
Quantum resource estimation

Gustavo Banegas1

March 16, 2021

1INRIA & LIX - École polytechnique, France
gustavo@cryptme.in

1 / 33

Outline

Introduction

Quantum Computation

Grover’s algorithm & AES

Shor’s algorithm & ECC

2 / 33

Cryptoapocalypse

3 / 33

Cryptoapocalypse

3 / 33

In other words..

4 / 33

Introduction to Quantum Computing

How a quantum computer works?
I It perform computations based on probabilities of an object’s

state before it is measured;

I We can change the probabilities of a state;

5 / 33

Introduction to Quantum Computing

How a quantum computer works?
I It perform computations based on probabilities of an object’s

state before it is measured;
I We can change the probabilities of a state;

5 / 33

Quantum Computation - qubits

Qubit vs Classical bit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.

6 / 33

Quantum Computation - qubits

Qubit vs Classical bit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.

6 / 33

Measure quantum state

Measuring collapses the state.

7 / 33

Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Hadamard Gate:

I H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉

8 / 33

Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Hadamard Gate:

I H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉

8 / 33

n-Qubit system

Definition
|ψ〉 ∈ C2 such that || |ψ〉 || = 1,

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1.

Example 2-qubit system
I 4 basis states:
|0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉,
|1〉 ⊗ |1〉.

I It is common to use just:
|0〉 |1〉,|10〉

9 / 33

Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);

Unitary means:

UU† = U†U = I

10 / 33

Quantum computation and reversibility

Reversibility

A unitary transformation taking basis states to basis states must be
a permutation.

if U |x〉 = |u〉 and U |y〉 = |u〉, then |x〉 = U−1 |u〉 = |y〉.
Therefore quantum mechanics imposes the constraint that

classically it must be reversible computation.

11 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2

time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0

time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)

time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)

time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)

time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

12 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4

time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0

time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0

time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0

time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)

time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)

time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0

time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0

time 7: x H4(x) 0 0 0

13 / 33

Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time Register0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

13 / 33

Grover’s Algorithm

Grover’s algorithm in a nutshell

I Originally described as search of an element in an unoreded
database.

I Needs O(
√
N) queries in database of size N = 2n elements.

14 / 33

Grover’s Algorithm

Grover’s algorithm in a nutshell

I Originally described as search of an element in an unoreded
database.

I Needs O(
√
N) queries in database of size N = 2n elements.

14 / 33

Grover’s Algorithm

Grover’s algorithm in a nutshell

Grover(f , t):
1. Start with |φ0〉 = |1n〉
2. Apply H⊗n

3. Repeat O
(√

2n
)
times

4. Query to oracle Of

5. Amplification;
6. Return x = |φ〉 with f (x) = 1.

15 / 33

Grover’s Algorithm

Grover’s algorithm in a nutshell

16 / 33

Quantum AES

AES in quantum gates
I All the operations can only be build using quantum gates;

I It needs to be reversible;
I Lower depth and low amount of qubits.

17 / 33

Quantum AES

AES in quantum gates
I All the operations can only be build using quantum gates;
I It needs to be reversible;

I Lower depth and low amount of qubits.

17 / 33

Quantum AES

AES in quantum gates
I All the operations can only be build using quantum gates;
I It needs to be reversible;
I Lower depth and low amount of qubits.

17 / 33

Quantum AES

AES in quantum gates

Figure: Squaring in F2[x]/x
8 + x4 + x3 + x + 1

18 / 33

Quantum AES

AES in quantum gates

Figure: Complete AES-128.

19 / 33

Grover’s algorithm for breaking AES

Quantum Resources

Table: Number of gates for running Grover’s algorithm on AES-128

Cliff +CNOT T gates
GLRS2 1.55 · 286 1.19 · 286

LPS3 1.46 · 282 1.47 · 281

JNRV4 1.13 · 282 1.32 · 278

2Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.
In PQCRYPTO 16. Springer, 2016.

3Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the
cost of implementing AES as a quantum circuit. Cryptology ePrint Archive,
Report 2019/854, 2019.

4Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In
EUROCRYPT 2020, 2020.

20 / 33

Introduction to Binary ECC

Basic overview
I Binary elliptic curves are elliptic curves defined over a binary

field F2n ;

I We use polynomial representation and the operations are in F2
since F2n ∼= F2[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

I All computations are done mod m(z).

21 / 33

Introduction to Binary ECC

Basic overview
I Binary elliptic curves are elliptic curves defined over a binary

field F2n ;
I We use polynomial representation and the operations are in F2

since F2n ∼= F2[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

I All computations are done mod m(z).

21 / 33

Introduction to Binary ECC

Basic overview
I Binary elliptic curves are elliptic curves defined over a binary

field F2n ;
I We use polynomial representation and the operations are in F2

since F2n ∼= F2[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

I All computations are done mod m(z).

21 / 33

Introduction to Binary ECC
Basic overview of operations

22 / 33

Introduction to Binary ECC

Hardness of ECC
I Alice and Bob agrees in the same point P over a curve;

I Alice selects a secret integer α and Bob selects an integer β;
I Then, they calculate and tell each other Pα = [α]P and

Pβ = [β]P ;
I Finally, they calculate their shared point

Pαβ = [α · β]P = [α]Pβ = [β]Pα.

23 / 33

Introduction to Binary ECC

Hardness of ECC
I Alice and Bob agrees in the same point P over a curve;
I Alice selects a secret integer α and Bob selects an integer β;

I Then, they calculate and tell each other Pα = [α]P and
Pβ = [β]P ;

I Finally, they calculate their shared point
Pαβ = [α · β]P = [α]Pβ = [β]Pα.

23 / 33

Introduction to Binary ECC

Hardness of ECC
I Alice and Bob agrees in the same point P over a curve;
I Alice selects a secret integer α and Bob selects an integer β;
I Then, they calculate and tell each other Pα = [α]P and

Pβ = [β]P ;

I Finally, they calculate their shared point
Pαβ = [α · β]P = [α]Pβ = [β]Pα.

23 / 33

Introduction to Binary ECC

Hardness of ECC
I Alice and Bob agrees in the same point P over a curve;
I Alice selects a secret integer α and Bob selects an integer β;
I Then, they calculate and tell each other Pα = [α]P and

Pβ = [β]P ;
I Finally, they calculate their shared point

Pαβ = [α · β]P = [α]Pβ = [β]Pα.

23 / 33

Shor’s algorithm
In summary Shor’s algorithm has two parts:
I A reduction of the factoring problem to the problem of

order-finding, which can be done on a classical computer;

I A quantum algorithm to solve the order-finding problem.

24 / 33

Shor’s algorithm
In summary Shor’s algorithm has two parts:
I A reduction of the factoring problem to the problem of

order-finding, which can be done on a classical computer;
I A quantum algorithm to solve the order-finding problem.

24 / 33

Shor’s algorithm
A toy example can be when we have N = 15. Let’s see how Shor’s
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)
2 gcd(a,N) = gcd(2, 15) = 1
3 Find the period of function f (x) = ax mod N, which satisfies
f (x + r) = f (x);

4 Get r = 4 through the circuit below;
5 gcd(a

r
2 + 1,N) = gcd(5, 15) = 3;

6 gcd(a
r
2 − 1,N) = gcd(3, 15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.

25 / 33

Ressource Estimation

Break RSA (Integer Factoring)
From Gidney & Ekerå(2019)5 uses “3n+ 0.002nlg(n) logical qubits,
0.3n3 + 0.0005n3lg(n) Toffolis, and 500n2 + n2lg(n) measurement
depth to factor n-bit RSA integers”

RSA Bits Qubits Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

5Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.
https://arxiv.org/abs/1905.09749

26 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

27 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);

I We use for multiplication Karatsuba from Iggy’s paper6;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

6Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

28 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper6;

I The GCD-based inversion performed better in number of
qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

6Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

28 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper6;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

6Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

28 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper6;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

6Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

28 / 33

Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper6;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

6Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

28 / 33

Ressource Estimation

Break Binary ECC (DLP)
From Banegas, Bernstein, von Hoof and Lange(2021)7 we have
that for breaking binary ECC we have 7n + blog(n)c+ 9 qubits,
48n3 + 8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)) Toffoli gates
and O(n3) CNOT gates (More details in the presentation at
CHES2021).

Single step Total
n qubits TOF gates CNOT gates depth upper bound TOF gates
163 1,157 893,585 827,379 1,262,035 293,095,880
233 1,647 1,669,299 1,614,947 2,405,889 781,231,932
283 1,998 2,427,369 2,358,734 3,503,510 1,378,745,592
571 4,015 8,987,401 9,080,190 13,237,682 10,281,586,744

7Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)

29 / 33

Future works

In a not so distant future:

I Improve the analysis of CNOT gates;
I Improve the depth of the algorithms;
I Improve small circuits such as incrementer.

In a more distante future:

I Quantum resource estimation for McEliece (Grover);
I Improve quantum attacks to LowMC (Picnic).

30 / 33

Future works

In a not so distant future:

I Improve the analysis of CNOT gates;
I Improve the depth of the algorithms;
I Improve small circuits such as incrementer.

In a more distante future:

I Quantum resource estimation for McEliece (Grover);
I Improve quantum attacks to LowMC (Picnic).

30 / 33

31 / 33

Other Quantum algorithms
I Simon’s Algorithm (QFT);
I Ambaini’s Algorithm (Element disticness);
I Claw finding Algorithm;
I Kuperberg’s Algorithm (dihedral hidden subgroup problem);

32 / 33

Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in

33 / 33

	Introduction
	Quantum Computation
	Grover's algorithm & AES
	Shor's algorithm & ECC

