Interactive proofs of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi

January 12, 2021

https://eccc.weizmann.ac.il/report/2020/165/

LIX, Ecole Polytechnique, Institut Polytechnique de Paris Inria

Motivation: Verifiable Computing¹

¹Most of this slide is kindly provided by Sarah Bordage.

Motivation: Verifiable Computing¹

Applications: cloud computing, cryptocurrencies, blockchains

¹Most of this slide is kindly provided by Sarah Bordage.

Motivation: Verifiable Computing¹

Prover produces a word • $c \in C$ if the statement "y = F(x)" holds,

• \tilde{c} which is **very far** from *C* otherwise.

¹Most of this slide is kindly provided by Sarah Bordage.

PCP model (Probabilistically Checkable Proofs)²

²This slide is kindly provided by Sarah Bordage.

IOP Model (Interactive Oracle Proofs)²

[Ben–Sasson-Chiesa-Spooner'16, Reingold-Rothblum²'16] IOPs generalize PCPs and IPs

public-coin IOP \rightarrow non-interactive proof in the RO model (Fiat-Shamir paradigm) with communication complexity:

- linear in query complexity of the IOP
- logarithmic in oracle proof length $|\pi_1|+\ldots+|\pi_r|$

²This slide is kindly provided by Sarah Bordage.

Proximity test to RS codes Univariate low-degree testing

[Ben-Sasson-Bentov-Horesh-Riabzev'18]

Reed-Solomon Proximity Testing

Input code:	$RS[\mathcal{P},d] = \{f: \mathcal{P} \to \mathbb{F} \mid f \text{ coincides with polynomial of degree} < d\}$	
Input oracle:	$f:\mathcal{P} ightarrow\mathbb{F}$	
Completeness:	If $f \in RS[\mathcal{P},d]$, then $\exists P \Pr[V \text{ accepts } P] = 1$	
Soundness:	If $\Delta(f, RS[\mathcal{P}, d]) > \delta$, then $\forall \tilde{P} \operatorname{Pr}[V \text{ accepts } \tilde{P}] < err(\delta)$	
	Δ relative Hamming distance	

³This slide is kindly provided by Sarah Bordage.

On a finite field \mathbb{F} with $2 \nmid |\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$ of order 2^k and $\mathcal{P} := \langle \omega \rangle$.

How to check if $f : \mathcal{P} \to \mathbb{F}$ satisfies $\deg f < d$?

On a finite field \mathbb{F} with $2 \nmid |\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$ of order 2^k and $\mathcal{P} := \langle \omega \rangle$. How to check if $f : \mathcal{P} \to \mathbb{F}$ satisfies deg f < d?

Write $f(x) = f_0(x^2) + x \cdot f_1(x^2)$, where $f_0, f_1 : \mathcal{P}' \to \mathbb{F}$ with deg $f_0, \deg f_1 \leq \deg f/2$.

$$=\langle \omega^2 \rangle$$

Check if deg $f_0 < d/2$ and deg $f_1 < d/2$. \rightarrow 2 tests!

On a finite field \mathbb{F} with $2 \nmid |\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$ of order 2^k and $\mathcal{P} := \langle \omega \rangle$.

How to check if $f : \mathcal{P} \to \mathbb{F}$ satisfies deg f < d?

Write $f(x) = f_0(x^2) + x \cdot f_1(x^2)$, where $f_0, f_1 : \underbrace{\mathcal{P}'}_{=\langle \omega^2 \rangle} \to \mathbb{F}$ with $\deg f_0, \deg f_1 \leq \deg f/2$.

Check if deg $f_0 < d/2$ and deg $f_1 < d/2$. \rightarrow 2 tests!

Make 1 test: For $z \in \mathbb{F}$, define Fold $[f, z] : \mathcal{P}' \to \mathbb{F}$ by Fold $[f, z] = f_0 + zf_1$.

May fail: take $f(x) = 1 + x^2 + x(x^2 + 2)$. Then Fold [f, -1] = 1 + x - (x + 2) = -1. deg Fold [f, -1] < 1 but deg $f \ge 2$

On a finite field \mathbb{F} with $2 \nmid |\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$ of order 2^k and $\mathcal{P} := \langle \omega \rangle$.

How to check if $f : \mathcal{P} \to \mathbb{F}$ satisfies deg f < d?

Write $f(x) = f_0(x^2) + x \cdot f_1(x^2)$, where $f_0, f_1 : \underbrace{\mathcal{P}'}_{=\langle \omega^2 \rangle} \to \mathbb{F}$ with $\deg f_0, \deg f_1 \leq \deg f/2$.

Check if deg $f_0 < d/2$ and deg $f_1 < d/2$. \rightarrow 2 tests!

Make 1 test: For $z \in \mathbb{F}$, define Fold $[f, z] : \mathcal{P}' \to \mathbb{F}$ by Fold $[f, z] = f_0 + zf_1$.

May fail: take $f(x) = 1 + x^2 + x(x^2 + 2)$. Then Fold [f, -1] = 1 + x - (x + 2) = -1. deg Fold [f, -1] < 1 but deg $f \ge 2$

✓ Completeness:
 Fold [·, z] (RS[P, d]) ⊆ RS[P', d/2].
 ✓ Locality:
 ✓ compute a value of Fold [f, z] on P' with only 2 queries to f.
 Fold [f, ±√y] (y) = f_0±√yf_1 = f(±√y)

✓ Distance preservation: if $\Delta(f, \mathsf{RS}[\mathcal{P}, d]) > \delta$, then $\Delta(\mathsf{Fold}[f, z], \mathsf{RS}[\mathcal{P}', d/2]) > \delta'$ (w.h.p.).

4/18

 \rightarrow **Proximity to** RS[\mathcal{P}, d] reduced to proximity to RS[$\mathcal{P}', d/2$] (probabilistically).

FRI Protocol: Commit Phase⁴

⁴This slide is kindly provided by Sarah Bordage.

FRI Protocol: Query Phase⁵

⁵This slide is kindly provided by Sarah Bordage.

Check consistency at random locations

$$f_1(s_1) \stackrel{?}{=} \mathbf{Fold} [f_0, z_0] (s_1)$$

$$f_2(s_2) \stackrel{?}{=} \mathbf{Fold} [f_1, z_1] (s_2)$$

$$f_r(s_r) \stackrel{?}{=} \operatorname{Fold} \left[f_{r-1}, z_{r-1}
ight](s_r)$$

Final test: $f_r \in \operatorname{RS}_r$

Soundness of the FRI Protocol ⁶

 $\begin{array}{ll} \textbf{Completeness:} & \text{If } f \in \mathsf{RS}[\mathcal{P},d] \text{, then } \exists P \; \Pr[\mathsf{V} \; \text{accepts } \mathsf{P}] = 1. \\ \textbf{Soundness:} & \text{If } \Delta(f,\mathsf{RS}[\mathcal{P},d]) > \delta \text{, then } \forall \tilde{P} \; \Pr[\mathsf{V} \; \text{accepts } \tilde{\mathsf{P}}] < \operatorname{err}(\delta). \end{array}$

FRI Protocol [Ben-Sasson-Bentov-Horesh-Riabzev'18]

- ✓ linear prover time
- ✓ linear (interactive) proof length

- ✓ logarithmic query complexity
- \checkmark logarithmic verifier time

Theorem

Assuming
$$\delta < 1 - \sqrt{\rho} \ (\rho \text{ is code rate}), \ \operatorname{err}(\delta) < \operatorname{err}_{commit} + (\operatorname{err}_{query})^{\alpha} < \operatorname{negl}(\kappa) + (1 - \delta)^{\alpha}$$

security parameter

To get error $err(\delta) = negl(\kappa)$, repeat query phase enough time (α times).

Building-block of succinct ZK proofs

with no trusted setup, PQ security, succinct verification (see e.g. "ZK-STARKs").

⁶This content is kindly provided by Sarah Bordage.

AG codes

Algebraic Geometry (AG) codes

Let ${\mathcal C}$ be an algebraic curve defined over a finite field ${\mathbb F}.$

Divisors. A (rational) divisor D on C is a formal sum of \mathbb{F} -points $D = \sum n_P P$.

Its degree is deg $D := \sum n_P$ and support is $\operatorname{Supp}(D) := \{P \in \mathcal{C} \mid n_p \neq 0\}$. $D \leq D'$ if $n_P \leq n'_P$ for every PA function f on \mathcal{C} defines a principal divisor $(f) := \sum_P \underbrace{v_P(f)}_P P$.

valuation

Algebraic Geometry (AG) codes

Let ${\mathcal C}$ be an algebraic curve defined over a finite field ${\mathbb F}.$

Divisors. A (rational) divisor D on C is a formal sum of \mathbb{F} -points $D = \sum n_P P$.

Its degree is deg $D := \sum n_P$ and support is $\text{Supp}(D) := \{P \in \mathcal{C} \mid n_p \neq 0\}$. $D \leq D'$ if $n_P \leq n'_P$ for every $P \Rightarrow L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}(D')$. A function f on \mathcal{C} defines a principal divisor $(f) := \sum_P \underbrace{v_P(f)}_P P$.

valuation

Riemann-Roch space of D. $L_{\mathcal{C}}(D) = \{f \in \mathbb{F}(\mathcal{C}) \mid (f) \ge -D\} \cup \{0\}.$

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F} .

Divisors. A (rational) divisor D on C is a formal sum of \mathbb{F} -points $D = \sum n_P P$.

Its degree is deg $D := \sum n_P$ and support is $\operatorname{Supp}(D) := \{P \in \mathcal{C} \mid n_p \neq 0\}$. $D \leq D'$ if $n_P \leq n'_P$ for every $P \Rightarrow L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}(D')$. A function f on \mathcal{C} defines a principal divisor $(f) := \sum_P \underbrace{v_P(f)}_{i \neq i \neq i} P$.

valuation

Riemann-Roch space of D. $L_{\mathcal{C}}(D) = \{f \in \mathbb{F}(\mathcal{C}) \mid (f) \ge -D\} \cup \{0\}.$

AG codes

Given $\mathcal{P} \subset \mathcal{C}(\mathbb{F})$ of size $n := |\mathcal{P}|$ and a divisor D on \mathcal{C} s.t. $\operatorname{Supp}(D) \cap \mathcal{P} = \emptyset$, the **AG code** $C = C(\mathcal{C}, \mathcal{P}, D)$ is defined as the image by $\operatorname{ev} : L_{\mathcal{C}}(D) \to \mathbb{F}^n$.

Example: $C = C(\mathbb{P}^1, \mathcal{P}, dP_\infty)$, with $P_\infty = [0:1]$, is Hamming-eq. to $\mathsf{RS}[\mathcal{P}, d+1]$.

We always choose D so that **ev** is injective: $\mathbb{F}^n \iff \mathbb{F}^{\mathcal{P}}$ and

 $C(\mathcal{C}, \mathcal{P}, D) = \{f : \mathcal{P} \to \mathbb{F} \mid f \text{ coincides with a fct in } L_{\mathcal{C}}(D)\}.$

Group action and Kani's splitting of Riemann-Roch spaces

Let C be a curve over \mathbb{F} and let $\Gamma = \langle \gamma \rangle \simeq \mathbb{Z}/m\mathbb{Z}$ a group of automorphisms of C s.t $gcd(m, |\mathbb{F}|) = 1$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive m^{th} root of unity.

- Γ acts on the functions on C: $\gamma \cdot f = f \circ \gamma$ for any fct f on C.
- There exists a function μ on C s.t. $\gamma \cdot \mu = \zeta \mu$ [Kani'86].

Set the projection map $\pi: \mathcal{C} \to \mathcal{C}' := \mathcal{C}/\Gamma$.

⁷Notation: $\left\lfloor \frac{1}{n}D \right\rfloor := \sum \left\lfloor \frac{n_P}{n} \right\rfloor P$, for a divisor $D = \sum n_P P$ and integer n > 0.

Group action and Kani's splitting of Riemann-Roch spaces

Let \mathcal{C} be a curve over \mathbb{F} and let $\Gamma = \langle \gamma \rangle \simeq \mathbb{Z}/m\mathbb{Z}$ a group of automorphisms of \mathcal{C} s.t $\gcd(m, |\mathbb{F}|) = 1$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive m^{th} root of unity.

- Γ acts on the functions on C: $\gamma \cdot f = f \circ \gamma$ for any fct f on C.
- There exists a function μ on C s.t. $\gamma \cdot \mu = \zeta \mu$ [Kani'86].

Set the projection map $\pi: \mathcal{C} \to \mathcal{C}' := \mathcal{C}/\Gamma$.

For any Γ -invariant divisor D on C, the action of Γ on $L_{\mathcal{C}}(D)$ gives

$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} L_{\mathcal{C}}(D)_j \text{ where } L_{\mathcal{C}}(D)_j := \{g \in L_{\mathcal{C}}(D) \mid \gamma \cdot g = \zeta^j g\}.$$

[Kani'86] $L_{\mathcal{C}}(D)_j \simeq \mu^j \pi^* \left(L_{\mathcal{C}'}(E_j) \right)$ where $E_j := \left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu) \right) \right\rfloor^7$ is a divisor on \mathcal{C}' . \rightsquigarrow For every $f \in L_{\mathcal{C}}(D)$, there exist m fcts $f_j \in L_{\mathcal{C}'}(E_j)$ s.t. $f = \sum_{j=0}^{m-1} \mu^j f_j \circ \pi$.

⁷Notation: $\left\lfloor \frac{1}{n}D \right\rfloor := \sum \left\lfloor \frac{n_P}{n} \right\rfloor P$, for a divisor $D = \sum n_P P$ and integer n > 0.

[Kani'86]:
$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}\left(\left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu)\right) \right\rfloor\right).$$

The AG code $C = C(\mathbb{P}^1, \mathcal{P}, dP_{\infty})$, with $P_{\infty} = [0:1]$, corresponds to $\mathsf{RS}[\mathcal{P}, d+1]$.

Consider the action on \mathbb{P}^1 of $\gamma : [X_0 : X_1] \mapsto [X_0 : -X_1]$. Then $\langle \gamma \rangle = \mathbb{Z}/2\mathbb{Z}$.

Projection map $\pi: \mathbb{P}^1 \to \mathbb{P}^1$ by $\pi[X_0:X_1] := [X_0^2:X_1^2].$

Kani's result with $\mu = x := \frac{X_1}{X_0} (\gamma \cdot x = -x)$ yields to $((x) = [1:0] - P_{\infty})$

$$L_{\mathbb{P}^1}(dP_{\infty}) = \pi^* L_{\mathbb{P}^1}\left(\left\lfloor \frac{d}{2}
ight
vert P_{\infty}
ight) + x\pi^* L_{\mathbb{P}^1}\left(\left\lfloor \frac{d-1}{2}
ight
vert P_{\infty}
ight),$$

i.e. any pol. f of degree $\leq d$ can be written $f(x) = f_0(x^2) + xf_1(x^2)$ with $\begin{bmatrix} \deg f_0 \leq \lfloor \frac{d}{2} \rfloor, \\ \deg f_1 \leq \lfloor \frac{d-1}{2} \rfloor \end{bmatrix}$. FRI: For $z \in \mathbb{F}$, define Fold $[f, z] = f_0 + zf_1$.

Remark: For odd d, $\lfloor \frac{d}{2} \rfloor = \lfloor \frac{d-1}{2} \rfloor$, i.e. $L_{\mathbb{P}^1}(dP_{\infty})$ is split into 2 "copies" of the same space.

Kani's result on a Kummer curve

[Kani'86]:
$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}\left(\left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu)\right) \right\rfloor\right).$$

Assume gcd(N, d) = 1 and $gcd(N, |\mathbb{F}|) = 1$. Take ζ a primitive N^{th} root of unity. $\mathcal{C}: y^N = f(x) = \prod_{\ell=1}^d (x - \alpha_\ell)$

Kani's result on a Kummer curve

[Kani'86]:
$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}\left(\left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu)\right) \right\rfloor\right).$$

Assume gcd(N, d) = 1 and $gcd(N, |\mathbb{F}|) = 1$. Take ζ a primitive N^{th} root of unity.

$$\begin{aligned} \langle \gamma : (x,y) \mapsto (x,\zeta y) \rangle &\simeq \mathbb{Z}/N\mathbb{Z} \bigcirc \mathcal{C} : y^N = f(x) = \prod_{\ell=1}^n (x - \alpha_\ell) \\ \pi : (x,y) \to (x,y^N) \Big| \\ \mathbb{P}^1 &\simeq \mathcal{C}' : y = f(x) \end{aligned}$$

Kani's result on a Kummer curve

[Kani'86]:
$$L_{\mathcal{C}}(D) = \bigoplus_{j=0}^{m-1} \mu^j \pi^* L_{\mathcal{C}'}\left(\left\lfloor \frac{1}{m} \pi_* \left(D + j(\mu)\right) \right\rfloor\right).$$

Assume gcd(N, d) = 1 and $gcd(N, |\mathbb{F}|) = 1$. Take ζ a primitive N^{th} root of unity.

$$\begin{split} \langle \gamma : (x,y) \mapsto (x,\zeta y) \rangle &\simeq \mathbb{Z}/N\mathbb{Z} \bigcirc \mathcal{C} : y^N = f(x) = \prod_{\ell=1}^{-} (x - \alpha_\ell) \\ \pi : (x,y) \to (x,y^N) \Big| \\ \mathbb{P}^1 &\simeq \mathcal{C}' : y = f(x) \end{split}$$

Take $D = \alpha P_{\infty}$ where P_{∞} is the unique point at ∞ on C. Write $P_{\ell} = (\alpha_{\ell}, 0)$.

Any fct
$$f \in L_{\mathcal{C}}(D)$$
 can be written $f(x,y) = \sum_{j=0}^{N-1} y^j f_j(x,y^N)$ $(\mu = y \text{ as } \gamma \cdot y = \zeta y)$
where $f_j \in L_{\mathbb{P}^1}\left(\left\lfloor \frac{\pi_*(D) - j\left(\sum P_{\ell} - dP_{\infty}\right)}{N} \right\rfloor\right)$, i.e. f_j is a pol. of degree $\leq \left\lfloor \frac{\alpha - jd}{N} \right\rfloor \leq \lfloor \frac{\alpha}{N} \rfloor$.

Using Kani's result to fold

Let C be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z}/m\mathbb{Z}$, with the projection map $\pi : C \to C/\Gamma$.

FRI's idea: proximity to $C = C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to $C' = C(\mathcal{C}/\Gamma, \mathcal{P}', D')$ We need: $- a \Gamma$ -invariant divisor $D \xrightarrow[(Kani'86]]{m} f_{j} = \sum_{j=1}^{m-1} \mu^{j} f_{j} \circ \pi$. $\int_{L_{\mathcal{C}}/\Gamma} (E_{j}) \circ \pi$.

- an evaluation set $\mathcal{P} =$ union of Γ -orbits of size $|\Gamma|$ (Γ acts freely on \mathcal{P}).

 $\mathsf{Take}\ \mathcal{P}' = \pi(\mathcal{P})\ (|\mathcal{P}'| = |\mathcal{P}|\ /m) \text{ and } D' \text{ is a divisor on } \mathcal{C}/\Gamma \text{ s.t. } L_{\mathcal{C}/\Gamma}(D') \supseteq L_{\mathcal{C}/\Gamma}(E_j).$

Using Kani's result to fold

Let \mathcal{C} be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z}/m\mathbb{Z}$, with the projection map $\pi: \mathcal{C} \to \mathcal{C}/\Gamma$.

FRI's idea: proximity to $C = C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to $C' = C(\mathcal{C}/\Gamma, \mathcal{P}', D')$ We need: - a Γ -invariant divisor $D \stackrel{[Kani'86]}{\Longrightarrow} f_{\substack{j=1\\ L_{\mathcal{C}}(D)}} = \sum_{j=1}^{m} \frac{\mu^j}{\prod_{\substack{n \in L_{\mathcal{C}}/\Gamma(E_j)}}} \circ \pi.$

- an evaluation set \mathcal{P} = union of Γ -orbits of size $|\Gamma|$ (Γ acts freely on \mathcal{P}).

Take $\mathcal{P}' = \pi(\mathcal{P})$ $(|\mathcal{P}'| = |\mathcal{P}|/m)$ and D' is a divisor on \mathcal{C}/Γ s.t. $L_{\mathcal{C}/\Gamma}(D') \supseteq L_{\mathcal{C}/\Gamma}(E_i)$.

m-1For any $z \in \mathbb{F}$, define the *folding operator* Fold $[\cdot, z] : \mathbb{F}^{\mathcal{P}} \to \mathbb{F}^{\mathcal{P}'}$ by Fold $[f, z] = \sum z^j f_j$.

✓ Completeness:

✓ Locality:

X Distance preservation

Fold $[\cdot, z](C) \subseteq C'$. For any $P \in \mathcal{P}'$, compute **Fold** [f, z](P) with m queries to f. interpolate on the geometric progression $\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\}$.

 $\Delta(f, C) > \delta \Rightarrow \Delta(\mathbf{Fold}[f, z], C') > \delta' \text{ w.h.p.}$

Problem: $L_{\mathcal{C}/\Gamma}(E_j) \subsetneq L_{\mathcal{C}/\Gamma}(D')!$ All the $L_{\mathcal{C}/\Gamma}(E_j)$ are not the same.

We need to know if a function lies in $L_{\mathcal{C}/\Gamma}(E_j)$, not only in $L_{\mathcal{C}/\Gamma}(D')$.

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L_{\mathcal{C}/\Gamma}(E_j)$ iff $h, \nu_j h \in L_{\mathcal{C}/\Gamma}(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \le d - 1$ iff deg h, deg $\nu h \le d$)

To avoid C' to be too large, we want D' to be one of the E_j . For simplicity, assume $D' = E_0$.

Problem: $L_{\mathcal{C}/\Gamma}(E_j) \subsetneq L_{\mathcal{C}/\Gamma}(D')!$ All the $L_{\mathcal{C}/\Gamma}(E_j)$ are not the same.

We need to know if a function lies in $L_{\mathcal{C}/\Gamma}(E_j)$, not only in $L_{\mathcal{C}/\Gamma}(D')$.

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L_{\mathcal{C}/\Gamma}(E_j)$ iff $h, \nu_j h \in L_{\mathcal{C}/\Gamma}(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \le d - 1$ iff deg h, deg $\nu h \le d$)

To avoid C' to be too large, we want D' to be one of the E_j . For simplicity, assume $D' = E_0$. (Final attempt) For any $(z_1, z_2) \in \mathbb{F}^2$, define Fold $[f, (z_1, z_2)] : \mathcal{P}' \to \mathbb{F}$ s.t. Fold $[f, (z_1, z_2)] = \sum_{j=0}^{m-1} z_1^j f_j + \sum_{j=1}^{m-1} z_2^j \nu_j f_j$.

Lemma: ν_j is a balancing function iff $(\nu_j)_{\infty} = D' - E_j$.

Such functions ν_j may not exist! (Weierstrass gaps)

 \rightarrow Need to choose carefully D.

Let us fold several times! Back to Kummer curves.

Write $N = \prod_{i=0}^{r-1} p_i$ and $N_i = \prod_{j=i}^{r-1} p_j$ $\Gamma_i := \langle \gamma_i \rangle \simeq \mathbb{Z}/p_i \mathbb{Z}$ where $\gamma_i : (x, y) \mapsto (x, \zeta_i y) \ (\zeta_i^{p_i} = 1)$

$$\mathbb{Z}/p_0\mathbb{Z} \bigcirc \mathcal{C}_0 : y^N = f(x) = \prod_{\ell=1}^d (x - \alpha_\ell)$$

$$\downarrow \pi_0$$

$$\mathbb{Z}/p_1\mathbb{Z} \bigcirc \mathcal{C}_1 : y^{\frac{N}{p_0}} = f(x)$$

$$\downarrow \pi_1$$

$$\vdots$$

$$\mathbb{Z}/p_i\mathbb{Z} \bigcirc \mathcal{C}_i : y^{N_i} = f(x)$$

$$\downarrow \pi_i : (x, y) \mapsto (x, y^{p_i})$$

$$\vdots$$

$$\mathbb{P}^1 \simeq \mathcal{C}_r : y = f(x)$$

Let us fold several times! Back to Kummer curves.

Write $N = \prod_{i=0}^{r-1} p_i$ and $N_i = \prod_{j=i}^{r-1} p_j$ $\Gamma_i := \langle \gamma_i \rangle \simeq \mathbb{Z}/p_i \mathbb{Z}$ where $\gamma_i : (x, y) \mapsto (x, \zeta_i y) \ (\zeta_i^{p_i} = 1)$

We want a sequence of divisors (D_i) supported by Γ_i -fixed points $(P_\ell := (\alpha_\ell, 0) \text{ and } P^i_\infty \text{ (pt at } \infty))$ that ensure distance preservation at each step.

Proposition [Bordage, N.]

Taking $D_0 = \sum a_\ell P_\ell + b P_\infty^0$ with $N \mid a_\ell, b$ and $d \equiv -1 \mod N$ guarantees the existence of the balancing functions.

 $\mathbb{Z}/p_0\mathbb{Z} \oplus \mathcal{C}_0: y^N = f(x) = \prod^d (x - \alpha_\ell)$ $\downarrow \pi_0 \qquad \ell=1$ $\mathbb{Z}/p_1\mathbb{Z} \oplus \mathcal{C}_1 : y^{\frac{N}{p_0}} = f(x)$ $\downarrow \pi_1$ $\mathbb{Z}/p_i\mathbb{Z} \oplus \mathcal{C}_i : y^{N_i} = f(x)$ $\downarrow \pi_i: (x, y) \mapsto (x, y^{p_i})$ $\mathbb{P}^1 \simeq \mathcal{C}_r : u = f(x)$

Let us fold several times! Back to Kummer curves.

Write $N = \prod_{i=0}^{r-1} p_i$ and $N_i = \prod_{j=i}^{r-1} p_j$ $\Gamma_i := \langle \gamma_i \rangle \simeq \mathbb{Z}/p_i \mathbb{Z}$ where $\gamma_i : (x, y) \mapsto (x, \zeta_i y) \ (\zeta_i^{p_i} = 1)$

We want a sequence of divisors (D_i) supported by Γ_i -fixed points $(P_\ell := (\alpha_\ell, 0) \text{ and } P^i_\infty \text{ (pt at } \infty))$ that ensure distance preservation at each step.

Proposition [Bordage, N.]

Taking $D_0 = \sum a_\ell P_\ell + b P_\infty^0$ with $N \mid a_\ell, b$ and $d \equiv -1 \mod N$ guarantees the existence of the balancing functions.

 $\mathbb{Z}/p_0\mathbb{Z} \oplus \mathcal{C}_0: y^N = f(x) = \prod^d (x - \alpha_\ell)$ $\downarrow \pi_0 \qquad \ell=1$ $\mathbb{Z}/p_1\mathbb{Z} \oplus \mathcal{C}_1 : y^{\frac{N}{p_0}} = f(x)$ $\downarrow \pi_1$ $\mathbb{Z}/p_i\mathbb{Z} \oplus \mathcal{C}_i : y^{N_i} = f(x)$ $\downarrow \pi_i: (x, y) \mapsto (x, y^{p_i})$ $\mathbb{P}^1 \simeq \mathcal{C}_r : u = f(x)$

Proximity test to $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ of length $n \to \text{membership test to RS}\left[\pi(\mathcal{P}_0), \left\lfloor \frac{\pi_*(D_0)}{N} \right\rfloor\right]$ of $\left\lfloor \frac{n}{N}, \frac{\deg(D_0)}{N} + 1 \right\rfloor$ and relative minimum distance $1 - \frac{\deg D_0}{n}$.

Overview of the AG-IOPP⁸

COMMIT Phase

⁸This slide is kindly provided by Sarah Bordage.

Overview of the AG-IOPP⁸

⁸This slide is kindly provided by Sarah Bordage.

Overview of the AG-IOPP⁸

⁸This slide is kindly provided by Sarah Bordage.

Ingredients to fold several times: intermediary cyclic quotients

A group \mathcal{G} is solvable if $\mathcal{G} = \mathcal{G}_0 \triangleright \mathcal{G}_1 \triangleright \cdots \triangleright \mathcal{G}_r = 1$ with $\Gamma_i := \mathcal{G}_i / \mathcal{G}_{i+1} \simeq \mathbb{Z} / p_i \mathbb{Z}$.

1. Assume $\mathcal{G} \in Aut(\mathcal{C}_0)$ is a large solvable group acting freely on \mathcal{P}_0 ,

Ingredients to fold several times: intermediary cyclic quotients

A group \mathcal{G} is solvable if $\mathcal{G} = \mathcal{G}_0 \triangleright \mathcal{G}_1 \triangleright \cdots \triangleright \mathcal{G}_r = 1$ with $\Gamma_i := \mathcal{G}_i / \mathcal{G}_{i+1} \simeq \mathbb{Z} / p_i \mathbb{Z}$.

1. Assume $\mathcal{G} \in Aut(\mathcal{C}_0)$ is a large solvable group acting freely on \mathcal{P}_0 ,

 \rightarrow Sequence of evaluation points (\mathcal{P}_i) s.t. $\mathcal{P}_{i+1} = \pi_i(\mathcal{P}_i) \rightsquigarrow |\mathcal{P}_{i+1}| = |\mathcal{P}_i|/p_i$

- 2. There exists a "nice" sequence of divisors (D_i) that ensure distance preservation at each step.
- \rightarrow The AG code $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ is said to be **foldable**.

Ingredients to fold several times: intermediary cyclic quotients

A group \mathcal{G} is solvable if $\mathcal{G} = \mathcal{G}_0 \triangleright \mathcal{G}_1 \triangleright \cdots \triangleright \mathcal{G}_r = 1$ with $\Gamma_i := \mathcal{G}_i / \mathcal{G}_{i+1} \simeq \mathbb{Z} / p_i \mathbb{Z}$.

1. Assume $\mathcal{G} \in Aut(\mathcal{C}_0)$ is a large solvable group acting freely on \mathcal{P}_0 ,

 \rightarrow Sequence of evaluation points (\mathcal{P}_i) s.t. $\mathcal{P}_{i+1} = \pi_i(\mathcal{P}_i) \rightsquigarrow |\mathcal{P}_{i+1}| = |\mathcal{P}_i|/p_i$

- 2. There exists a "nice" sequence of divisors (D_i) that ensure distance preservation at each step.
- \rightarrow The AG code $C_0 = C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ is said to be **foldable**.
- \rightarrow Sequence of AG codes $C_i = C(\mathcal{C}_i, \mathcal{P}_i, D_i)$ with length and dimension \searrow
- \rightarrow Proximity test to C_0 reduced to *membership* test to C_r

Main properties

Assume the code $C(\mathcal{C}_0, \mathcal{P}_0, D_0)$ of length n is **foldable** thanks to the action of \mathcal{G} on \mathcal{C}_0 . Set $|\mathcal{G}| := N$.

	$N>n^{arepsilon}$, $arepsilon\in(0,1)$	$N > n/\log n$	
Proof length	< n	< n	
Round complexity	$< \log n$	$< \log n$	
	$\mathcal{C}_0/\mathcal{G}\simeq \mathbb{P}^1$ and $C_r=RS$		
Query complexity	$O(n^{1-\varepsilon})$	$< \alpha \cdot p_{max} \cdot \log n$	
Prover complexity	$\widetilde{O}(n)$	O(n)	
Verifier complexity	$O(n^{1-\varepsilon})$	$O(\log n)$	

(repetition param α , $p_{max} := \max p_i$)

Recall final test " $f_r \in C_r$ " of length n/N (code C_r constant in FRI). \sim One needs \mathcal{G} to be large enough for good complexities.

However, if C_r is a RS code, membership test to C_r might be substituted by FRI.

Number of rounds

- as many as needed in FRI,
- limited by the size of \mathcal{G} unless $\mathcal{C}_r \simeq \mathbb{P}^1$ here.

Soundness: Improved in FRI using DEEP technique and Proximity gaps.

What about with AG-codes?

Other foldable codes? Good candidates from asymptotically good towers of curves

→ "nice" sequence of divisors?

Thank you for your attention!

Distance preservation by folding (?)

Problem: all the $L_{\mathcal{C}/\Gamma}(E_j)$ are not the same.

Define Fold $[f, z] = \sum_{j=0}^{m-1} z^j f_j$. We want to prove that $\Delta(f, C) > \delta \Rightarrow \Delta(\operatorname{Fold}[f, z], C') > \delta'$ with high probability on z.

Strategy (by converse): Assume $\Delta(\operatorname{Fold}[f, z], C') \leq \delta'$ and exhibit $\tilde{f} \in C$ s.t. $\Delta(f, \tilde{f}) \leq \delta$.

Distance preservation by folding (?)

Problem: all the $L_{\mathcal{C}/\Gamma}(E_j)$ are not the same.

Define Fold $[f, z] = \sum_{j=0}^{m-1} z^j f_j$. We want to prove that $\Delta(f, C) > \delta \Rightarrow \Delta(\text{Fold } [f, z], C') > \delta'$ with high probability on z.

Strategy (by converse): Assume $\Delta(\operatorname{Fold}[f, z], C') \leq \delta'$ and exhibit $\tilde{f} \in C$ s.t. $\Delta(f, \tilde{f}) \leq \delta$. **Proposition [Ben-Sasson-Kopparty-Saraf'18]**

Let $V \subset \mathbb{F}^n$ be a \mathbb{F} -vector space. Let $u_0, u_1, \ldots, u_{m-1} \in \mathbb{F}^n$.

If $\Delta(\sum z^i u_i, V) < \delta'$ w.h.p. on z, then for every i, $\Delta(u_i, V) < \delta$.

If $\Delta(\operatorname{Fold}[f, z], C') < \delta'$ w.h.p. on z, then $\exists \tilde{f}_j \in C' = L_{\mathcal{C}/\Gamma}(D')$ s.t. $\Delta(f_j, \tilde{f}_j) < \delta$. Set $\tilde{f} = \sum \mu^j \tilde{f}_j \circ \pi$. Then $\Delta(f, \tilde{f}) < \delta$ but we cannot ensure $\tilde{f} \notin C = L_{\mathcal{C}}(D)$! If deg $f \leq 4$, then for $f(x) = f_0(x^2) + xf_1(x^2)$, deg $f_0 \leq 2$ and deg $f_1 \leq 1$. But if deg $\tilde{f}_0, \tilde{f}_1 \leq 2$, setting $\tilde{f}(x) = \tilde{f}_0(x^2) + x\tilde{f}_1(x^2)$, we just have deg $\tilde{f} \leq 5$. We need $\tilde{f}_j \in L_{\mathcal{C}/\Gamma}(E_j) \subsetneq L_{\mathcal{C}/\Gamma}(D')$! We need $\tilde{f}_j \in L_{\mathcal{C}/\Gamma}(E_j) \subsetneq L_{\mathcal{C}/\Gamma}(D')!$

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L_{\mathcal{C}/\Gamma}(E_j)$ iff $h, \nu_j h \in L_{\mathcal{C}/\Gamma}(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \le d - 1$ iff deg h, deg $\nu h \le d$)

To avoid C' to be too large, we want D' to be one of the E_i . For simplicity, assume $D' = E_0$.

We need $\tilde{f}_j \in L_{\mathcal{C}/\Gamma}(E_j) \subsetneq L_{\mathcal{C}/\Gamma}(D')!$

Define balancing functions $\nu_j \in \mathbb{F}(\mathcal{C}/\Gamma)$ s.t. $h \in L_{\mathcal{C}/\Gamma}(E_j)$ iff $h, \nu_j h \in L_{\mathcal{C}/\Gamma}(D')$.

(on \mathbb{P}^1 : if deg $\nu = 1$, then deg $h \le d - 1$ iff deg h, deg $\nu h \le d$)

To avoid C' to be too large, we want D' to be one of the E_j . For simplicity, assume $D' = E_0$.

(Final attempt) For any $(z_1, z_2) \in \mathbb{F}^2$, define Fold $[f, (z_1, z_2)] : \mathcal{P}' \to \mathbb{F}$ s.t. Fold $[f, (z_1, z_2)] = \sum_{j=0}^{m-1} z_1^j f_j + \sum_{j=1}^{m-1} z_2^j \nu_j f_j$.

Lemma: ν_j is a balancing function iff $(\nu_j)_{\infty} = D' - E_j$.

Such functions ν_j may not exist! (Weierstrass gaps)

 \rightarrow Need to choose carefully D.