
Interactive proofs of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi
January 12, 2021
https://eccc.weizmann.ac.il/report/2020/165/

LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria

https://eccc.weizmann.ac.il/report/2020/165/


Motivation: Verifiable Computing1

Powerful Prover
(eg. a server)

Weak Verifier
(eg. a client)

Please, run program
F on input x for me.

I want to quickly check
if your result is correct.

3

3

outputs result y and
proof of correctness π

y, π checks validity of π
for statement “y = F (x)”

Applications: cloud computing, cryptocurrencies, blockchains

How to ensure
P cannot cheat?
Fast verification?

Short proofs?

Arithmetization

Proximity to
a code C

Prover produces a word
• c ∈ C if the statement “y = F (x)” holds,
• c̃ which is very far from C otherwise.

1Most of this slide is kindly provided by Sarah Bordage.
1 / 18



Motivation: Verifiable Computing1

Powerful Prover
(eg. a server)

Weak Verifier
(eg. a client)

Please, run program
F on input x for me.

I want to quickly check
if your result is correct.

3

3

outputs result y and
proof of correctness π

y, π checks validity of π
for statement “y = F (x)”

Applications: cloud computing, cryptocurrencies, blockchains

How to ensure
P cannot cheat?
Fast verification?

Short proofs?

Arithmetization

Proximity to
a code C

Prover produces a word
• c ∈ C if the statement “y = F (x)” holds,
• c̃ which is very far from C otherwise.

1Most of this slide is kindly provided by Sarah Bordage.
1 / 18



Motivation: Verifiable Computing1

Powerful Prover
(eg. a server)

Weak Verifier
(eg. a client)

Please, run program
F on input x for me.

I want to quickly check
if your result is correct.

3

3

outputs result y and
proof of correctness π

y, π checks validity of π
for statement “y = F (x)”

Applications: cloud computing, cryptocurrencies, blockchains

How to ensure
P cannot cheat?
Fast verification?

Short proofs?

Arithmetization

Proximity to
a code C

Prover produces a word
• c ∈ C if the statement “y = F (x)” holds,
• c̃ which is very far from C otherwise.

1Most of this slide is kindly provided by Sarah Bordage.
1 / 18



PCP model (Probabilistically Checkable Proofs) 2

Prover Verifier

m0

π

1

oracle access

m1

π2

...

mr−1

πr

[Ben–Sasson-Chiesa-Spooner’16,
Reingold-Rothblum2’16]
IOPs generalize PCPs and IPs

public-coin IOP → non-interactive proof
in the RO model (Fiat-Shamir paradigm)

with communication complexity:
• linear in query complexity of the IOP
• logarithmic in oracle proof length
|π1|+ ...+ |πr|

2This slide is kindly provided by Sarah Bordage.
2 / 18



IOP Model (Interactive Oracle Proofs)2

Prover Verifierm0

π1
oracle access

m1

π2

...

mr−1

πr

[Ben–Sasson-Chiesa-Spooner’16,
Reingold-Rothblum2’16]
IOPs generalize PCPs and IPs

public-coin IOP → non-interactive proof
in the RO model (Fiat-Shamir paradigm)

with communication complexity:
• linear in query complexity of the IOP
• logarithmic in oracle proof length
|π1|+ ...+ |πr|

2This slide is kindly provided by Sarah Bordage.
2 / 18



Proximity test to RS codes
Univariate low-degree testing



FRI: Prover-efficient RS IOPP (IOP of Proximity)3

[Ben–Sasson-Bentov-Horesh-Riabzev’18]

Reed-Solomon Proximity Testing

Input code: RS[P, d] = {f : P → F | f coincides with polynomial of degree < d}
Input oracle: f : P → F
Completeness: If f ∈ RS[P, d], then ∃P Pr[V accepts P] = 1
Soundness: If ∆(f,RS[P, d]) > δ, then ∀P̃ Pr[V accepts P̃] < err(δ)

∆ relative Hamming distance

3This slide is kindly provided by Sarah Bordage.
3 / 18



Halving the size of the problem by folding

On a finite field F with 2 - |F|, take ω ∈ F× of order 2k and P := 〈ω〉.

How to check if f : P → F satisfies deg f < d?

Write f(x) = f0(x2) + x · f1(x2), where f0, f1 : P ′︸︷︷︸
=〈ω2〉

→ F with deg f0,deg f1 ≤ deg f/2.

Check if deg f0 < d/2 and deg f1 < d/2. → 2 tests!
Make 1 test: For z ∈ F, define Fold [f, z] : P ′ → F by Fold [f, z] = f0 + zf1.

May fail: take f(x) = 1 + x2 + x(x2 + 2). Then Fold [f,−1] = 1 + x−(x+ 2) = −1.
deg Fold [f,−1] < 1 but deg f ≥ 2

Ë Completeness: Fold [·, z] (RS[P, d]) ⊆ RS[P ′, d/2].
Ë Locality: compute a value of Fold [f, z] on P ′ with only 2 queries to f .

Fold
[
f,±√y

]
(y) = f0±

√
yf1 = f(±√y)

Ë Distance preservation: if ∆(f,RS[P, d]) > δ, then ∆(Fold [f, z] ,RS[P ′, d/2]) > δ′ (w.h.p.).

→ Proximity to RS[P, d] reduced to proximity to RS[P ′, d/2] (probabilistically).

4 / 18



Halving the size of the problem by folding

On a finite field F with 2 - |F|, take ω ∈ F× of order 2k and P := 〈ω〉.

How to check if f : P → F satisfies deg f < d?

Write f(x) = f0(x2) + x · f1(x2), where f0, f1 : P ′︸︷︷︸
=〈ω2〉

→ F with deg f0,deg f1 ≤ deg f/2.

Check if deg f0 < d/2 and deg f1 < d/2. → 2 tests!

Make 1 test: For z ∈ F, define Fold [f, z] : P ′ → F by Fold [f, z] = f0 + zf1.

May fail: take f(x) = 1 + x2 + x(x2 + 2). Then Fold [f,−1] = 1 + x−(x+ 2) = −1.
deg Fold [f,−1] < 1 but deg f ≥ 2

Ë Completeness: Fold [·, z] (RS[P, d]) ⊆ RS[P ′, d/2].
Ë Locality: compute a value of Fold [f, z] on P ′ with only 2 queries to f .

Fold
[
f,±√y

]
(y) = f0±

√
yf1 = f(±√y)

Ë Distance preservation: if ∆(f,RS[P, d]) > δ, then ∆(Fold [f, z] ,RS[P ′, d/2]) > δ′ (w.h.p.).

→ Proximity to RS[P, d] reduced to proximity to RS[P ′, d/2] (probabilistically).

4 / 18



Halving the size of the problem by folding

On a finite field F with 2 - |F|, take ω ∈ F× of order 2k and P := 〈ω〉.

How to check if f : P → F satisfies deg f < d?

Write f(x) = f0(x2) + x · f1(x2), where f0, f1 : P ′︸︷︷︸
=〈ω2〉

→ F with deg f0,deg f1 ≤ deg f/2.

Check if deg f0 < d/2 and deg f1 < d/2. → 2 tests!
Make 1 test: For z ∈ F, define Fold [f, z] : P ′ → F by Fold [f, z] = f0 + zf1.

May fail: take f(x) = 1 + x2 + x(x2 + 2). Then Fold [f,−1] = 1 + x−(x+ 2) = −1.
deg Fold [f,−1] < 1 but deg f ≥ 2

Ë Completeness: Fold [·, z] (RS[P, d]) ⊆ RS[P ′, d/2].
Ë Locality: compute a value of Fold [f, z] on P ′ with only 2 queries to f .

Fold
[
f,±√y

]
(y) = f0±

√
yf1 = f(±√y)

Ë Distance preservation: if ∆(f,RS[P, d]) > δ, then ∆(Fold [f, z] ,RS[P ′, d/2]) > δ′ (w.h.p.).

→ Proximity to RS[P, d] reduced to proximity to RS[P ′, d/2] (probabilistically).

4 / 18



Halving the size of the problem by folding

On a finite field F with 2 - |F|, take ω ∈ F× of order 2k and P := 〈ω〉.

How to check if f : P → F satisfies deg f < d?

Write f(x) = f0(x2) + x · f1(x2), where f0, f1 : P ′︸︷︷︸
=〈ω2〉

→ F with deg f0,deg f1 ≤ deg f/2.

Check if deg f0 < d/2 and deg f1 < d/2. → 2 tests!
Make 1 test: For z ∈ F, define Fold [f, z] : P ′ → F by Fold [f, z] = f0 + zf1.

May fail: take f(x) = 1 + x2 + x(x2 + 2). Then Fold [f,−1] = 1 + x−(x+ 2) = −1.
deg Fold [f,−1] < 1 but deg f ≥ 2

Ë Completeness: Fold [·, z] (RS[P, d]) ⊆ RS[P ′, d/2].
Ë Locality: compute a value of Fold [f, z] on P ′ with only 2 queries to f .

Fold
[
f,±√y

]
(y) = f0±

√
yf1 = f(±√y)

Ë Distance preservation: if ∆(f,RS[P, d]) > δ, then ∆(Fold [f, z] ,RS[P ′, d/2]) > δ′ (w.h.p.).

→ Proximity to RS[P, d] reduced to proximity to RS[P ′, d/2] (probabilistically). 4 / 18



FRI Protocol: Commit Phase4

Prover Verifier

f0

F,P, d

z0

f1
z1

f2

...

zr−1

fr

Honest prover computes:

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
fr

?
∈ RSL(2r), d/2r

4This slide is kindly provided by Sarah Bordage. 5 / 18



FRI Protocol: Query Phase5

Verifier

f0

f1

f2

...

fr

Check consistency
at random locations

f1(s1) ?= Fold [f0, z0] (s1)

f2(s2) ?= Fold [f1, z1] (s2)

...

fr(sr)
?= Fold [fr−1, zr−1] (sr)

Final test: fr
?
∈ RSr

5This slide is kindly provided by Sarah Bordage. 6 / 18



Soundness of the FRI Protocol 6

Completeness: If f ∈ RS[P, d], then ∃P Pr[V accepts P] = 1.
Soundness: If ∆(f,RS[P, d]) > δ, then ∀P̃ Pr[V accepts P̃] < err(δ).

FRI Protocol [Ben–Sasson-Bentov-Horesh-Riabzev’18]

Ë linear prover time
Ë linear (interactive) proof length

Ë logarithmic query complexity
Ë logarithmic verifier time

Theorem
Assuming δ < 1−√ρ (ρ is code rate), err(δ) < errcommit + (errquery)α

< negl(κ) + (1− δ)α
security parameter

To get error err(δ) = negl(κ), repeat query phase enough time (α times).

Building-block of succinct ZK proofs
with no trusted setup, PQ security, succinct verification (see e.g. “ZK-STARKs”).

6This content is kindly provided by Sarah Bordage.
7 / 18



AG codes



Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.

Divisors. A (rational) divisor D on C is a formal sum of F-points D =
∑
nPP .

Its degree is degD :=
∑
nP and support is Supp(D) := {P ∈ C | np 6= 0}.

D ≤ D′ if nP ≤ n′P for every P
A function f on C defines a principal divisor (f) :=

∑
P vP (f)︸ ︷︷ ︸

valuation

P .

Riemann-Roch space of D. LC(D) = {f ∈ F(C) | (f) ≥ −D} ∪ {0}.
AG codes
Given P ⊂ C(F) of size n := |P| and a divisor D on C s.t. Supp(D) ∩ P = ∅, the AG code
C = C(C,P, D) is defined as the image by ev : LC(D)→ Fn.

Example: C = C(P1,P, dP∞), with P∞ = [0 : 1], is Hamming-eq. to RS[P, d+ 1].

We always choose D so that ev is injective: Fn! FP and

C(C,P, D) = {f : P → F | f coincides with a fct in LC(D)} .

8 / 18



Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.

Divisors. A (rational) divisor D on C is a formal sum of F-points D =
∑
nPP .

Its degree is degD :=
∑
nP and support is Supp(D) := {P ∈ C | np 6= 0}.

D ≤ D′ if nP ≤ n′P for every P ⇒ LC(D) ⊂ LC(D′).
A function f on C defines a principal divisor (f) :=

∑
P vP (f)︸ ︷︷ ︸

valuation

P .

Riemann-Roch space of D. LC(D) = {f ∈ F(C) | (f) ≥ −D} ∪ {0}.

AG codes
Given P ⊂ C(F) of size n := |P| and a divisor D on C s.t. Supp(D) ∩ P = ∅, the AG code
C = C(C,P, D) is defined as the image by ev : LC(D)→ Fn.

Example: C = C(P1,P, dP∞), with P∞ = [0 : 1], is Hamming-eq. to RS[P, d+ 1].

We always choose D so that ev is injective: Fn! FP and

C(C,P, D) = {f : P → F | f coincides with a fct in LC(D)} .

8 / 18



Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.

Divisors. A (rational) divisor D on C is a formal sum of F-points D =
∑
nPP .

Its degree is degD :=
∑
nP and support is Supp(D) := {P ∈ C | np 6= 0}.

D ≤ D′ if nP ≤ n′P for every P ⇒ LC(D) ⊂ LC(D′).
A function f on C defines a principal divisor (f) :=

∑
P vP (f)︸ ︷︷ ︸

valuation

P .

Riemann-Roch space of D. LC(D) = {f ∈ F(C) | (f) ≥ −D} ∪ {0}.
AG codes
Given P ⊂ C(F) of size n := |P| and a divisor D on C s.t. Supp(D) ∩ P = ∅, the AG code
C = C(C,P, D) is defined as the image by ev : LC(D)→ Fn.

Example: C = C(P1,P, dP∞), with P∞ = [0 : 1], is Hamming-eq. to RS[P, d+ 1].

We always choose D so that ev is injective: Fn! FP and

C(C,P, D) = {f : P → F | f coincides with a fct in LC(D)} .
8 / 18



Group action and Kani’s splitting of Riemann-Roch spaces

Let C be a curve over F and let Γ = 〈γ〉 ' Z/mZ a group of automorphisms of C s.t
gcd(m, |F|) = 1. Take ζ ∈ F a primitive mth root of unity.

• Γ acts on the functions on C: γ · f = f ◦ γ for any fct f on C.
• There exists a function µ on C s.t. γ · µ = ζµ [Kani’86].

Set the projection map π : C → C′ := C/Γ.

For any Γ-invariant divisor D on C, the action of Γ on LC(D) gives

LC(D) =
m−1⊕
j=0

LC(D)j where LC(D)j := {g ∈ LC(D) | γ · g = ζjg}.

[Kani’86] LC(D)j ' µjπ∗ (LC′ (Ej)) where Ej :=
⌊ 1
mπ∗ (D + j(µ))

⌋7 is a divisor on C′.

 For every f ∈ LC(D), there exist m fcts fj ∈ LC′(Ej) s.t. f =
m−1∑
j=0

µjfj ◦ π.

7Notation:
⌊

1
n

D
⌋

:=
∑⌊

nP
n

⌋
P , for a divisor D =

∑
nP P and integer n > 0.

9 / 18



Group action and Kani’s splitting of Riemann-Roch spaces

Let C be a curve over F and let Γ = 〈γ〉 ' Z/mZ a group of automorphisms of C s.t
gcd(m, |F|) = 1. Take ζ ∈ F a primitive mth root of unity.

• Γ acts on the functions on C: γ · f = f ◦ γ for any fct f on C.
• There exists a function µ on C s.t. γ · µ = ζµ [Kani’86].

Set the projection map π : C → C′ := C/Γ.

For any Γ-invariant divisor D on C, the action of Γ on LC(D) gives

LC(D) =
m−1⊕
j=0

LC(D)j where LC(D)j := {g ∈ LC(D) | γ · g = ζjg}.

[Kani’86] LC(D)j ' µjπ∗ (LC′ (Ej)) where Ej :=
⌊ 1
mπ∗ (D + j(µ))

⌋7 is a divisor on C′.

 For every f ∈ LC(D), there exist m fcts fj ∈ LC′(Ej) s.t. f =
m−1∑
j=0

µjfj ◦ π.

7Notation:
⌊

1
n

D
⌋

:=
∑⌊

nP
n

⌋
P , for a divisor D =

∑
nP P and integer n > 0.

9 / 18



Kani’s result on C = P1

[Kani’86]: LC(D) =
m−1⊕
j=0

µjπ∗LC′

(⌊
1
m
π∗ (D + j(µ))

⌋)
.

The AG code C = C(P1,P, dP∞), with P∞ = [0 : 1], corresponds to RS[P, d+ 1].

Consider the action on P1 of γ : [X0 : X1] 7→ [X0 : −X1].Then 〈γ〉 = Z/2Z.

Projection map π : P1 → P1 by π[X0 : X1] := [X2
0 : X2

1 ].

Kani’s result with µ = x := X1
X0

(γ · x = −x) yields to ((x) = [1 : 0]− P∞)

LP1(dP∞) = π∗LP1

(⌊
d

2

⌋
P∞

)
+ xπ∗LP1

(⌊
d− 1

2

⌋
P∞

)
,

i.e. any pol. f of degree ≤ d can be written f(x) = f0(x2) + xf1(x2) with
[

deg f0 ≤
⌊
d
2
⌋
,

deg f1 ≤
⌊
d−1

2
⌋
.

FRI: For z ∈ F, define Fold [f, z] = f0 + zf1.

Remark: For odd d,
⌊
d
2
⌋

=
⌊
d−1

2
⌋
, i.e. LP1(dP∞) is split into 2 “copies” of the same space.

10 / 18



Kani’s result on a Kummer curve

[Kani’86]: LC(D) =
m−1⊕
j=0

µjπ∗LC′

(⌊
1
m
π∗ (D + j(µ))

⌋)
.

Assume gcd(N, d) = 1 and gcd(N, |F|) = 1. Take ζ a primitive N th root of unity.

〈γ : (x, y) 7→ (x, ζy)〉 ' Z/NZ ˘

C : yN = f(x)=
d∏
`=1

(x− α`)

π : (x, y)→ (x, yN )

−−
“

P1 ' C′ : y = f(x)

Take D = αP∞ where P∞ is the unique point at ∞ on C. Write P` = (α`, 0).

Any fct f ∈ LC(D) can be written f(x, y) =
N−1∑
j=0

yjfj(x, yN ) (µ = y as γ · y = ζy)

where fj ∈ LP1

(⌊
π∗(D)− j (

∑
P` − dP∞)

N

⌋)
, i.e. fj is a pol. of degree ≤

⌊
α−jd
N

⌋
≤
⌊
α
N

⌋
.

11 / 18



Kani’s result on a Kummer curve

[Kani’86]: LC(D) =
m−1⊕
j=0

µjπ∗LC′

(⌊
1
m
π∗ (D + j(µ))

⌋)
.

Assume gcd(N, d) = 1 and gcd(N, |F|) = 1. Take ζ a primitive N th root of unity.

〈γ : (x, y) 7→ (x, ζy)〉 ' Z/NZ ˘ C : yN = f(x)=
d∏
`=1

(x− α`)
π : (x, y)→ (x, yN )

−−
“

P1 ' C′ : y = f(x)

Take D = αP∞ where P∞ is the unique point at ∞ on C. Write P` = (α`, 0).

Any fct f ∈ LC(D) can be written f(x, y) =
N−1∑
j=0

yjfj(x, yN ) (µ = y as γ · y = ζy)

where fj ∈ LP1

(⌊
π∗(D)− j (

∑
P` − dP∞)

N

⌋)
, i.e. fj is a pol. of degree ≤

⌊
α−jd
N

⌋
≤
⌊
α
N

⌋
.

11 / 18



Kani’s result on a Kummer curve

[Kani’86]: LC(D) =
m−1⊕
j=0

µjπ∗LC′

(⌊
1
m
π∗ (D + j(µ))

⌋)
.

Assume gcd(N, d) = 1 and gcd(N, |F|) = 1. Take ζ a primitive N th root of unity.

〈γ : (x, y) 7→ (x, ζy)〉 ' Z/NZ ˘ C : yN = f(x)=
d∏
`=1

(x− α`)
π : (x, y)→ (x, yN )

−−
“

P1 ' C′ : y = f(x)

Take D = αP∞ where P∞ is the unique point at ∞ on C. Write P` = (α`, 0).

Any fct f ∈ LC(D) can be written f(x, y) =
N−1∑
j=0

yjfj(x, yN ) (µ = y as γ · y = ζy)

where fj ∈ LP1

(⌊
π∗(D)− j (

∑
P` − dP∞)

N

⌋)
, i.e. fj is a pol. of degree ≤

⌊
α−jd
N

⌋
≤
⌊
α
N

⌋
.

11 / 18



Using Kani’s result to fold

Let C be a curve over a field F on which acts Γ ' Z/mZ, with the projection map π : C → C/Γ.

FRI’s idea: proximity to C = C(C,P, D) reduced to proximity to C ′ = C(C/Γ,P ′, D′)

We need: – a Γ-invariant divisor D [Kani’86]=⇒ f∈

LC(D)

=
m−1∑
j=1

µj fj∈

LC/Γ(Ej)

◦ π.

– an evaluation set P = union of Γ-orbits of size |Γ| (Γ acts freely on P).

Take P ′ = π(P) (|P ′| = |P| /m) and D′ is a divisor on C/Γ s.t. LC/Γ(D′) ⊇ LC/Γ(Ej).

For any z ∈ F, define the folding operator Fold [·, z] : FP → FP′ by Fold [f, z] =
m−1∑
j=0

zjfj .

Ë Completeness: Fold [·, z] (C) ⊆ C ′.
Ë Locality: For any P ∈ P ′, compute Fold [f, z] (P ) with m queries to f .

interpolate on the geometric progression
{

(µ(Q), f(Q)) | Q ∈ π−1({P})
}

.
é Distance preservation ∆(f, C) > δ 6⇒ ∆(Fold [f, z] , C ′) > δ′ w.h.p.

12 / 18



Using Kani’s result to fold

Let C be a curve over a field F on which acts Γ ' Z/mZ, with the projection map π : C → C/Γ.

FRI’s idea: proximity to C = C(C,P, D) reduced to proximity to C ′ = C(C/Γ,P ′, D′)

We need: – a Γ-invariant divisor D [Kani’86]=⇒ f∈

LC(D)

=
m−1∑
j=1

µj fj∈

LC/Γ(Ej)

◦ π.

– an evaluation set P = union of Γ-orbits of size |Γ| (Γ acts freely on P).

Take P ′ = π(P) (|P ′| = |P| /m) and D′ is a divisor on C/Γ s.t. LC/Γ(D′) ⊇ LC/Γ(Ej).

For any z ∈ F, define the folding operator Fold [·, z] : FP → FP′ by Fold [f, z] =
m−1∑
j=0

zjfj .

Ë Completeness: Fold [·, z] (C) ⊆ C ′.
Ë Locality: For any P ∈ P ′, compute Fold [f, z] (P ) with m queries to f .

interpolate on the geometric progression
{

(µ(Q), f(Q)) | Q ∈ π−1({P})
}

.
é Distance preservation ∆(f, C) > δ 6⇒ ∆(Fold [f, z] , C ′) > δ′ w.h.p.

12 / 18



Distance preservation by folding (?)

Problem: LC/Γ(Ej) ( LC/Γ(D′)! All the LC/Γ(Ej) are not the same.

We need to know if a function lies in LC/Γ(Ej), not only in LC/Γ(D′).

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ LC/Γ(Ej) iff h, νjh ∈ LC/Γ(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h,deg νh ≤ d)

To avoid C ′ to be too large, we want D′ to be one of the Ej . For simplicity, assume D′ = E0.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

Lemma: νj is a balancing function iff (νj)∞ = D′ − Ej .

Such functions νj may not exist! (Weierstrass gaps)

→ Need to choose carefully D.

13 / 18



Distance preservation by folding (?)

Problem: LC/Γ(Ej) ( LC/Γ(D′)! All the LC/Γ(Ej) are not the same.

We need to know if a function lies in LC/Γ(Ej), not only in LC/Γ(D′).

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ LC/Γ(Ej) iff h, νjh ∈ LC/Γ(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h,deg νh ≤ d)

To avoid C ′ to be too large, we want D′ to be one of the Ej . For simplicity, assume D′ = E0.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

Lemma: νj is a balancing function iff (νj)∞ = D′ − Ej .

Such functions νj may not exist! (Weierstrass gaps)

→ Need to choose carefully D.

13 / 18



Let us fold several times! Back to Kummer curves.

Write N =
∏r−1
i=0 pi and Ni =

∏r−1
j=i pj

Γi := 〈γi〉 ' Z/piZ where γi : (x, y) 7→ (x, ζiy) (ζpi
i = 1)

We want a sequence of divisors (Di) supported by
Γi−fixed points (P` := (α`, 0) and P i∞ (pt at ∞)) that
ensure distance preservation at each step.

Proposition [Bordage, N.]
Taking D0 =

∑
a`P` + bP 0

∞ with N | a`, b and d ≡ −1
mod N guarantees the existence of the balancing
functions.

Z/p0Z

˘ C0 : yN = f(x)=
d∏
`=1

(x− α`)“

π0

Z/p1Z

˘ C1 : y
N
p0 = f(x)

“

π1
...

Z/piZ
˘ Ci : yNi = f(x)
“

πi: (x, y) 7→ (x, ypi)
...

P1 ' Cr : y = f(x)

Proximity test to C0 = C(C0,P0, D0) of length n → membership test to RS
[
π(P0),

⌊
π∗(D0)
N

⌋]
of
[
n
N ,

deg(D0)
N + 1

]
and relative minimum distance 1− degD0

n .

14 / 18



Let us fold several times! Back to Kummer curves.

Write N =
∏r−1
i=0 pi and Ni =

∏r−1
j=i pj

Γi := 〈γi〉 ' Z/piZ where γi : (x, y) 7→ (x, ζiy) (ζpi
i = 1)

We want a sequence of divisors (Di) supported by
Γi−fixed points (P` := (α`, 0) and P i∞ (pt at ∞)) that
ensure distance preservation at each step.

Proposition [Bordage, N.]
Taking D0 =

∑
a`P` + bP 0

∞ with N | a`, b and d ≡ −1
mod N guarantees the existence of the balancing
functions.

Z/p0Z

˘ C0 : yN = f(x)=
d∏
`=1

(x− α`)“

π0

Z/p1Z

˘ C1 : y
N
p0 = f(x)

“

π1
...

Z/piZ
˘ Ci : yNi = f(x)
“

πi: (x, y) 7→ (x, ypi)
...

P1 ' Cr : y = f(x)

Proximity test to C0 = C(C0,P0, D0) of length n → membership test to RS
[
π(P0),

⌊
π∗(D0)
N

⌋]
of
[
n
N ,

deg(D0)
N + 1

]
and relative minimum distance 1− degD0

n .

14 / 18



Let us fold several times! Back to Kummer curves.

Write N =
∏r−1
i=0 pi and Ni =

∏r−1
j=i pj

Γi := 〈γi〉 ' Z/piZ where γi : (x, y) 7→ (x, ζiy) (ζpi
i = 1)

We want a sequence of divisors (Di) supported by
Γi−fixed points (P` := (α`, 0) and P i∞ (pt at ∞)) that
ensure distance preservation at each step.

Proposition [Bordage, N.]
Taking D0 =

∑
a`P` + bP 0

∞ with N | a`, b and d ≡ −1
mod N guarantees the existence of the balancing
functions.

Z/p0Z

˘ C0 : yN = f(x)=
d∏
`=1

(x− α`)“

π0

Z/p1Z

˘ C1 : y
N
p0 = f(x)

“

π1
...

Z/piZ
˘ Ci : yNi = f(x)
“

πi: (x, y) 7→ (x, ypi)
...

P1 ' Cr : y = f(x)

Proximity test to C0 = C(C0,P0, D0) of length n → membership test to RS
[
π(P0),

⌊
π∗(D0)
N

⌋]
of
[
n
N ,

deg(D0)
N + 1

]
and relative minimum distance 1− degD0

n .

14 / 18



Overview of the AG-IOPP8

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

COMMIT Phase

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Theorem [Bordage, N.]
Completeness:

If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

8This slide is kindly provided by Sarah Bordage. 15 / 18



Overview of the AG-IOPP8

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

QUERY Phase

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Theorem [Bordage, N.]
Completeness:

If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

8This slide is kindly provided by Sarah Bordage. 15 / 18



Overview of the AG-IOPP8

Prover Verifier

f0

(F, C0,P0, D0)

z0 ← F2

f1

z1 ← F2

f2

...

zr−1 ← F2

fr

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1]
Final test: fr ∈ Cr

Round consistency tests:
Sample Q0 ∈ P0,
Define query path (Q1, . . . , Qr) s.t. Qi+1 = πi(Qi).

f1(Q1) ?= Fold [f0, z0] (Q1)

f2(Q2) ?= Fold [f1, z1] (Q2)

...

fr(Qr)
?= Fold [fr−1, zr−1] (Qr)

Final test: fr
?
∈ C(Cr,Pr, Dr)

Theorem [Bordage, N.]
Completeness:

If f0 ∈ C0, V accepts with proba 1.

Soundness: (relies on [BKS18] and [BGKS19])
If f0 is δ-far from C0, V accepts with proba
err(δ) < errcommit + (errquery(δ))α

α : repetition parameter

8This slide is kindly provided by Sarah Bordage. 15 / 18



Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if G = G0 B G1 B · · · B Gr = 1
composition series

with Γi := Gi/Gi+1 ' Z/piZ.

1. Assume G ∈ Aut(C0) is a large solvable group acting freely on P0,
→ Sequence of curves (Ci) s.t. Ci+1 := Ci/Γi

→ Sequence of evaluation points (Pi) s.t. Pi+1 = πi(Pi)  |Pi+1| = |Pi| /pi
2. There exists a “nice” sequence of divisors (Di) that ensure distance preservation at each

step.

→ The AG code C0 = C(C0,P0, D0) is said to be foldable.

→ Sequence of AG codes Ci = C(Ci,Pi, Di) with length and dimension ↘

→ Proximity test to C0 reduced to membership test to Cr

16 / 18



Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if G = G0 B G1 B · · · B Gr = 1
composition series

with Γi := Gi/Gi+1 ' Z/piZ.

1. Assume G ∈ Aut(C0) is a large solvable group acting freely on P0,
→ Sequence of curves (Ci) s.t. Ci+1 := Ci/Γi

→ Sequence of evaluation points (Pi) s.t. Pi+1 = πi(Pi)  |Pi+1| = |Pi| /pi
2. There exists a “nice” sequence of divisors (Di) that ensure distance preservation at each

step.

→ The AG code C0 = C(C0,P0, D0) is said to be foldable.

→ Sequence of AG codes Ci = C(Ci,Pi, Di) with length and dimension ↘

→ Proximity test to C0 reduced to membership test to Cr

16 / 18



Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if G = G0 B G1 B · · · B Gr = 1
composition series

with Γi := Gi/Gi+1 ' Z/piZ.

1. Assume G ∈ Aut(C0) is a large solvable group acting freely on P0,
→ Sequence of curves (Ci) s.t. Ci+1 := Ci/Γi

→ Sequence of evaluation points (Pi) s.t. Pi+1 = πi(Pi)  |Pi+1| = |Pi| /pi
2. There exists a “nice” sequence of divisors (Di) that ensure distance preservation at each

step.

→ The AG code C0 = C(C0,P0, D0) is said to be foldable.

→ Sequence of AG codes Ci = C(Ci,Pi, Di) with length and dimension ↘

→ Proximity test to C0 reduced to membership test to Cr
16 / 18



Main properties

Assume the code C(C0,P0, D0) of length n is foldable thanks to the action of G on C0.

Set |G| := N .
N > nε, ε ∈ (0, 1) N > n/ logn

Proof length < n < n

Round complexity < logn < logn
C0/G ' P1 and Cr = RS

Query complexity O(n1−ε) < α · pmax · logn
Prover complexity Õ(n) O(n)
Verifier complexity O(n1−ε) O(logn)

(repetition param α, pmax := max pi)

Recall final test “fr
?
∈ Cr” of length n/N (code Cr constant in FRI).

 One needs G to be large enough for good complexities.

However, if Cr is a RS code, membership test to Cr might be substituted by FRI.
17 / 18



Remarks and open questions

Number of rounds
• as many as needed in FRI,
• limited by the size of G unless Cr ' P1 here.

Soundness: Improved in FRI using DEEP technique and Proximity gaps.

What about with AG-codes?

Other foldable codes? Good candidates from asymptotically good towers of curves

 “nice” sequence of divisors?

Thank you for your attention!

18 / 18



Distance preservation by folding (?)

Problem: all the LC/Γ(Ej) are not the same.

Define Fold [f, z] =
m−1∑
j=0

zjfj . We want to prove that ∆(f, C) > δ ⇒ ∆(Fold [f, z] , C ′) > δ′

with high probability on z.

Strategy (by converse): Assume ∆(Fold [f, z] , C ′) ≤ δ′ and exhibit f̃ ∈ C s.t. ∆(f, f̃) ≤ δ.

Proposition [Ben-Sasson-Kopparty-Saraf’18]
Let V ⊂ Fn be a F-vector space. Let u0, u1, . . . , um−1 ∈ Fn.

If ∆(
∑
ziui, V ) < δ′ w.h.p. on z, then for every i, ∆(ui, V ) < δ.

If ∆(Fold [f, z] , C ′) < δ′ w.h.p. on z, then ∃ f̃j ∈ C ′ = LC/Γ(D′) s.t. ∆(fj , f̃j) < δ.

Set f̃ =
∑
µj f̃j ◦ π. Then ∆(f, f̃) < δ but we cannot ensure f̃ /∈ C = LC(D)!

If deg f ≤ 4, then for f(x) = f0(x2) + xf1(x2), deg f0 ≤ 2 and deg f1 ≤ 1.

But if deg f̃0, f̃1 ≤ 2, setting f̃(x) = f̃0(x2) + xf̃1(x2), we just have deg f̃ ≤ 5.

We need f̃j ∈ LC/Γ(Ej) ( LC/Γ(D′)!

18 / 18



Distance preservation by folding (?)

Problem: all the LC/Γ(Ej) are not the same.

Define Fold [f, z] =
m−1∑
j=0

zjfj . We want to prove that ∆(f, C) > δ ⇒ ∆(Fold [f, z] , C ′) > δ′

with high probability on z.

Strategy (by converse): Assume ∆(Fold [f, z] , C ′) ≤ δ′ and exhibit f̃ ∈ C s.t. ∆(f, f̃) ≤ δ.
Proposition [Ben-Sasson-Kopparty-Saraf’18]
Let V ⊂ Fn be a F-vector space. Let u0, u1, . . . , um−1 ∈ Fn.

If ∆(
∑
ziui, V ) < δ′ w.h.p. on z, then for every i, ∆(ui, V ) < δ.

If ∆(Fold [f, z] , C ′) < δ′ w.h.p. on z, then ∃ f̃j ∈ C ′ = LC/Γ(D′) s.t. ∆(fj , f̃j) < δ.

Set f̃ =
∑
µj f̃j ◦ π. Then ∆(f, f̃) < δ but we cannot ensure f̃ /∈ C = LC(D)!

If deg f ≤ 4, then for f(x) = f0(x2) + xf1(x2), deg f0 ≤ 2 and deg f1 ≤ 1.

But if deg f̃0, f̃1 ≤ 2, setting f̃(x) = f̃0(x2) + xf̃1(x2), we just have deg f̃ ≤ 5.

We need f̃j ∈ LC/Γ(Ej) ( LC/Γ(D′)! 18 / 18



Fixing the folding operator to ensure distance preservation

We need f̃j ∈ LC/Γ(Ej) ( LC/Γ(D′)!

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ LC/Γ(Ej) iff h, νjh ∈ LC/Γ(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h,deg νh ≤ d)

To avoid C ′ to be too large, we want D′ to be one of the Ej . For simplicity, assume D′ = E0.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

Lemma: νj is a balancing function iff (νj)∞ = D′ − Ej .

Such functions νj may not exist! (Weierstrass gaps)

→ Need to choose carefully D.

18 / 18



Fixing the folding operator to ensure distance preservation

We need f̃j ∈ LC/Γ(Ej) ( LC/Γ(D′)!

Define balancing functions νj ∈ F(C/Γ) s.t. h ∈ LC/Γ(Ej) iff h, νjh ∈ LC/Γ(D′).

(on P1: if deg ν = 1, then deg h ≤ d− 1 iff deg h,deg νh ≤ d)

To avoid C ′ to be too large, we want D′ to be one of the Ej . For simplicity, assume D′ = E0.

(Final attempt) For any (z1, z2) ∈ F2, define Fold [f, (z1, z2)] : P ′ → F s.t.

Fold [f, (z1, z2)] =
m−1∑
j=0

zj1fj +
m−1∑
j=1

zj2νjfj .

Lemma: νj is a balancing function iff (νj)∞ = D′ − Ej .

Such functions νj may not exist! (Weierstrass gaps)

→ Need to choose carefully D.

18 / 18


	Proximity test to RS codes   Univariate low-degree testing
	AG codes

