Interactive proofs of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi
January 12, 2021
https://eccc.weizmann.ac.il/report/2020/165/
LIX, Ecole Polytechnique, Institut Polytechnique de Paris Inria

Motivation: Verifiable Computing ${ }^{1}$

Powerful Prover (eg. a server)

Weak Verifier
(eg. a client)

[^0]
Motivation: Veriffable Computing ${ }^{1}$

Powerful Prover (eg. a server) outputs result y and proof of correctness π

Weak Verifier
y, π
\qquad
(eg. a client)
checks validity of π
for statement " $y=F(x)$ "

How to ensure P cannot cheat? Fast verification? Short proofs?

Applications: cloud computing, cryptocurrencies, blockchains

[^1]
Motivation: Veriffable Computing ${ }^{1}$

Powerful Prover

 (eg. a server) outputs result y and proof of correctness π
a code C

$$
\begin{aligned}
& \text { How to ensure } \\
& \text { P cannot cheat? } \\
& \text { Fast verification? } \\
& \text { Short proofs? }
\end{aligned}
$$

Applications: cloud computing, cryptocurrencies, blockchains
Prover produces a word

- $c \in C$ if the statement " $y=F(x)$ " holds,
- \tilde{c} which is very far from C otherwise.

[^2]
PCP model (Probabilistically Checkable Proofs) ${ }^{2}$

${ }^{2}$ This slide is kindly provided by Sarah Bordage.

IOP Model (Interactive Oracle Proofs) ${ }^{2}$

[Ben-Sasson-Chiesa-Spooner'16, Reingold-Rothblum ${ }^{2}$ '16]
IOPs generalize PCPs and IPs
public-coin IOP \rightarrow non-interactive proof in the RO model (Fiat-Shamir paradigm) with communication complexity:

- linear in query complexity of the IOP
- logarithmic in oracle proof length $\left|\pi_{1}\right|+\ldots+\left|\pi_{r}\right|$

[^3]
Proximity test to RS codes

Univariate low-degree testing

FRI: Prover-efficient RS IOPP (IOP of Proximity) ${ }^{3}$

```
[Ben-Sasson-Bentov-Horesh-Riabzev'18]
```


Reed-Solomon Proximity Testing

Input code: $\quad \operatorname{RS}[\mathcal{P}, d]=\{f: \mathcal{P} \rightarrow \mathbb{F} \mid f$ coincides with polynomial of degree $<d\}$
Input oracle: $\quad f: \mathcal{P} \rightarrow \mathbb{F}$
Completeness: If $f \in \mathrm{RS}[\mathcal{P}, d]$, then $\exists P \operatorname{Pr}[\mathrm{~V}$ accepts P$]=1$
Soundness: If $\Delta(f, \operatorname{RS}[\mathcal{P}, d])>\delta$, then $\forall \tilde{P} \operatorname{Pr}[\mathrm{~V}$ accepts $\tilde{\mathrm{P}}]<\operatorname{err}(\delta)$
Δ relative Hamming distance

[^4]
Halving the size of the problem by folding

On a finite field \mathbb{F} with $2 \nmid|\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$of order 2^{k} and $\mathcal{P}:=\langle\omega\rangle$.
How to check if $f: \mathcal{P} \rightarrow \mathbb{F}$ satisfies $\operatorname{deg} f<d$?

Halving the size of the problem by folding

On a finite field \mathbb{F} with $2 \nmid|\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$of order 2^{k} and $\mathcal{P}:=\langle\omega\rangle$.

$$
\text { How to check if } f: \mathcal{P} \rightarrow \mathbb{F} \text { satisfies } \operatorname{deg} f<d \text { ? }
$$

Write $f(x)=f_{0}\left(x^{2}\right)+x \cdot f_{1}\left(x^{2}\right)$, where $f_{0}, f_{1}: \underbrace{\mathcal{P}^{\prime}}_{=\left\langle\omega^{2}\right\rangle} \rightarrow \mathbb{F}$ with $\operatorname{deg} f_{0}, \operatorname{deg} f_{1} \leq \operatorname{deg} f / 2$.
Check if $\operatorname{deg} f_{0}<d / 2$ and $\operatorname{deg} f_{1}<d / 2 . \rightarrow 2$ tests!

Halving the size of the problem by folding

On a finite field \mathbb{F} with $2 \nmid|\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$of order 2^{k} and $\mathcal{P}:=\langle\omega\rangle$.

$$
\text { How to check if } f: \mathcal{P} \rightarrow \mathbb{F} \text { satisfies } \operatorname{deg} f<d \text { ? }
$$

Write $f(x)=f_{0}\left(x^{2}\right)+x \cdot f_{1}\left(x^{2}\right)$, where $f_{0}, f_{1}: \underbrace{\mathcal{P}^{\prime}}_{=\left\langle\omega^{2}\right\rangle} \rightarrow \mathbb{F}$ with $\operatorname{deg} f_{0}, \operatorname{deg} f_{1} \leq \operatorname{deg} f / 2$.

$$
\text { Check if } \operatorname{deg} f_{0}<d / 2 \text { and } \operatorname{deg} f_{1}<d / 2 \rightarrow 2 \text { tests! }
$$

Make 1 test: For $z \in \mathbb{F}$, define Fold $[f, z]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ by Fold $[f, z]=f_{0}+z f_{1}$.
May fail: take $f(x)=1+x^{2}+x\left(x^{2}+2\right)$. Then Fold $[f,-1]=1+x-(x+2)=-1$.

$$
\operatorname{deg} \text { Fold }[f,-1]<1 \text { but } \operatorname{deg} f \geq 2
$$

Halving the size of the problem by folding

On a finite field \mathbb{F} with $2 \nmid|\mathbb{F}|$, take $\omega \in \mathbb{F}^{\times}$of order 2^{k} and $\mathcal{P}:=\langle\omega\rangle$.

$$
\text { How to check if } f: \mathcal{P} \rightarrow \mathbb{F} \text { satisfies } \operatorname{deg} f<d \text { ? }
$$

Write $f(x)=f_{0}\left(x^{2}\right)+x \cdot f_{1}\left(x^{2}\right)$, where $f_{0}, f_{1}: \underbrace{\mathcal{P}^{\prime}}_{=\left\langle\omega^{2}\right\rangle} \rightarrow \mathbb{F}$ with $\operatorname{deg} f_{0}, \operatorname{deg} f_{1} \leq \operatorname{deg} f / 2$.
Check if $\operatorname{deg} f_{0}<d / 2$ and $\operatorname{deg} f_{1}<d / 2 . \rightarrow 2$ tests!
Make 1 test: For $z \in \mathbb{F}$, define Fold $[f, z]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ by Fold $[f, z]=f_{0}+z f_{1}$.
May fail: take $f(x)=1+x^{2}+x\left(x^{2}+2\right)$. Then Fold $[f,-1]=1+x-(x+2)=-1$.

$$
\operatorname{deg} \text { Fold }[f,-1]<1 \text { but } \operatorname{deg} f \geq 2
$$

\checkmark Completeness:
\checkmark Locality:

Fold $[\cdot, z](\operatorname{RS}[\mathcal{P}, d]) \subseteq \operatorname{RS}\left[\mathcal{P}^{\prime}, d / 2\right]$.
compute a value of Fold $[f, z]$ on \mathcal{P}^{\prime} with only 2 queries to f.

$$
\text { Fold }[f, \pm \sqrt{y}](y)=f_{0} \pm \sqrt{y} f_{1}=f(\pm \sqrt{y})
$$

\checkmark Distance preservation: if $\Delta(f, \operatorname{RS}[\mathcal{P}, d])>\delta$, then $\Delta\left(\operatorname{Fold}[f, z], \operatorname{RS}\left[\mathcal{P}^{\prime}, d / 2\right]\right)>\delta^{\prime}$ (w.h.p.).
\rightarrow Proximity to $\operatorname{RS}[\mathcal{P}, d]$ reduced to proximity to $\operatorname{RS}\left[\mathcal{P}^{\prime}, d / 2\right]$ (probabilistically).

FRI Protocol: Commit Phase ${ }^{4}$

Honest prover computes:

$$
\begin{aligned}
& f_{1}=\text { Fold }\left[f_{0}, z_{0}\right] \\
& f_{2}=\text { Fold }\left[f_{1}, z_{1}\right]
\end{aligned}
$$

$$
f_{r}=\operatorname{Fold}\left[f_{r-1}, z_{r-1}\right]
$$

[^5]
FRI Protocol: Query Phase ${ }^{5}$

Check consistency at random locations

$$
\begin{gathered}
f_{1}\left(s_{1}\right) \stackrel{?}{=} \text { Fold }\left[f_{0}, z_{0}\right]\left(s_{1}\right) \\
f_{2}\left(s_{2}\right) \stackrel{?}{=} \text { Fold }\left[f_{1}, z_{1}\right]\left(s_{2}\right) \\
\vdots \\
f_{r}\left(s_{r}\right) \stackrel{?}{=} \text { Fold }\left[f_{r-1}, z_{r-1}\right]\left(s_{r}\right) \\
\text { Final test: } f_{r} \stackrel{?}{\in} \mathrm{RS}_{r}
\end{gathered}
$$

[^6]
Soundness of the FRI Protocol ${ }^{6}$

Completeness: If $f \in \operatorname{RS}[\mathcal{P}, d]$, then $\exists P \operatorname{Pr}\left[\mathrm{~V}_{\tilde{\sim}}\right.$ accepts P$]=1$.
Soundness: If $\Delta(f, \operatorname{RS}[\mathcal{P}, d])>\delta$, then $\forall \tilde{P} \operatorname{Pr}[\mathrm{~V}$ accepts $\tilde{\mathrm{P}}]<\operatorname{err}(\delta)$.
FRI Protocol [Ben-Sasson-Bentov-Horesh-Riabzev'18]
\checkmark linear prover time
\checkmark linear (interactive) proof length
\checkmark logarithmic query complexity

- logarithmic verifier time

Theorem

Assuming $\delta<1-\sqrt{\rho}$ (ρ is code rate), $\operatorname{err}(\delta)<e r r_{\text {commit }}+\left(e r r_{\text {query }}\right)^{\alpha}$

$$
\begin{aligned}
& <\operatorname{negl}(\kappa)+(1-\delta)^{\alpha} \\
& \text { security parameter }
\end{aligned}
$$

To get error $\operatorname{err}(\delta)=\operatorname{neg}(\kappa)$, repeat query phase enough time (α times).
Building-block of succinct ZK proofs with no trusted setup, PQ security, succinct verification (see e.g. "ZK-STARKs").

[^7]
AG codes

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F}.
Divisors. A (rational) divisor D on \mathcal{C} is a formal sum of \mathbb{F}-points $D=\sum n_{P} P$.
Its degree is $\operatorname{deg} D:=\sum n_{P}$ and support is $\operatorname{Supp}(D):=\left\{P \in \mathcal{C} \mid n_{p} \neq 0\right\}$. $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every P A function f on \mathcal{C} defines a principal divisor $(f):=\sum_{P} \underbrace{v_{P}(f)}_{\text {valuation }} P$.

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F}.
Divisors. A (rational) divisor D on \mathcal{C} is a formal sum of \mathbb{F}-points $D=\sum n_{P} P$.
Its degree is $\operatorname{deg} D:=\sum n_{P}$ and support is $\operatorname{Supp}(D):=\left\{P \in \mathcal{C} \mid n_{p} \neq 0\right\}$. $D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every $P \Rightarrow L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}\left(D^{\prime}\right)$.
A function f on \mathcal{C} defines a principal divisor $(f):=\sum_{P} \underbrace{v_{P}(f)} P$.
Riemann-Roch space of $D . L_{\mathcal{C}}(D)=\{f \in \mathbb{F}(\mathcal{C}) \mid(f) \geq-D\} \cup\{0\}$.

Algebraic Geometry (AG) codes

Let \mathcal{C} be an algebraic curve defined over a finite field \mathbb{F}.
Divisors. A (rational) divisor D on \mathcal{C} is a formal sum of \mathbb{F}-points $D=\sum n_{P} P$.
Its degree is $\operatorname{deg} D:=\sum n_{P}$ and support is $\operatorname{Supp}(D):=\left\{P \in \mathcal{C} \mid n_{p} \neq 0\right\}$.
$D \leq D^{\prime}$ if $n_{P} \leq n_{P}^{\prime}$ for every $P \Rightarrow L_{\mathcal{C}}(D) \subset L_{\mathcal{C}}\left(D^{\prime}\right)$.
A function f on \mathcal{C} defines a principal divisor $(f):=\sum_{P} \underbrace{v_{P}(f)}_{\text {valuation }} P$.
Riemann-Roch space of $D . L_{\mathcal{C}}(D)=\{f \in \mathbb{F}(\mathcal{C}) \mid(f) \geq-D\} \cup\{0\}$.

AG codes

Given $\mathcal{P} \subset \mathcal{C}(\mathbb{F})$ of size $n:=|\mathcal{P}|$ and a divisor D on \mathcal{C} s.t. $\operatorname{Supp}(D) \cap \mathcal{P}=\emptyset$, the $\mathbf{A G}$ code $C=C(\mathcal{C}, \mathcal{P}, D)$ is defined as the image by ev : $L_{\mathcal{C}}(D) \rightarrow \mathbb{F}^{n}$.

Example: $C=C\left(\mathbb{P}^{1}, \mathcal{P}, d P_{\infty}\right)$, with $P_{\infty}=[0: 1]$, is Hamming-eq. to $\operatorname{RS}[\mathcal{P}, d+1]$.
We always choose D so that ev is injective: $\mathbb{F}^{n} \leftrightarrow \mathbb{F}^{\mathcal{P}}$ and

$$
C(\mathcal{C}, \mathcal{P}, D)=\left\{f: \mathcal{P} \rightarrow \mathbb{F} \mid f \text { coincides with a fct in } L_{\mathcal{C}}(D)\right\} .
$$

Group action and Kani's splitting of Riemann-Roch spaces

Let \mathcal{C} be a curve over \mathbb{F} and let $\Gamma=\langle\gamma\rangle \simeq \mathbb{Z} / m \mathbb{Z}$ a group of automorphisms of \mathcal{C} s.t $\operatorname{gcd}(m,|\mathbb{F}|)=1$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive $m^{\text {th }}$ root of unity.

- Γ acts on the functions on $\mathcal{C}: \gamma \cdot f=f \circ \gamma$ for any fct f on \mathcal{C}.
- There exists a function μ on \mathcal{C} s.t. $\gamma \cdot \mu=\zeta \mu$ [Kani'86].

Set the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}:=\mathcal{C} / \Gamma$.

[^8]
Group action and Kani's splitting of Riemann-Roch spaces

Let \mathcal{C} be a curve over \mathbb{F} and let $\Gamma=\langle\gamma\rangle \simeq \mathbb{Z} / m \mathbb{Z}$ a group of automorphisms of \mathcal{C} s.t $\operatorname{gcd}(m,|\mathbb{F}|)=1$. Take $\zeta \in \overline{\mathbb{F}}$ a primitive $m^{\text {th }}$ root of unity.

- Γ acts on the functions on $\mathcal{C}: \gamma \cdot f=f \circ \gamma$ for any fct f on \mathcal{C}.
- There exists a function μ on \mathcal{C} s.t. $\gamma \cdot \mu=\zeta \mu[K a n i ' 86]$.

Set the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C}^{\prime}:=\mathcal{C} / \Gamma$.
For any Γ-invariant divisor D on \mathcal{C}, the action of Γ on $L_{\mathcal{C}}(D)$ gives

$$
L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} L_{\mathcal{C}}(D)_{j} \text { where } L_{\mathcal{C}}(D)_{j}:=\left\{g \in L_{\mathcal{C}}(D) \mid \gamma \cdot g=\zeta^{j} g\right\} .
$$

[Kani'86] $L_{\mathcal{C}}(D)_{j} \simeq \mu^{j} \pi^{*}\left(L_{\mathcal{C}^{\prime}}\left(E_{j}\right)\right)$ where $E_{j}:=\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor^{7}$ is a divisor on \mathcal{C}^{\prime}.
\rightsquigarrow For every $f \in L_{\mathcal{C}}(D)$, there exist m fcts $f_{j} \in L_{\mathcal{C}^{\prime}}\left(E_{j}\right)$ s.t. $f=\sum_{j=0}^{m-1} \mu^{j} f_{j} \circ \pi$.

[^9]
Kani's result on $\mathcal{C}=\mathbb{P}^{1}$

[Kani' 86$]: L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor\right)$.
The AG code $C=C\left(\mathbb{P}^{1}, \mathcal{P}, d P_{\infty}\right)$, with $P_{\infty}=[0: 1]$, corresponds to $\operatorname{RS}[\mathcal{P}, d+1]$.
Consider the action on \mathbb{P}^{1} of $\gamma:\left[X_{0}: X_{1}\right] \mapsto\left[X_{0}:-X_{1}\right]$. Then $\langle\gamma\rangle=\mathbb{Z} / 2 \mathbb{Z}$.
Projection map $\pi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ by $\pi\left[X_{0}: X_{1}\right]:=\left[X_{0}^{2}: X_{1}^{2}\right]$.
Kani's result with $\mu=x:=\frac{X_{1}}{X_{0}}(\gamma \cdot x=-x)$ yields to

$$
\left((x)=[1: 0]-P_{\infty}\right)
$$

$$
L_{\mathbb{P}^{1}}\left(d P_{\infty}\right)=\pi^{*} L_{\mathbb{P}^{1}}\left(\left\lfloor\frac{d}{2}\right\rfloor P_{\infty}\right)+x \pi^{*} L_{\mathbb{P}^{1}}\left(\left\lfloor\frac{d-1}{2}\right\rfloor P_{\infty}\right),
$$

i.e. any pol. f of degree $\leq d$ can be written $f(x)=f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$ with $\left[\begin{array}{l}\operatorname{deg} f_{0} \leq\left\lfloor\frac{d}{2}\right\rfloor, \\ \operatorname{deg} f_{1} \leq\left\lfloor\frac{d-1}{2}\right\rfloor\end{array}\right.$.

FRI: For $z \in \mathbb{F}$, define $\operatorname{Fold}[f, z]=f_{0}+z f_{1}$.
Remark: For odd $d,\left\lfloor\frac{d}{2}\right\rfloor=\left\lfloor\frac{d-1}{2}\right\rfloor$, i.e. $L_{\mathbb{P}^{1}}\left(d P_{\infty}\right)$ is split into 2 "copies" of the same space.

Kani's result on a Kummer curve

[Kani'86]: $L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor\right)$.
Assume $\operatorname{gcd}(N, d)=1$ and $\operatorname{gcd}(N,|\mathbb{F}|)=1$. Take ζ a primitive $N^{\text {th }}$ root of unity.

$$
\mathcal{C}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right)
$$

Kani's result on a Kummer curve

[Kani'86]: $L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor\right)$.
Assume $\operatorname{gcd}(N, d)=1$ and $\operatorname{gcd}(N,|\mathbb{F}|)=1$. Take ζ a primitive $N^{\text {th }}$ root of unity.

$$
\begin{gathered}
\langle\gamma:(x, y) \mapsto(x, \zeta y)\rangle \simeq \mathbb{Z} / N \mathbb{Z} \subset \mathcal{C}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
\pi:(x, y) \rightarrow\left(x, y^{N}\right) \\
\mathbb{P}^{1} \simeq \mathcal{C}^{\prime}: y=f(x)
\end{gathered}
$$

Kani's result on a Kummer curve

[Kani'86]: $L_{\mathcal{C}}(D)=\bigoplus_{j=0}^{m-1} \mu^{j} \pi^{*} L_{\mathcal{C}^{\prime}}\left(\left\lfloor\frac{1}{m} \pi_{*}(D+j(\mu))\right\rfloor\right)$.
Assume $\operatorname{gcd}(N, d)=1$ and $\operatorname{gcd}(N,|\mathbb{F}|)=1$. Take ζ a primitive $N^{\text {th }}$ root of unity.

$$
\begin{gathered}
\langle\gamma:(x, y) \mapsto(x, \zeta y)\rangle \simeq \mathbb{Z} / N \mathbb{Z} \subset \mathcal{C}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
\pi:\left.(x, y) \rightarrow\left(x, y^{N}\right)\right|^{\ddagger} \\
\mathbb{P}^{1} \simeq \mathcal{C}^{\prime}: y=f(x)
\end{gathered}
$$

Take $D=\alpha P_{\infty}$ where P_{∞} is the unique point at ∞ on \mathcal{C}. Write $P_{\ell}=\left(\alpha_{\ell}, 0\right)$.
Any fct $f \in L_{\mathcal{C}}(D)$ can be written $f(x, y)=\sum_{j=0}^{N-1} y^{j} f_{j}\left(x, y^{N}\right) \quad(\mu=y$ as $\gamma \cdot y=\zeta y)$
where $f_{j} \in L_{\mathbb{P}^{1}}\left(\left\lfloor\frac{\pi_{*}(D)-j\left(\sum P_{\ell}-d P_{\infty}\right)}{N}\right\rfloor\right)$, i.e. f_{j} is a pol. of degree $\leq\left\lfloor\frac{\alpha-j d}{N}\right\rfloor \leq\left\lfloor\frac{\alpha}{N}\right\rfloor$.

Using Kani's result to fold

Let \mathcal{C} be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z} / m \mathbb{Z}$, with the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C} / \Gamma$.
FRI's idea: proximity to $C=C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to $C^{\prime}=C\left(\mathcal{C} / \Gamma, \mathcal{P}^{\prime}, D^{\prime}\right)$
We need: - a Γ-invariant divisor $D \stackrel{[\text { Kani' } 86]}{\Longrightarrow} \underset{\substack{\mathcal{C}(D)}}{f}=\sum_{j=1}^{m-1} \mu^{j} \underset{\substack{ \\L_{\mathcal{C} / \Gamma}\left(E_{j}\right)}}{f_{j}} \circ \pi$.

- an evaluation set $\mathcal{P}=$ union of Γ-orbits of size $|\Gamma|(\Gamma$ acts freely on $\mathcal{P})$.

Take $\mathcal{P}^{\prime}=\pi(\mathcal{P})\left(\left|\mathcal{P}^{\prime}\right|=|\mathcal{P}| / m\right)$ and D^{\prime} is a divisor on \mathcal{C} / Γ s.t. $L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right) \supseteq L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$.

Using Kani's result to fold

Let \mathcal{C} be a curve over a field \mathbb{F} on which acts $\Gamma \simeq \mathbb{Z} / m \mathbb{Z}$, with the projection map $\pi: \mathcal{C} \rightarrow \mathcal{C} / \Gamma$.
FRI's idea: proximity to $C=C(\mathcal{C}, \mathcal{P}, D)$ reduced to proximity to $C^{\prime}=C\left(\mathcal{C} / \Gamma, \mathcal{P}^{\prime}, D^{\prime}\right)$
We need: - a Γ-invariant divisor $D \stackrel{[\text { Kani' } 86]}{ } \underset{\substack{ \\L_{\mathcal{C}}(D)}}{f}=\sum_{j=1}^{m-1} \mu^{j} \underset{L_{\mathcal{C} / \Gamma}\left(E_{j}\right)}{f_{j}} \circ \pi$.

- an evaluation set $\mathcal{P}=$ union of Γ-orbits of size $|\Gamma|(\Gamma$ acts freely on $\mathcal{P})$.

Take $\mathcal{P}^{\prime}=\pi(\mathcal{P})\left(\left|\mathcal{P}^{\prime}\right|=|\mathcal{P}| / m\right)$ and D^{\prime} is a divisor on \mathcal{C} / Γ s.t. $L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right) \supseteq L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$.
For any $z \in \mathbb{F}$, define the folding operator Fold $[\cdot, z]: \mathbb{F}^{\mathcal{P}} \rightarrow \mathbb{F}^{\mathcal{P}^{\prime}}$ by Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$.
\checkmark Completeness:
\checkmark Locality:

Fold $[\cdot, z](C) \subseteq C^{\prime}$.
For any $P \in \mathcal{P}^{\prime}$, compute Fold $[f, z](P)$ with m queries to f.
interpolate on the geometric progression $\left\{(\mu(Q), f(Q)) \mid Q \in \pi^{-1}(\{P\})\right\}$.
\times Distance preservation
$\Delta(f, C)>\delta \nRightarrow \Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$ w.h.p.

Distance preservation by folding (?)

Problem: $L_{\mathcal{C} / \Gamma}\left(E_{j}\right) \subsetneq L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$! All the $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ are not the same.
We need to know if a function lies in $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$, not only in $L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$.
Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ iff $h, \nu_{j} h \in L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$. (on $\mathbb{P}^{1}:$ if $\operatorname{deg} \nu=1$, then $\operatorname{deg} h \leq d-1$ iff $\operatorname{deg} h, \operatorname{deg} \nu h \leq d$)
To avoid C^{\prime} to be too large, we want D^{\prime} to be one of the E_{j}. For simplicity, assume $D^{\prime}=E_{0}$.

Distance preservation by folding (?)

Problem: $L_{\mathcal{C} / \Gamma}\left(E_{j}\right) \subsetneq L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$! All the $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ are not the same.
We need to know if a function lies in $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$, not only in $L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$.
Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ iff $h, \nu_{j} h \in L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$.

$$
\text { (on } \mathbb{P}^{1}: \text { if } \operatorname{deg} \nu=1 \text {, then } \operatorname{deg} h \leq d-1 \text { iff } \operatorname{deg} h, \operatorname{deg} \nu h \leq d \text {) }
$$

To avoid C^{\prime} to be too large, we want D^{\prime} to be one of the E_{j}. For simplicity, assume $D^{\prime}=E_{0}$.
(Final attempt) For any $\left(z_{1}, z_{2}\right) \in \mathbb{F}^{2}$, define Fold $\left[f,\left(z_{1}, z_{2}\right)\right]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ s.t.

$$
\text { Fold }\left[f,\left(z_{1}, z_{2}\right)\right]=\sum_{j=0}^{m-1} z_{1}^{j} f_{j}+\sum_{j=1}^{m-1} z_{2}^{j} \nu_{j} f_{j} .
$$

Lemma: ν_{j} is a balancing function iff $\left(\nu_{j}\right)_{\infty}=D^{\prime}-E_{j}$.
Such functions ν_{j} may not exist! (Weierstrass gaps)
\rightarrow Need to choose carefully D.

Let us fold several times! Back to Kummer curves.

Write $N=\prod_{i=0}^{r-1} p_{i}$ and $N_{i}=\prod_{j=i}^{r-1} p_{j}$
$\Gamma_{i}:=\left\langle\gamma_{i}\right\rangle \simeq \mathbb{Z} / p_{i} \mathbb{Z}$ where $\gamma_{i}:(x, y) \mapsto\left(x, \zeta_{i} y\right)\left(\zeta_{i}^{p_{i}}=1\right)$

$$
\begin{aligned}
& \mathbb{Z} / p_{0} \mathbb{Z} \bigcirc \mathcal{C}_{0}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
& \ddagger \pi_{0} \\
& \mathbb{Z} / p_{1} \mathbb{Z} \subset \mathcal{C}_{1}: y^{\frac{N}{p_{0}}}=f(x) \\
& \ddagger \pi_{1} \\
& \vdots \\
& \mathbb{Z} / p_{i} \mathbb{Z} \bigcirc \mathcal{C}_{i}: y^{N_{i}}=f(x) \\
& \not \pi_{i}:(x, y) \mapsto\left(x, y^{p_{i}}\right) \\
& \vdots \\
& \mathbb{P}^{1} \simeq \mathcal{C}_{r}: y=f(x)
\end{aligned}
$$

Let us fold several times! Back to Kummer curves.

```
Write \(N=\prod_{i=0}^{r-1} p_{i}\) and \(N_{i}=\prod_{j=i}^{r-1} p_{j}\) \(\Gamma_{i}:=\left\langle\gamma_{i}\right\rangle \simeq \mathbb{Z} / p_{i} \mathbb{Z}\) where \(\gamma_{i}:(x, y) \mapsto\left(x, \zeta_{i} y\right)\left(\zeta_{i}^{p_{i}}=1\right)\)
```

We want a sequence of divisors $\left(D_{i}\right)$ supported by Γ_{i}-fixed points $\left(P_{\ell}:=\left(\alpha_{\ell}, 0\right)\right.$ and $P_{\infty}^{i}(\mathrm{pt}$ at $\left.\infty)\right)$ that ensure distance preservation at each step.

Proposition [Bordage, N.]

Taking $D_{0}=\sum a_{\ell} P_{\ell}+b P_{\infty}^{0}$ with $N \mid a_{\ell}, b$ and $d \equiv-1$ $\bmod N$ guarantees the existence of the balancing functions.

$$
\begin{gathered}
\\
\mathbb{Z} / p_{0} \mathbb{Z} \bigcirc \mathcal{C}_{0}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
\\
\nsucceq \pi_{0} \\
\mathbb{Z} / p_{1} \mathbb{Z} \bigcirc \mathcal{C}_{1}: y^{\frac{N}{p_{0}}}=f(x) \\
\\
\ddagger \pi_{1} \\
\vdots \\
\mathbb{Z} / p_{i} \mathbb{Z} \bigcirc \mathcal{C}_{i}: y^{N_{i}}=f(x) \\
\\
\not \pi_{i}:(x, y) \mapsto\left(x, y^{p_{i}}\right) \\
\vdots \\
\mathbb{P}^{1} \simeq \mathcal{C}_{r}: y=f(x)
\end{gathered}
$$

Let us fold several times! Back to Kummer curves.

Write $N=\prod_{i=0}^{r-1} p_{i}$ and $N_{i}=\prod_{j=i}^{r-1} p_{j}$
$\Gamma_{i}:=\left\langle\gamma_{i}\right\rangle \simeq \mathbb{Z} / p_{i} \mathbb{Z}$ where $\gamma_{i}:(x, y) \mapsto\left(x, \zeta_{i} y\right)\left(\zeta_{i}^{p_{i}}=1\right)$
We want a sequence of divisors $\left(D_{i}\right)$ supported by Γ_{i}-fixed points $\left(P_{\ell}:=\left(\alpha_{\ell}, 0\right)\right.$ and $P_{\infty}^{i}(\mathrm{pt}$ at $\left.\infty)\right)$ that ensure distance preservation at each step.

Proposition [Bordage, N.]

Taking $D_{0}=\sum a_{\ell} P_{\ell}+b P_{\infty}^{0}$ with $N \mid a_{\ell}, b$ and $d \equiv-1$ $\bmod N$ guarantees the existence of the balancing functions.

$$
\begin{aligned}
& \mathbb{Z} / p_{0} \mathbb{Z} \subset \mathcal{C}_{0}: y^{N}=f(x)=\prod_{\ell=1}^{d}\left(x-\alpha_{\ell}\right) \\
& \downarrow \pi_{0} \\
& \mathbb{Z} / p_{1} \mathbb{Z} \subset \mathcal{C}_{1}: y^{\frac{N}{p_{0}}}=f(x) \\
& \downarrow \pi_{1} \\
& \vdots \\
& \mathbb{Z} / p_{i} \mathbb{Z} \bigcirc \mathcal{C}_{i}: y^{N_{i}}=f(x) \\
& \ddagger \pi_{i}:(x, y) \mapsto\left(x, y^{p_{i}}\right) \\
& \vdots \\
& \mathbb{P}^{1} \simeq \mathcal{C}_{r}: y=f(x)
\end{aligned}
$$

Proximity test to $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ of length $n \rightarrow$ membership test to $\operatorname{RS}\left[\pi\left(\mathcal{P}_{0}\right),\left\lfloor\frac{\pi_{*}\left(D_{0}\right)}{N}\right\rfloor\right]$ of $\left[\frac{n}{N}, \frac{\operatorname{deg}\left(D_{0}\right)}{N}+1\right]$ and relative minimum distance $1-\frac{\operatorname{deg} D_{0}}{n}$.

Overview of the AG-IOPP ${ }^{8}$

COMMIT Phase

$$
\begin{aligned}
& f_{1}=\text { Fold }\left[f_{0}, \boldsymbol{z}_{0}\right] \\
& f_{2}=\text { Fold }\left[f_{1}, \boldsymbol{z}_{1}\right]
\end{aligned}
$$

$$
f_{r}=\operatorname{Fold}\left[f_{r-1}, \boldsymbol{z}_{r-1}\right]
$$

[^10]
Overview of the AG-IOPP ${ }^{8}$

QUERY Phase

Round consistency tests:

Sample $Q_{0} \in \mathcal{P}_{0}$,
Define query path $\left(Q_{1}, \ldots, Q_{r}\right)$ s.t. $Q_{i+1}=\pi_{i}\left(Q_{i}\right)$.
Prover $\quad z_{0} \leftarrow \mathbb{F}^{2} \quad$ Verifier

$$
\begin{aligned}
& f_{1}\left(Q_{1}\right) \stackrel{?}{=} \text { Fold }\left[f_{0}, \boldsymbol{z}_{0}\right]\left(Q_{1}\right) \\
& f_{2}\left(Q_{2}\right) \stackrel{?}{=} \text { Fold }\left[f_{1}, \boldsymbol{z}_{1}\right]\left(Q_{2}\right)
\end{aligned}
$$

$$
f_{r}\left(Q_{r}\right) \stackrel{?}{=} \text { Fold }\left[f_{?}, \boldsymbol{z}_{r-1}\right]\left(Q_{r}\right)
$$

$$
\text { Final test: } f_{r} \stackrel{?}{\in} C\left(\mathcal{C}_{r}, \mathcal{P}_{r}, D_{r}\right)
$$

[^11]
Overview of the AG-IOPP ${ }^{8}$

Theorem [Bordage, N.]
Completeness:
If $f_{0} \in C_{0}, \mathrm{~V}$ accepts with proba 1 .
Soundness:
(relies on [BKS18] and [BGKS19])

If f_{0} is δ-far from $C_{0}, \mathrm{~V}$ accepts with proba $\operatorname{err}(\delta)<\operatorname{err}_{\text {commit }}+\left(\operatorname{err}_{\text {query }}(\delta)\right)^{\alpha}$
α : repetition parameter

[^12]
Ingredients to fold several times: intermediary cyclic quotients

1. Assume $\mathcal{G} \in \operatorname{Aut}\left(\mathcal{C}_{0}\right)$ is a large solvable group acting freely on \mathcal{P}_{0},
\rightarrow Sequence of curves $\left(\mathcal{C}_{i}\right)$ s.t. $\mathcal{C}_{i+1}:=\mathcal{C}_{i} / \Gamma_{i}$

Ingredients to fold several times: intermediary cyclic quotients

A group \mathcal{G} is solvable if $\mathcal{G}=\mathcal{G}_{0} \triangleright \mathcal{G}_{1} \triangleright \cdots \triangleright \mathcal{G}_{r}=1$ with $\Gamma_{i}:=\mathcal{G}_{i} / \mathcal{G}_{i+1} \simeq \mathbb{Z} / p_{i} \mathbb{Z}$.

1. Assume $\mathcal{G} \in \operatorname{Aut}\left(\mathcal{C}_{0}\right)$ is a large solvable group acting freely on \mathcal{P}_{0},
\rightarrow Sequence of curves $\left(\mathcal{C}_{i}\right)$ s.t. $\mathcal{C}_{i+1}:=\mathcal{C}_{i} / \Gamma_{i}$

\rightarrow Sequence of evaluation points $\left(\mathcal{P}_{i}\right)$ s.t. $\mathcal{P}_{i+1}=\pi_{i}\left(\mathcal{P}_{i}\right) \rightsquigarrow\left|\mathcal{P}_{i+1}\right|=\left|\mathcal{P}_{i}\right| / p_{i}$
2. There exists a "nice" sequence of divisors $\left(D_{i}\right)$ that ensure distance preservation at each step.
\rightarrow The AG code $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ is said to be foldable.

Ingredients to fold several times: intermediary cyclic quotients

1. Assume $\mathcal{G} \in \operatorname{Aut}\left(\mathcal{C}_{0}\right)$ is a large solvable group acting freely on \mathcal{P}_{0},
\rightarrow Sequence of curves $\left(\mathcal{C}_{i}\right)$ s.t. $\mathcal{C}_{i+1}:=\mathcal{C}_{i} / \Gamma_{i}$

\rightarrow Sequence of evaluation points $\left(\mathcal{P}_{i}\right)$ s.t. $\mathcal{P}_{i+1}=\pi_{i}\left(\mathcal{P}_{i}\right) \rightsquigarrow\left|\mathcal{P}_{i+1}\right|=\left|\mathcal{P}_{i}\right| / p_{i}$
2. There exists a "nice" sequence of divisors $\left(D_{i}\right)$ that ensure distance preservation at each step.
\rightarrow The AG code $C_{0}=C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ is said to be foldable.
\rightarrow Sequence of AG codes $C_{i}=C\left(\mathcal{C}_{i}, \mathcal{P}_{i}, D_{i}\right)$ with length and dimension \searrow
\rightarrow Proximity test to C_{0} reduced to membership test to C_{r}

Main properties

Assume the code $C\left(\mathcal{C}_{0}, \mathcal{P}_{0}, D_{0}\right)$ of length n is foldable thanks to the action of \mathcal{G} on \mathcal{C}_{0}. Set $|\mathcal{G}|:=N$.

	$N>n^{\varepsilon}, \varepsilon \in(0,1)$	$N>n / \log n$				
Proof length	$<n$	$<n$				
Round complexity	$<\log n$	$<\log n$			$\mathcal{C}_{0} / \mathcal{G} \simeq \mathbb{P}^{1}$	and $C_{r}=\mathrm{RS}$
:---	:---:	:---:				
	$O\left(n^{1-\varepsilon}\right)$	$<\alpha \cdot p_{\max } \cdot \log n$				
Query complexity	$\widetilde{O}(n)$	$O(n)$				
Prover complexity	$O\left(n^{1-\varepsilon}\right)$	$O(\log n)$				

$$
\text { (repetition param } \alpha, p_{\max }:=\max p_{i} \text {) }
$$

Recall final test " $f_{r} \stackrel{?}{\in} C_{r}$ " of length n / N (code C_{r} constant in FRI).
\rightsquigarrow One needs \mathcal{G} to be large enough for good complexities.
However, if C_{r} is a RS code, membership test to C_{r} might be substituted by FRI.

Remarks and open questions

Number of rounds

- as many as needed in FRI,
- limited by the size of \mathcal{G} unless $\mathcal{C}_{r} \simeq \mathbb{P}^{1}$ here.

Soundness: Improved in FRI using DEEP technique and Proximity gaps.
What about with AG-codes?
Other foldable codes? Good candidates from asymptotically good towers of curves
\rightsquigarrow "nice" sequence of divisors?
Thank you for your attention!

Distance preservation by folding (?)

Problem: all the $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ are not the same.
Define Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$. We want to prove that $\Delta(f, C)>\delta \Rightarrow \Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$.
Strategy (by converse): Assume $\Delta\left(\operatorname{Fold}[f, z], C^{\prime}\right) \leq \delta^{\prime}$ and exhibit $\tilde{f} \in C$ s.t. $\Delta(f, \tilde{f}) \leq \delta$.

Distance preservation by folding (?)

Problem: all the $L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ are not the same.
Define Fold $[f, z]=\sum_{j=0}^{m-1} z^{j} f_{j}$. We want to prove that $\Delta(f, C)>\delta \Rightarrow \Delta\left(\right.$ Fold $\left.[f, z], C^{\prime}\right)>\delta^{\prime}$.
Strategy (by converse): Assume $\Delta\left(\operatorname{Fold}[f, z], C^{\prime}\right) \leq \delta^{\prime}$ and exhibit $\tilde{f} \in C$ s.t. $\Delta(f, \tilde{f}) \leq \delta$.

Proposition [Ben-Sasson-Kopparty-Saraf'18]

Let $V \subset \mathbb{F}^{n}$ be a \mathbb{F}-vector space. Let $u_{0}, u_{1}, \ldots, u_{m-1} \in \mathbb{F}^{n}$.
If $\Delta\left(\sum z^{i} u_{i}, V\right)<\delta^{\prime}$ w.h.p. on z, then for every $i, \Delta\left(u_{i}, V\right)<\delta$.
If $\Delta\left(\operatorname{Fold}[f, z], C^{\prime}\right)<\delta^{\prime}$ w.h.p. on z, then $\exists \tilde{f}_{j} \in C^{\prime}=L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$ s.t. $\Delta\left(f_{j}, \tilde{f}_{j}\right)<\delta$.
Set $\tilde{f}=\sum \mu^{j} \tilde{f}_{j} \circ \pi$. Then $\Delta(f, \tilde{f})<\delta$ but we cannot ensure $\tilde{f} \notin C=L_{\mathcal{C}}(D)$!
If $\operatorname{deg} f \leq 4$, then for $f(x)=f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right), \operatorname{deg} f_{0} \leq 2$ and $\operatorname{deg} f_{1} \leq 1$.
But if $\operatorname{deg} \tilde{f}_{0}, \tilde{f}_{1} \leq 2$, setting $\tilde{f}(x)=\tilde{f}_{0}\left(x^{2}\right)+x \tilde{f}_{1}\left(x^{2}\right)$, we just have $\operatorname{deg} \tilde{f} \leq 5$.
We need $\tilde{f}_{j} \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right) \subsetneq L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$!

Fixing the folding operator to ensure distance preservation

We need $\tilde{f}_{j} \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right) \subsetneq L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$!
Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ iff $h, \nu_{j} h \in L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$.

$$
\text { (on } \mathbb{P}^{1}: \text { if } \operatorname{deg} \nu=1 \text {, then } \operatorname{deg} h \leq d-1 \text { iff } \operatorname{deg} h, \operatorname{deg} \nu h \leq d \text {) }
$$

To avoid C^{\prime} to be too large, we want D^{\prime} to be one of the E_{j}. For simplicity, assume $D^{\prime}=E_{0}$.

Fixing the folding operator to ensure distance preservation

We need $\tilde{f}_{j} \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right) \subsetneq L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$!

Define balancing functions $\nu_{j} \in \mathbb{F}(\mathcal{C} / \Gamma)$ s.t. $h \in L_{\mathcal{C} / \Gamma}\left(E_{j}\right)$ iff $h, \nu_{j} h \in L_{\mathcal{C} / \Gamma}\left(D^{\prime}\right)$.

$$
\text { (on } \mathbb{P}^{1}: \text { if } \operatorname{deg} \nu=1 \text {, then } \operatorname{deg} h \leq d-1 \text { iff } \operatorname{deg} h, \operatorname{deg} \nu h \leq d \text {) }
$$

To avoid C^{\prime} to be too large, we want D^{\prime} to be one of the E_{j}. For simplicity, assume $D^{\prime}=E_{0}$.
(Final attempt) For any $\left(z_{1}, z_{2}\right) \in \mathbb{F}^{2}$, define Fold $\left[f,\left(z_{1}, z_{2}\right)\right]: \mathcal{P}^{\prime} \rightarrow \mathbb{F}$ s.t.

$$
\text { Fold }\left[f,\left(z_{1}, z_{2}\right)\right]=\sum_{j=0}^{m-1} z_{1}^{j} f_{j}+\sum_{j=1}^{m-1} z_{2}^{j} \nu_{j} f_{j} .
$$

Lemma: ν_{j} is a balancing function iff $\left(\nu_{j}\right)_{\infty}=D^{\prime}-E_{j}$.
Such functions ν_{j} may not exist! (Weierstrass gaps)
\rightarrow Need to choose carefully D.

[^0]: ${ }^{1}$ Most of this slide is kindly provided by Sarah Bordage.

[^1]: ${ }^{1}$ Most of this slide is kindly provided by Sarah Bordage.

[^2]: ${ }^{1}$ Most of this slide is kindly provided by Sarah Bordage.

[^3]: ${ }^{2}$ This slide is kindly provided by Sarah Bordage.

[^4]: ${ }^{3}$ This slide is kindly provided by Sarah Bordage.

[^5]: ${ }^{4}$ This slide is kindly provided by Sarah Bordage.

[^6]: ${ }^{5}$ This slide is kindly provided by Sarah Bordage.

[^7]: ${ }^{6}$ This content is kindly provided by Sarah Bordage.

[^8]: ${ }^{7}$ Notation: $\left\lfloor\frac{1}{n} D\right\rfloor:=\sum\left\lfloor\frac{n_{P}}{n}\right\rfloor P$, for a divisor $D=\sum n_{P} P$ and integer $n>0$.

[^9]: ${ }^{7}$ Notation: $\left\lfloor\frac{1}{n} D\right\rfloor:=\sum\left\lfloor\frac{n_{P}}{n}\right\rfloor P$, for a divisor $D=\sum n_{P} P$ and integer $n>0$.

[^10]: ${ }^{8}$ This slide is kindly provided by Sarah Bordage.

[^11]: ${ }^{8}$ This slide is kindly provided by Sarah Bordage.

[^12]: ${ }^{8}$ This slide is kindly provided by Sarah Bordage.

