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In other words..

T'WE INVENTED A QUANTUM
COMPUTER, CAPABLE OF
INTERACTING WITH MATTER
FROM OTHER UMIVERSES
TO SOLVE COMPLER
EQUATTONS.

SAdeag www.unitedmedia_com

ACCORDING TO CHAOS
THEORY, YOUR TINY
CHAMGE TO ANOTHER
UNIVERSE (JILL SHIFT
ITS DESTINY,
POSSIBLY WKILLING
EVERY

INHABITANT.

O

JlealTT 1997 Unied Festure Syndicats, Ine.

SHIFT HAPPENS.

Copyright 2 1997 United Feature Syndicate, Inc.
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Introduction to Quantum Computing

How a quantum computer works?

» It perform computations based on probabilities of an object's
state before it is measured:;
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Introduction to Quantum Computing

How a quantum computer works?

» It perform computations based on probabilities of an object's
state before it is measured:;

> We can change the probabilities of a state;
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Quantum Computation - qubits

Qubit vs Classical bit
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Quantum Computation - qubits

Qubit vs Classical bit

[0)

e ! 1)
Classical Bit Qubit

- (-

al0) + A1),
la? + 181 =1
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Measure quantum state

I KNOW WHAT

DISQUALIFIED?!
IT'S JUST A THOUGHT
EXPERIMENT. OBSERVE
THE CAT IS FINE!

Exploring
Quantum
Eotanglement
—

OPERN

ML

©2014 MATTHEW TARPLEY

WHHMARYDEATHCOMICS, COM

Measuring collapses the state.
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Quantum gates

Identity gate:

|a) |a)
NOT gate:

|a) [1—a)
CNOT gate:

|a) ——|a)

|b) —o— |a® b)
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Quantum gates

Identity gate: Hadamard Gate:
la) L 1 _Fa) PH:1<1 1>
v2 i\l -1
NOT gate:
_1\b

2 1-a) [b) - (PR
CNOT gate: |b> ‘b>
2) ~=1a) Toffoli gate:
Ib) —b— |2 @ b) offoli gate:

a) —4— [a)

|b) —— |b)

|c) —&— |ab @ c)
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n-Qubit system

Definition Example 2-qubit system

2 _
[¥) € € such that |[[¢) || = 1, » 4 basis states:

10) ©10), |0) ©[1),[1) @]0),

W= 3 alx) 1) ® ).
x€{0,1}" » |t is common to use just:
where 0) [1).]10)
jg: o] = 1.
x€{0,1}n
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);
Unitary means:

uut =Uutu =1
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Quantum computation and reversibility

Reversibility

A unitary transformation taking basis states to basis states must be
a permutation.
if U|x) =|u) and Uly) = |u), then |x) = UL |u) = |y).
Therefore quantum mechanics imposes the constraint that
classically it must be reversible computation.
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Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H*(x):
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Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

13/33



Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4

13/33



Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0

13/33



Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0
time 1: X 0 H(x) 0 0

13/33



Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0

13/33



Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time O: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0
time 3: X 0 H(x) H?(x) H3(x)

13/33



Computing functions

Make it reversible with Bennett—-Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0
time 3: X 0 H(x) H?(x) H3(x)
time 4: X H4*(x)  H(x) H*x) H3(x)

13/33



Computing functions

Make it reversible with Bennett—-Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0
time 3: X 0 H(x) H?(x) H3(x)
time 4: X H4*(x)  H(x) H*x) H3(x)
time 5: X H*(x) H(x) H?(x) 0

13/33



Computing functions

Make it reversible with Bennett—-Tompa's method
Example to compute H*(x):

Time Register( R1 R2 R3 R4
time 0: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0
time 3: X 0 H(x) H?(x) H3(x)
time 4: X H4*(x)  H(x) H*x) H3(x)
time 5: X H*(x) H(x) H?(x) 0
time 6: X H*(x) H(x) 0 0

13/33



Computing functions
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Grover's Algorithm

Grover's algorithm in a nutshell

[ |o> 71
n{ o) —HF ¢ g | - |g —} measure
l 0)— H}— —J

» Originally described as search of an element in an unoreded
database.
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Grover's Algorithm

Grover's algorithm in a nutshell

[ |o> 71
n{ o) —HF ¢ g | - |g —} measure
l 0)— H}— —J

» Originally described as search of an element in an unoreded
database.

> Needs O(v/N) queries in database of size N = 2" elements.
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Grover's Algorithm

Grover's algorithm in a nutshell

Grover(f, t):
1. Start with |¢g) = |17)
. Apply H®"
. Repeat O (\/27) times
Query to oracle O¢
Amplification;
. Return x = |¢) with f(x) = 1.

oA WN

15/33



Grover's Algorithm

Grover's algorithm in a nutshell

..llllllll

Z 1)

Oracle

N-1

;llilllll"" .nluul

M)ty 3" |b)
b=0,b+m

Repeat O (vIV) times

N-1
@A+ z)Im)+ 2A-z) S |b)
b=0,bzm
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Quantum AES

AES in quantum gates

» All the operations can only be build using quantum gates;
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Quantum AES

AES in quantum gates

» All the operations can only be build using quantum gates;
> It needs to be reversible;

» Lower depth and low amount of qubits.
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Quantum AES

AES in quantum gates

-
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Figure: Squaring in Fa[x]/x® + x* + x3 + x + 1

|kn)i71 -] RC |kn)i
L o),
e, LR )

lks), ., | TotByte B R ey

(a) AES-128 in-place key expansion step producing the i-th round key.

o
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Quantum AES

AES in quantum gates

| k )(!
fm)
0
0

[0)
[0)

Round 1 Round 2 Round 10
KEY | {KES ' K g
BS
MC
- b
SR [ MC
BS u
>~ [e)

(a) AES-128 operation.

Figure: Complete AES-128.
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Grover's algorithm for breaking AES

Quantum Resources

Table: Number of gates for running Grover's algorithm on AES-128

Cliff +CNOT | T gates

GLRS? 1.55 - 286 1.19 . 2%
LPS3 1.46 - 282 1.47 - 281
JNRV# 1.13-2%2 1.32.278

2Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.

In PQCRYPTO 16. Springer, 2016.

3Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the
cost of implementing AES as a quantum circuit. Cryptology ePrint Archive,

Report 2019/854, 2019.

*Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In

EUROCRYPT 2020, 2020.
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Introduction to Binary ECC

Basic overview

> Binary elliptic curves are elliptic curves defined over a binary
field Fan;
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Introduction to Binary ECC

Basic overview
> Binary elliptic curves are elliptic curves defined over a binary
field Fan;
» We use polynomial representation and the operations are in F»
since Fon = Fs[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

» All computations are done mod m(z).
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Introduction to Binary ECC

Basic overview of operations

I
|
h 4 ¥

1
!
¥

GF add/sub

GF mul

GF div/inv
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Introduction to Binary ECC

Hardness of ECC

> Alice and Bob agrees in the same point P over a curve;
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Introduction to Binary ECC

Hardness of ECC
> Alice and Bob agrees in the same point P over a curve;
> Alice selects a secret integer o and Bob selects an integer 3;
» Then, they calculate and tell each other P, = [«]P and
Pg = [B]P;
» Finally, they calculate their shared point
Pag = [ B]P = [o]Pg = [B]Pa.
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;

> A quantum algorithm to solve the order-finding problem.
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Shor's algorithm

A toy example can be when we have N = 15. Let's see how Shor's
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)

2 ged(a,N) = ged(2,15) =1

3 Find the period of function f(x) = a* mod N, which satisfies
f(x+r) = f(x);

4 Get r = 4 through the circuit below;

5 ged(az + 1, N) = ged(5,15) = 3;

6 ged(az — 1, N) = gcd(3,15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.

Register 1

t qubits !
Register 2

L qubits
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Ressource Estimation

Break RSA (Integer Factoring)

From Gidney & Ekera(2019)° uses “3n+ 0.002n/g(n) logical qubits,
0.3n 4 0.0005n3/g(n) Toffolis, and 500n? + n?/g(n) measurement
depth to factor n-bit RSA integers”

RSA Bits | Qubits | Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

®Craig Gidney and Martin Ekera. How to factor 2048 bit RSA integers in 8

hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.

https://arxiv.org/abs/1905.09749
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Shor's circuit for finding elliptic curve discrete logarithm

0) —{]
: QFT

0y —{H]

o 1
; QFT

) _@ . . .

|0) 2 P +[2"]P +Q . -
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

S1ggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);
> We use for multiplication Karatsuba from Iggy's paper®;
» The GCD-based inversion performed better in number of
qubits and gates.

S1ggy van Hoof. Space-efficient quantum multiplication of polynomials for
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

> We use for multiplication Karatsuba from Iggy's paper®;
» The GCD-based inversion performed better in number of
qubits and gates.
» Implementation of quantum Point addition and Point
“doubling”;

S1ggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

> We use for multiplication Karatsuba from Iggy's paper®;
» The GCD-based inversion performed better in number of
qubits and gates.

» Implementation of quantum Point addition and Point
“doubling”;

» Present the a quantum version of "window" addition;

» Q# implementation of Karatsuba and other functions.

S1ggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Ressource Estimation
Break Binary ECC (DLP)

From Banegas, Bernstein, von Hoof and Lange(2021)” we have
that for breaking binary ECC we have 7n+ [log(n)| + 9 qubits,
48n3 + 8n'°8(3)*1 1 35212 log(n) + 512n% 4 O(n'°8(3)) Toffoli gates
and O(n®) CNOT gates (More details in the presentation at
CHES2021).

Single step Total
n | qubits | TOF gates CNOT gates depth upper bound TOF gates
163 | 1,157 | 893,585 827,379 1,262,035 293,095,880
233 | 1,647 | 1,669,299 1,614,947 2,405,889 781,231,932
283 | 1,998 | 2,427,369 2,358,734 3,503,510 1,378,745,592
571 | 4,015 | 8,987,401 9,080,190 13,237,682 10,281,586,744
7Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum

cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Future works

In a not so distant future:

» Improve the analysis of CNOT gates;
» Improve the depth of the algorithms;

» Improve small circuits such as incrementer.
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Future works

In a not so distant future:

» Improve the analysis of CNOT gates;
» Improve the depth of the algorithms;
» Improve small circuits such as incrementer.

In a more distante future:

» Quantum resource estimation for McEliece (Grover);

» Improve quantum attacks to LowMC (Picnic).
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Other Quantum algorithms
» Simon's Algorithm (QFT);
» Ambaini's Algorithm (Element disticness);
» Claw finding Algorithm;
» Kuperberg's Algorithm (dihedral hidden subgroup problem);
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Questions

Thank you for your attention.
Questions?
gustavo@cryptme.in

33/33



	Introduction
	Quantum Computation
	Grover's algorithm & AES
	Shor's algorithm & ECC

