
Double-Authentication-Preventing Signatures
in the Standard Model

Dario Catalano1 Georg Fuchsbauer 2 Azam Soleimanian3,4

1Dipartimento di Matematica e Informatica – Università di Catania, Italy
catalano@dmi.unict.it

2TU Wien, Vienna, Austria

3Inria de Paris, France

4École normale supérieure, CNRS, PSL University, Paris, France

{georg.fuchsbauer,azam.soleimanian}@ens.fr

mailto:catalano@dmi.unict.it
mailto:georg.fuchsbauer@ens.fr,azam.soleimanian@ens.fr

Double-Authentication-Preventing Signatures in the Standard Model

What is DAPS?

It is a Signature Scheme….

Signer/Authority Verifier
(sk, vk)← KeyGen(1κ)

vk
−−−−−−−−−−−−−−→

Signer Verifier
σi ← Sign(sk, mi)

(mi,σi)
−−−−−−−−−−−−−−→

1/0← Verif(vk, (mi, σi))

2 / 32

Double-Authentication-Preventing Signatures in the Standard Model

What is DAPS?

It is a Signature Scheme

The signer is restricted!

3 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Applications

Certificate subversion

Cryptocurrencies

Certificat Authority(sk)

server1.com · · · servern.com· · ·

(server1.com, pk1, σ1) (servern.com, pkn, σn)

σi ← Signsk(serveri.com, pki)

4 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Applications

Certificate subversion

Cryptocurrencies

Certificat Authority(sk)

server1.com · · · servern.com· · ·

(server1.com, pk1, σ1)

(server1.com, pk′
1, σ′

1)

(servern.com, pkn, σn)

σi ← Signsk(serveri.com, pki)

5 / 32

Applications

Double-Authentication-Preventing Signatures in the Standard Model

Applications

Certificate subversion

Cryptocurrencies and non-equivocation contracts

TX : Signsk(coin, reciever) =⇒ integrity + undeniability

σi ← Signski
(coin, reciever)

σi ← Signski
(coin, reciever)

Double-Spending: The same coin for two different receivers

7 / 32

Double-Authentication-Preventing Signatures in the Standard Model

What is DAPS?

It is a Signature Scheme with messages of the form m = (a, p) and
equipped with a self-enforcement mechanism.

If

m1 = (a, p1)
m2 = (a, p2)
p1 ̸= p2

Verif(m1, σ1) = 1
Verif(m2, σ2) = 1

Then
−−−−−−−−−−−−−−→ Penalize the Signer

(extract info about sk)

Compromising pair

8 / 32

Double-Authentication-Preventing Signatures in the Standard Model

How It Helps?

Certificate subversion

Cryptocurrencies: Blockchain with off-chain payments

(time-locked) Deposit

w1

locksk1(w1)
· · ·

wn

lockskn(wn)

Retrieve: Signski
(wi, reciveri), t > Tprotocol + Tclaim

Penalize: Signski
(wi, reciverj), j ̸= i

9 / 32

Double-Authentication-Preventing Signatures in the Standard Model

How It Helps?

Certificate subversion

Cryptocurrencies

Certificat Authority(sk)

server1.com · · · servern.com· · ·

(server1.com, pk1, σ1)

(server1.com, pk′
1, σ′

1)

(servern.com, pkn, σn)

σi ← Signsk(serveri.com, pki)

10 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Challenges and Contributions

Exponentially large address space

Security without trusted setup

Standard assumptions

A more general definition

Concrete instantiation

11 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Related Work

In ROM
Small address space
Trusted setup

Scheme Signature vk size Address Assumption ROM No trusted
size space setup

[Poe18] |G| O(2n) poly. DLog yes no
[RKS15] q · h · |G| O(1) exp. DLog yes yes
[PS14] (λH + 1) · log N O(1) exp. Fact yes no
[BPS17] log N O(1) exp. Fact yes no
[BKN17] O(n2

0 log q0) O(n4
0 log3 q0) exp. LWE/SIS yes yes

[DRS18b] ℓπ(n) O(2n) poly. DLog yes yes
[LGW+19] log N or 2 · |G| O(1) exp. Fact or CDH yes yes
[DRS18a] ℓπ(n) O(1) exp. PRF&OWF yes yes
DAPS-GS 36n · |G| O(1) exp. SXDH no no
DAPS-VC-DCH 3h · |G| q exp. CDH no no
DAPS-DCH q · h · |G| O(1) exp. DLog no yes

12 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Syntax and Security:

Lets talk more technically…
• Syntactically:

(sk, vk)← KeyGen(1κ)
σ ← Signsk((a, p))
0/1← Verif(vk, (a, p), σ)
sk′ ← Ext(vk, (a, p1, σ1), (a, p2, σ2))

• Security:
Unforgeability (outside attacker)

Key-Extractability (malicious signer)

13 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Unforgeability:

14 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Key Extractability:

15 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Building Blocks:

Vector Commitment (VC)

Double Trapdoor Chameleon hash Function(DCH)

16 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Building Blocks:

Vector Commitment (VC)

Double Trapdoor Chameleon hash Function (DCH)

VC: Commit to an ordered sequence of q values. Later open the
commitment at a specific position.

• Security
Position binding: Attacker tries to open the same commitment to two different values in position i.

17 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Vector Commitment

Merkle Tree is a VC scheme with opening-size log n.

Can we have a VC with constant-size of opening? −→ (crs+paring)

18 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Building Blocks:

Vector Commitment (VC)

Double Trapdoor Chameleon hash Function (DCH)

DCH: A collision-resistant (CR) hash function with double trapdoors,
where given the trapdoor one can find collisions efficiently.

• Security
CR: given one of the trapdoor, is hard to find the other trapdoor
KE: a collision pair leads to revealing of one of the trapdoors
Distribution of collisions: output of Coll seems uniform.

19 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Construction

Big Picture:

flat-tree structure

root-value is fixed as the
verification key

vk

20 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Big Picture:

flat-tree structure

root-value is fixed as the
verification key

address a is (the position of) the
leaf

the path to the root is weighted
by values (depending on p)

σ: the concatenation of all the
values in the path

vk

(a, p)

21 / 32

Double-Authentication-Preventing Signatures in the Standard Model

• Exponential Address-Space.

vk = VC(m0, m1, m2)

m0 = DCH(ρ10, r10) m1 m2

Figure: Generating the verification key

VC instead of CR hash function, shorter signature.

22 / 32

Double-Authentication-Preventing Signatures in the Standard Model

vk = VC(m0, m1, m2)

m0 = DCH(ρ10, r10) m1 m2

Figure: Signing

When you arrive to a visited node, connect it to the path by finding a
collision for DCH.

23 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Why It Is Secure?

The root is fixed with vk =⇒ Collision Point on the path

not (KE of DAPS) =⇒ not (KE of DCH ∧ position-binding of VC)

not (Unforg of DAPS) =⇒ not (CR of DCH ∧ position-binding of VC)

24 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Instantiation

Vector Commitment (Catalano-Fiore VC scheme [CF13], CDH Ass.)

Double Trapdoor Chameleon Hash (Our DCH scheme)

25 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Vector Commitment

Merkle Tree is a VC scheme with opening-size log n.

Can we have a VC with constant-size of opening? −→ (crs+paring)

26 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Vector Commitment

Aggregatable −→ Dec 2020 (PointProof [Gorbunov,Wee,…])

Updatable

Short CRS
27 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Double Trapdoor Chameleon Hash

KeyGen(1κ): output tk = (tk0, tk1) R← Zp, pk0 = gtk0 , pk1 = gtk1 .

CHash(m, r, s): output h = gm · pkr
0 · pks

1

Coll(tki, m, r, s): if tk0 is given then it is enough to set s = s′.

Ext((m, r, s), (m′, r′, s′)): Error!

For a Collision:

m + r · tk0 + s · tk1 = m′ + r′ · tk0 + s′ · tk1

28 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Our DCH:

Underlying idea: One equation, one unknown!

LetH0 andH1 be Chameleon hash functions.

C ← CHashpk(m, r, s) where

{
w = H0.CHash(m, r)
C = H1.CHash(w, s)

• Instantiation based on DLog.

29 / 32

Double-Authentication-Preventing Signatures in the Standard Model

DAPS in Untrusted Setup?

Our DCH scheme is Secure against Untrusted Setup.

There is no VC scheme Secure against Untrusted Setup!

Q: How we can get a DAPS scheme secure in Untrusted Setup?
A: Replace VC with a standard CR Hash Function (with the cost of longer

signature).

30 / 32

Double-Authentication-Preventing Signatures in the Standard Model

Open Questions

Constant-size DAPS-signature in the standard model (ours is of size
logq n)

Is it possible to have a (constant-size) VC scheme secure against
untrusted setup?

Smart Contract from DAPS for different applications.

31 / 32

Double-Authentication-Preventing Signatures in the Standard Model

32 / 32

