle access to f .

Classical resolution
Brute force search, in Θ (2n/M) samples.

Quantum resolution

Amplitude amplification, in Θ
(√

2n/M
)
quantum queries

Ex: A single-target key search on AES-128 requires 282 quantum
operations.
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Simon’s algorithm
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Simon’s problem

Simon’s problem
f : {0, 1}n → {0, 1}n

s ∈ {0, 1}n

∀x , y , f (y) = f (x)⇔ x ⊕ y ∈ {0, s}
f hides the period s

Goal : find s, given oracle access to f .

Classical resolution

Find a collision, in Ω
(
2n/2) samples.

Quantum resolution

Simon’s algorithm, in O (n) quantum queries, O
(
n3) classical

operations
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Simon’s algorithm [Sim94]

Quantum circuit
Start from |0〉 |0〉

Apply H: 1
2n/2

∑2n−1
x=0 |x〉 |0〉

Apply Of : 1
2n/2

∑2n−1
x=0 |x〉 |f (x)〉

Measure the second register: get f (x0) and project to
1√
2

(|x0〉+ |x0 ⊕ s〉)

Reapply H: 1
2n/2

∑2n−1
y=0 (−1)x0·y |y〉+ (−1)(x0⊕s)·y |y〉

The state is 1
2n/2

∑2n−1
y=0 (−1)x0·y (1 + (−1)s·y ) |y〉

The y0 we measure must satisfy 1 + (−1)s·y0 6= 0 ⇒ y0 · s = 0.
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Simon’s algorithm [Sim94]

Simon’s problem
f : {0, 1}n → {0, 1}n, s ∈ {0, 1}n

∀x , y , f (y) = f (x)⇔ x ⊕ y ∈ {0, s}
Goal : find s, given oracle access to f .

Simon’s algorithm
Superposition queries

∑
x |x〉 |f (x)〉

Sample y : s · y = 0
Repeat O(n) times and solve the system
Requires n + 2 queries on average
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Simon-based cryptanalysis

General idea
Create a periodic function from a cipher, whose period is a secret.

Characteristics
Polynomial time, only O (n) queries
Require quantum queries
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The Even-Mansour Cipher

Built from a random permutation P : {0, 1}n → {0, 1}n.

x P

k1 k2

Ek1,k2(x)

Ek1,k2(x) = k2 ⊕ P(x ⊕ k1)

Classical security
Any attack needs Time × Data ≥ 2n
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Quantum attack [KM12]

x

x ⊕ k1

k1 k1

k1

k1

P

k2

k2

P

Ek1,k2(x)⊕ P(x)

Ek1,k2(x ⊕ k1)
⊕P(x ⊕ k1)

P(x)
⊕Ek1,k2(x)

Quantum attack
f (x) = Ek1,k2(x)⊕ P(x) satisfies f (x ⊕ k1) = f (x).

Even-Mansour is broken in polynomial time, with quantum query
access.
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A technical issue [Bon20]

Periodic function
f (x) = Ek1,k2(x)⊕ P(x)

We may have f (x) = f (y) and x 6= y ⊕ k1

Soundness is not affected
Biaises appear in the sampled values.

Worst case: f (x) =

{
1 if x ∈ {0, s}
0 otherwise

For almost all functions, requires only n + 3 queries on average

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 13/50
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Simon-based cryptanalysis

Distinguishers on Feistel constructions
Multiple quantum slide attacks
AEZ
Multiple modes of operation
Quantum related-key attacks
. . .
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Simon-based cryptanalysis

Distinguishers on Feistel constructions
Multiple quantum slide attacks
AEZ
Multiple modes of operation
Quantum related-key attacks
. . .

Require quantum queries
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The Offline Simon’s Algorithm
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Example: FX construction

x Ek

k1 k2

FXk1,k2,k(x)

Quantum attack: “Grover-meet-Simon” [LM17]

Quantum search for k
Checking: Kuwakado and Morii’s attack works ⇐⇒ the guess
of k is correct

Total time is poly(n)︸ ︷︷ ︸
Simon’s algo

× 2|k|/2︸ ︷︷ ︸
Grover’s iterates

.
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Our remark on FX [BHNSS19]

The function:
fz(x) = FXk1,k2,k(x)⊕ Ez(x)

has fz(x ⊕ k1) = fz(x) if z = k (the good one).
fz is a sum:

fz(x) = FXk1,k2,k(x)︸ ︷︷ ︸
Independent
of z: online
function f

⊕ Ez(x)︸ ︷︷ ︸
Grover search
space: offline
function g

For one query to fz

Do one quantum query to FXk1,k2,k(x) (fixed!)
Add Ez(x) (only depends on public information)

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 17/50
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A new test algorithm

1 Begin with O (n) states of the form
∑

x∈{0,1}n |x〉 |f (x)〉
2 Make queries to g and build:

∑
x∈{0,1}n |x〉 |(f ⊕ g)(x)〉

3 With Simon’s algorithm, obtain a single output bit: whether
f ⊕ g has a period or not

4 Revert the computations, query g again, put the “sample
states” back to ∑

x∈{0,1}n
|x〉 |f (x)〉

This emulates a reversible quantum circuit that tests for the
periodicity of f ⊕ g , with only preprocessed queries to f.
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Our Q2 attack on FX

The queries to FXk1,k2,k(x) are made beforehand.

Test function

Fetch the sample states
∑

x∈{0,1}n |x〉
∣∣FXk1,k2,k(x)

〉
Create the Simon states

∑
x∈{0,1}n |x〉

∣∣FXk1,k2,k(x)⊕ Ez(x)
〉

Test if there is a period
Revert the operations and get back the sample states

Quantum search cost
Time unchanged
Queries reduced from O

(
n2|k|/2

)
to O (n)

Needs O
(
n2) Qubits

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 19/50
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Back to the Even-Mansour cipher

x P

k1 k2

Ek1,k2(x)

Producing the sample states with Q1 queries is possible. . . in time
2n, with the whole codebook.
=⇒ not an attack.

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 20/50
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Q1 attack on Even-Mansour

We separate k1 in two parts.

P

k(2)1

k(1)1

n− u

u

k2

n

Grover search space

Apply Simon’s algorithm

Define f (x) = Ek1,k2(x‖0n−u)⊕ P(x‖k(2)1 ).

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 21/50
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Q1 attack on Even-Mansour (ctd.)

P

k(2)1

k(1)1

n− u

u

k2

n

Grover search space

Apply Simon’s algorithm

f (x) = Ek1,k2(x‖0n−u)⊕ P(x‖k(2)1 ) has period k(1)1

1 Produce the sample states
∑

x |x〉 |Ek1,k2(x‖0n−u)〉
2 Search the good k(2)1 (n− u bits)

Data: 2u Memory: O (nu)

Time: 2u + 2(n−u)/2

Balances when Data = Time = 2n/3
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Q1 attack on the FX construction

E

k(2)1

k(1)1

n− u

u

k2

n

Grover search space

Apply Simon’s algorithm

k

m

We do the same, with more guesses in Grover’s algorithm:
Data = Time = 2(n+m)/3.
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Summary

The offline approach
We reuse the quantum queries for each iteration of Simon’s
algorithm when the periodic function allows it.

Consequences
Drastically reduces the number of quantum queries.
Allows to convert a Q2 attack into a Q1 attack.
Provides the best known Q1 attacks

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 24/50
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Ciphers and Circuits
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Quantum Operations/Gates

|a〉 |a⊕ 1〉

(a) Pauli X gate,
or NOT gate.

|a〉
|b〉

|a〉
|a⊕ b〉

(b) CNOT gate

|a〉
|b〉

|a〉
|b〉
|a ∧ b〉

(c) AND gate

|a〉
|b〉
|c〉

|a〉
|b〉
|c ⊕ (a ∧ b)〉

(d) Toffoli gate


These are decom-
posed onto a stan-
dard set of gates:
“Clifford + T”

Xavier Bonnetain Quantum Period Finding against Symmetric Primitives 26/50
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In-place vs. Out-of-place

In-place:

|x〉
×

|xy〉

|y〉 |y〉
⇔

|x〉
×†

|x/y〉

|y〉 |y〉

Conclusion: In-place multiplication as expensive as division
Out-of-place:

|x〉

×

|x〉

|y〉 |y〉

|0〉 |xy〉

⇔

|x〉

×†
|x〉

|y〉 |y〉

|xy〉 |0〉
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Q#

We wrote the linear algebra and block ciphers in Q#, a
quantum programming language
Simulates and tests X , CNOT, Toffoli, And, up to thousands
of qubits
Counts resource use with some rudimentary optimization
The library is available:
https://github.com/sam-jaques/
offline-quantum-period-finding
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Shape of the circuit

|0〉

|i〉

|0〉
H

Ek P
H

|0〉

|0〉
H

Ek P
H

...

|0〉

|0〉
H

Ek P
H

Linear algebra
∣∣∣Rank ?

= n
〉

Computed once beforehand
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Linear Algebra [BJ20]

Circuit to find the rank of an m × n binary matrix, with m > n:
Compute a triangular basis and reduce the input vectors
in-place.
Depth: O((m + n) lg n)

Gates: mn2 + mn Toffoli gates
Qubits: mn as input, plus m + n(3n−1)

2 extra qubits
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Optimization: Reduce input

The Simon-function oracle looks like:

y

x
f f (k , x ||y)

k

Precompute g once for all ciphers
Even better: g is a permutation, so don’t compute it at all
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Optimization: Reduce Output

We only need 11 bits of output:

y

x
f

f1(k , x ||y)

f0(k , x ||y)

k
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Optimizations at the end

Suppose P = L ◦ P ′ for a linear function L:

x0

k0
1 k1

1
k2

k1
1

0

0
Ek1,k2(x0‖0)⊕ P(x0‖k1

1)P

P

P ′

P ′

L

L

L−1

Classically process oracle query results
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Primitive: Chaskey

K π π π

m1 m2 m3 K1 K1

Trunct Tag
128

Lightweight MAC, ISO standard
At most 248 message blocks with the same key.

ARX construction
Addition: Easily in-place; cheap circuits are well-studied
Rotation: Done “in-software” by re-labelling qubits
Xor: Just CNOT gates
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Chaskey Circuits

First round:

|v0〉

|v1〉

|v2〉

|v3〉

32

32

32

32

+

+

�
5

�
8

�
16

+

+

�
7

�
13 �

16
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Chaskey Circuits

Last 2 rounds:

|v0〉

|v1〉

|v2〉

|v3〉

32

32

32

32

+

+

�
5

�
8

�
16

+

+

�
7

�
13 �

16

+

+

�
5

�
8

�
16

+

+

�
7

�
13 �

16

Red: entirely removed
Blue: Linear post-processing

Green: Done when copying out
Purple: Only least significant 16 bits
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Primitive: PRINCE

m PRINCE-core

K0 K ′0K1

c

6464 64

Block cipher, used to encrypt memory in microcontrollers

Components of Prince-core
Linear layer
Constant additions
Non-linear S-box (function in {0, 1}4 → {0, 1}4)
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PRINCE: Linear Layer

We follow [JNRV20] and use a PLU decomposition:
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PRINCE: S-box

We use an expression from secure hardware implementations
[BKN18]:

S(x) = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

Ai : Affine (use PLU decomposition)
Q294: Quadratic function
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S(x) = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

Ai : Affine (use PLU decomposition)
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Elephant

N||0

Pmask0,0
K

M1

C1

. . .

N||0

Pmask`−1,0
K

M`

C`

Authenticated encryption, NIST LWC candidate
128 bits of key, 3 state sizes: 160, 176, 200
Data limitation, respectively 247, 247, 269 blocks.
160 and 176 use the SpongeNT permutation
200 uses Keccak
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Elephant: SpongeNT

spongent

|m〉 n

rev(Ci )‖0n−13‖Ci

S

P
La
ye
r

from i = 1 to {80, 96}

Round constants Just X gates
S : Use secure hardware decomposition
PLayer: Decompose into swaps
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Elephant: SpongeNT S-Box

|m0〉
|m1〉
|m2〉
|m3〉
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Elephant: Keccak

Keccak is a composition of 5 functions:

ι︸︷︷︸
round constant

◦ χ︸︷︷︸
non-linear

◦ π ◦ ρ ◦ θ︸ ︷︷ ︸
use PLU decomposition

|x〉
χ (χ−1)†

|0〉

|0〉 |χ(x)〉

|χ(x)〉
χ−1

|χ(x)〉

|0〉 |x〉
⇔
|χ(x)〉

(χ−1)†
|χ(x)〉

|x〉 |0〉
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Elephant: Keccak χ function

|m0〉
|m1〉
|m2〉
|m3〉
|m4〉
|0〉
|0〉
|0〉
|0〉
|0〉

(based on optimized classical Keccak χ and χ−1 implementations)
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Overall Cipher Costs

Cipher
Block
Size

Operations Depth
Qubits

CNOT 1QC T M T All

Chaskey-8 128 1.81 · 214 1.14 · 213 1.63 · 212 1.75 · 210 1.68 · 210 1.37 · 214 160
Chaskey-12 128 1.46 · 215 1.82 · 213 1.31 · 213 1.38 · 211 1.36 · 211 1.11 · 215 160

PRINCE 64 1.22 · 215 1.60 · 212 1.68 · 213 0 1.41 · 29 1.64 · 211 128

Elephant
160 1.71 · 218 1.17 · 216 1.34 · 217 0 1.56 · 211 1.29 · 214 160
176 1.05 · 219 1.45 · 216 1.66 · 217 0 1.76 · 211 1.68 · 214 176
200 1.07 · 219 1.08 · 216 1.13 · 215 1.72 · 212 1.34 · 28 1.29 · 217 400

“1QC” are single-qubit Clifford operations and “M” are measurements.
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Conclusion
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Overall Results

Target Bitlength
Offline Operations Depth

Qubits Source
Queries All T All T

RSA 2048 – – 31 31 – 12.6 [GE19]

Chaskey-8 128 48 64.9 64.4 56.0 53.9 14.5

ours

Chaskey-12 128 48 65.1 64.5 56.4 54.1 14.5

PRINCE 64 - 65.0 64.5 55.2 53.8 14.0

Elephant
160 47 84.1 82.5 72.6 70.4 14.8
176 47 92.5 90.9 80.8 78.5 15.1
200 69 93.6 91.7 83.7 79.3 16.4

AES 128 1 82.3 80.4 74.7 71.6 10.7 [DP20]

All figures in log base 2 except bitlength.
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Mitigation 1: Limit Queries

The cost of the attack decreases with the number of queries (up to
Õ
(
2n/3

)
). If we limit queries:

Target Bitlength
Offline Operations Depth

Qubits Query Limit
Queries All T All T

Chaskey-8 128 48 64.9 64.4 56.0 53.9 14.5
limited

Chaskey-12 128 48 65.1 64.5 56.4 54.1 14.5

Chaskey-8 128 50 64.3 64.0 55.5 54.4 14.5
unlimited

Chaskey-12 128 51 64.5 64.2 55.9 55.2 14.5

All figures in log base 2 except bitlength.
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Elephant
160 47 84.1 82.5 72.6 70.4 14.8

limited176 47 92.5 90.9 80.8 78.5 15.1
200 69 93.6 91.7 83.7 79.3 16.4

Elephant
160 63 76.9 76.3 67.3 67.1 14.8

unlimited176 68 82.6 81.7 72.4 72.1 15.1
200 76 90.7 89.7 81.1 80.1 16.4

All figures in log base 2 except bitlength.
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Mitigation 2: Change the cipher

PRINCEv2 uses a different construction and is immune:
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Mitigation 3: Larger State Sizes

Target Bitlength
Offline Operations Depth

Qubits Attack
Queries All T All T

Elephant
160 47 84.1 82.5 72.6 70.4 14.8

Offline Simon176 47 92.5 90.9 80.8 78.5 15.1
200 69 93.6 91.7 83.7 79.3 16.4

Elephant
160 0 85.1 83.1 80.2 77.3 9.6

Exhaustive
quantum key search

176 0 85.4 83.4 80.4 77.5 9.8
200 0 85.1 81.0 83.0 74.0 10.0

All figures in log base 2 except bitlength.

Elephant needs an increase to both key and state size to
increase quantum security.
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Conclusion: Thanks for listening!

Target Bitlength
Offline Operations Depth

Qubits Source
Queries All T All T

RSA 2048 – – 31 31 – 12.6 [GE19]

Chaskey-8 128 48 64.9 64.4 56.0 53.9 14.5

ours

Chaskey-12 128 48 65.1 64.5 56.4 54.1 14.5

PRINCE 64 48 65.0 64.5 55.2 53.8 14.0

Elephant
160 47 84.1 82.5 72.6 70.4 14.8
176 47 92.5 90.9 80.8 78.5 15.1
200 69 93.6 91.7 83.7 79.3 16.4

AES 128 1 82.3 80.4 74.7 71.6 10.7 [DP20]

All figures in log base 2 except bitlength.
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