Interactive proofs of Proximity to Algebraic Geometry codes

Sarah Bordage Jade Nardi
January 12, 2021
https://eccc.weizmann.ac.il/report/2020/165/

LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria

https://eccc.weizmann.ac.il/report/2020/165/

Motivation: Verifiable Computing!

Please, run program
F on input x for me.

| want to quickly check
if your result is correct.

Weak Verifier
(eg. a server) (eg. a client)

Powerful Prover

IMost of this slide is kindly provided by Sarah Bordage.
1/18

Motivation: Verifiable Computing!

Please, run program
F on input x for me.

| want to quickly check
if your result is correct.

Powerful Prover Weak Verifier How to ensure
(eg. a server) (eg. a client) P cannot cheat?
outputs result y and L checks validity of = Fast verification?

proof of correctness 7 for statement “y = F'(x)" Short proofs?

Applications: cloud computing, cryptocurrencies, blockchains

IMost of this slide is kindly provided by Sarah Bordage.
1/18

Motivation: Verifiable Computing!

Please, run program
F on input x for me.

| want to quickly check
if your result is correct.

Powerful Prover Weak Verifier How to ensure
(eg. a server) (eg. a client) P cannot cheat?
outputs result y and L checks validity of = Fast verification?

proof of correctness 7 for statement “y = F'(x)" Short proofs?

1
1
! Applications: cloud computing, cryptocurrencies, blockchains

Arithmetization

i Prover produces a word

1
t e ¢ € C if the statement “y = F'(x)" holds,
Proximity to

e ¢ which is very far from C' otherwise.

a code C

IMost of this slide is kindly provided by Sarah Bordage.
1/18

PCP model (Probabilistically Checkable Proofs) 2

[}3

Prover Verifier

— 7 ke

oracle access

2This slide is kindly provided by Sarah Bordage.
2/18

IOP Model (Interactive Oracle Proofs)?

~’§ [Ben—Sasson-Chiesa-Spooner'16,
' Reingold-Rothblum?'16]
Prover mo Verifier IOPs generalize PCPs and IPs

oracle access

public-coin IOP — non-interactive proof

— T f------ >
S—

o k 777777 N in the RO model (Fiat-Shamir paradigm)

with communication complexity:

e linear in query complexity of the |IOP
e |ogarithmic in oracle proof length
|7l'1| + + |7Tr|

— T, f----- >

2This slide is kindly provided by Sarah Bordage.
2/18

Proximity test to RS codes
Univariate low-degree testing

FRI: Prover-efficient RS IOPP (IOP of Proximity)?

[Ben—Sasson-Bentov-Horesh-Riabzev'18]

Reed-Solomon Proximity Testing

Input code: RS[P,d] ={f :P — F | f coincides with polynomial of degree < d}
Input oracle: f:P—F

Completeness: If f € RS[P,d], then 3P Pr[V accepts P] =1

Soundness: If A(f,RS[P,d]) > 4, then YP Pr[V accepts P] < err(§)

A relative Hamming distance

3This slide is kindly provided by Sarah Bordage.
3/18

Halving the size of the problem by folding

On a finite field F with 2 { |F|, take w € F* of order 2% and P := (w).

How to check if f : P — F satisfies deg f < d?

4/18

Halving the size of the problem by folding

On a finite field F with 2 { |F|, take w € F* of order 2% and P := (w).

How to check if f : P — F satisfies deg f < d?

Write f(x) = fo(2?) + - f1(2?), where fo, f1 : P’ — F with deg f;,deg /1 < deg f/2.

=(w?)

Check if deg fo < d/2 and deg f1 < d/2. — 2 tests!

4/18

Halving the size of the problem by folding

On a finite field F with 2 { |F|, take w € F* of order 2% and P := (w).
How to check if f : P — F satisfies deg f < d?
Write f(x) = fo(2?) + x - f1(2?), where fo, f1 : \P,/./ — F with deg [y, deg /1 < deg f/2.
=(w?)
Check if deg fo < d/2 and deg f1 < d/2. — 2 tests!
Make 1 test: For z € I, define Fold [f, 2] : P’ — F by Fold [f, 2] = fo + 2 /1.

May fail: take f(z) = 1 +2® + x(2* +2). Then Fold [f,-1] =1 +2—(2 +2) = —1.
degFold [f,—1] < 1 but deg f > 2

4/18

Halving the size of the problem by folding

On a finite field F with 2 { |F|, take w € F* of order 2% and P := (w).

How to check if f : P — F satisfies deg f < d?
Write f(x) = fo(2?) + - f1(2?), where fo, f1 : P’ — F with deg f;,deg /1 < deg f/2.

=(w?)
Check if deg fo < d/2 and deg f1 < d/2. — 2 tests!
Make 1 test: For z € IF, define Fold [f, z] : P! — T by Fold [f,z] = fo + z /1.
May fail: take f(z) =1 + 2% + z(2? +2). Then Fold [f,—1] =14+ z—(z + 2) = —1.
degFold [f,—1] < 1 but deg f > 2

« Completeness: Fold [, z] (RS[P, d]) C RS[P’,d/2].
v Locality: compute a value of Fold [f, z] on P’ with only 2 queries to f.

Fold [, /7] (y) = fo= S = f(E\/3)
« Distance preservation: if A(f,RS[P,d]) > ¢, then A(Fold [f, z],RS[P’,d/2]) > ¢’ (w.h.p.).

— Proximity to RS[P, d] reduced to proximity to RS[P’, d/2] (probabilistically). 4/18

FRI Protocol: Commit Phase*

| fo |
v > ~
/ Ty
ﬁ é i Honest prover computes:

Prover % Verifier
— fi k---+ f1 = Fold([fo, 2]
21

******* > f2 = Fold [f1, 1]

********* > fr = Fold [fr—h ZT—].]

4This slide is kindly provided by Sarah Bordage. 5/18

FRI Protocol: Query Phase®

| fo |
v ~ ~
e ’\g Check consistency
o at random locations
-TR
e /Verifier
e o
, / ?
I A f(s1) £ Fold [fo, 2] (51)
7/ /
7 /

/ fa(s2) Z Fold [fy, 21] (53)

fr(*sr) ; Fold [.fr—lvvzr—l} (ér)
Final test: f. € RS,

5This slide is kindly provided by Sarah Bordage. 6/18

Soundness of the FRI Protocol °

Completeness: If f € RS[P,d], then 3P Pr[V accepts P] = 1.
Soundness: If A(f,RS[P,d]) > 4, then VP Pr[V accepts P] < err(d).

FRI Protocol [Ben—Sasson-Bentov-Horesh-Riabzev'18]

« linear prover time ' logarithmic query complexity
« linear (interactive) proof length v logarithmic verifier time
Theorem
Assuming 6 <1 —./p (p is code rate), L @ w3 (@ Feery)”

< negl(k) + (1 —)"
security parameter

To get error err(d) = negl(k), repeat query phase enough time (o times).

Building-block of succinct ZK proofs
with no trusted setup, PQ security, succinct verification (see e.g. “ZK-STARKs").

5This content is kindly provided by Sarah Bordage. 7/18

AG codes

Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.
Divisors. A (rational) divisor D on C is a formal sum of F-points D = > npP.

Its degree is deg D := > np and support is Supp(D) := {P € C | n,, # 0}.
D < D'if np <n/p for every P
A function f on C defines a principal divisor (f) := >, vp(f) P.

——

valuation

8/18

Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.
Divisors. A (rational) divisor D on C is a formal sum of F-points D = > npP.

Its degree is deg D := > np and support is Supp(D) := {P € C | n,, # 0}.
D < D'if np <nlp for every P = L¢(D) C Le(D').
A function f on C defines a principal divisor (f) := >, vp(f) P.

——

valuation

Riemann-Roch space of D. L¢(D) ={f € F(C) | (f) > —D}uU{0}.

8/18

Algebraic Geometry (AG) codes

Let C be an algebraic curve defined over a finite field F.
Divisors. A (rational) divisor D on C is a formal sum of F-points D = > npP.

Its degree is deg D := > np and support is Supp(D) := {P € C | n,, # 0}.
D < D'if np <nlp for every P = L¢(D) C Le(D').
A function f on C defines a principal divisor (f) := >, vp(f) P.
——
valuation
Riemann-Roch space of D. L¢(D) ={f € F(C) | (f) > —D}uU{0}.
AG codes
Given P C C(F) of size n := |P| and a divisor D on C s.t. Supp(D) NP = (), the AG code
C = C(C,P,D) is defined as the image by ev: L¢(D) — F™.
Example: C' = C(P*, P,dPx), with Ps, = [0 : 1], is Hamming-eq. to RS[P, d + 1].
We always choose D so that ev is injective: F” evs F? and

C(C,P,D)={f:P —F| f coincides with a fct in L¢(D)}. 5 /16

Group action and Kani’s splitting of Riemann-Roch spaces

Let C be a curve over F and let I' = () ~ Z/mZ a group of automorphisms of C s.t
ged(m, |F|) = 1. Take ¢ € F a primitive m*” root of unity.

e [acts on the functions on C: - f = f o~ for any fct f on C.
e There exists a function ;. on C s.t. v - = (p [Kani'86].

Set the projection map 7 :C — C" :=C/T.

7 Notation: L%DJ = Z VTFJ P, for a divisor D = Z npP and integer n > 0. 018

Group action and Kani’s splitting of Riemann-Roch spaces

Let C be a curve over F and let I' = () ~ Z/mZ a group of automorphisms of C s.t
ged(m, |F|) = 1. Take ¢ € F a primitive m*” root of unity.

e [acts on the functions on C: - f = f o~ for any fct f on C.
e There exists a function ;. on C s.t. v - = (p [Kani'86].

Set the projection map 7 :C — C" :=C/T.

For any I'-invariant divisor D on C, the action of I on L¢(D) gives

m—1
Le(D) = @) Le(D); where Le(D); :={g € Le(D) | v-g = (g}
j=0
[Kani'86] L¢(D); ~ pim* () where 1)) |7 is a divisor on C'.
m—1
~+ For every f € L¢(D), there exist m fcts f; € st. f= Z p f;om.
j=0

7 Notation: L%DJ = Z VTFJ P, for a divisor D = Z npP and integer n > 0. 018

Kani’s result on C = P!

m—1

[Kani'86]: Le(D) = @) /" Le: <H}W (l)+./'(u))J>-

Jj=0
The AG code C' = C(P!, P, dP,,), with P, = [0 : 1], corresponds to RS[P, d + 1].
Consider the action on P! of 7 : [X¢ : Xi1] — [Xo : —X1].Then (v) = Z/2Z.
Projection map 7 : Pt — P! by 7[Xp : X1] := [X? : X?].

Kani’s result with ;1 =z := % (v-x = —x) yields to ((x) =1[1:0] — Px)

tmtare) = (|2] 7o) o (| 252 20,

i.e. any pol. f of degree < d can be written f(x) = fo(2?) + zf;(2?) with [
FRI: For z € IF, define Fold [f, 2] = [y + 2 /1.

Remark: For odd d, [4| = |432], i.e. Lpi(dPx) is split into 2 “copies” of the same space.
10/18

Kani's result on a Kummer curve

m—1

KaniSo]: Le(D) = € L (|5 0+a0]).

Assume ged(V, d) = 1 and ged(NV, |F|) = 1. Take ¢ a primitive N** root of unity.
d

C:yN = f(x)= H(ac —ayp)

=1

11/18

Kani's result on a Kummer curve

m—1

[Kani'86]: Le(D @//J *Ler <r (D+J(/’)>J>

Assume ged(V, d) = 1 and ged(NV, |F|) = 1. Take ¢ a primitive N** root of unity.
d

{(v:(z,y) = (2,(y)) ~Z/NZC C: yN = f(x)= H(ac —ay)
mi (@) = (@y™)] -
C':y=f(x)

11/18

Kani's result on a Kummer curve

m—1

[Kani'86]: Le(D @//J L(/(Ll (D+J(/’)>J>

Assume ged(V, d) = 1 and ged(NV, |F|) = 1. Take ¢ a primitive N** root of unity.

d
(v: (&,y) = (2,Cy)) ~Z/NZC C:y" = f(2)=[[(z — o)
m @)~ @) -
0y = f@)

Take D = aP,, where P is the unique point at co on C. Write Py = (ay,0).
N-1
Any fct f € Le(D) can be written f(z,y) = > _ 7 f(2,y"™) (n=yasy y=_Cy)

J=0

where f; € Lp: ({W*(D) 7‘7(% P = dPoc)J), i.e. f;is a pol. of degree < {O‘_TMJ <|&]

11/18

Using Kani’s result to fold

Let C be a curve over a field F on which acts I' ~ Z/mZ, with the projection map 7 : C — C/T..
proximity to C = C(C, P, D) reduced to proximity to C' = C(C/T",P',D’)

m—1
ni'86]
We need: - a ['-invariant divisor D i S Z w fj om.
— m
LC(D) = Le/r(Ej)
— an evaluation set P = union of I'-orbits of size |I'| (I' acts freely on P).

Take P = 7(P) (|P’| = |P|/m) and D’ is a divisor on C/I" s.t.

12/18

Using Kani’s result to fold

Let C be a curve over a field F on which acts I' ~ Z/mZ, with the projection map 7 : C — C/T..
FRI's idea: proximity to C' = C(C, P, D) reduced to proximity to C' = C(C/T'",’P', D’)

m—1
ni'86]
We need: - a ['-invariant divisor D i S Z w fj om.
— m
LC(D) = Le/r(Ej)
— an evaluation set P = union of I'-orbits of size |I'| (I' acts freely on P).

Take P’ =7(P) (|P’| =|P|/m) and D’ is a divisor on C/T" s.t. Lc,r(D’) O Le/r(Ej).

m—1

For any z € I, define the folding operator Fold [-, z] : FP — F”" by Fold [f, z] = Z 2.
=0

« Completeness: Fold[-, 2] (C) C C".

« Locality: For any P € P’, compute Fold [f, z] (P) with m queries to f.

interpolate on the geometric progression {(/L(Q). Q)| Qer! ({P})}
% Distance preservation A(f,C) > ¢ # A(Fold[f,z],C’) > ¢ w.h.p.
12/18

Distance preservation by folding (?)

Problem: L¢/r(E;) C Leyr(D')! All the Le/r(Ej) are not the same.

We need to know if a function lies in L¢,p(Ej), not only in Le,p(D").
Define balancing functions v; € F(C/T') s.t. h € L¢/r(E;) iff h, vjh € Le,p(D').
(on PL: if degrv = 1, then degh < d — 1 iff degh,degvh < d)

To avoid C’ to be too large, we want D’ to be one of the E;. For simplicity, assume D’ = Ej.

13/18

Distance preservation by folding (?)

Problem: L¢/r(E;) C Leyr(D')! All the Le/r(Ej) are not the same.
We need to know if a function lies in L¢,p(Ej), not only in Le,p(D").
Define balancing functions v; € F(C/T') s.t. h € L¢/r(E;) iff h, vjh € Le,p(D').
(on PL: if degrv = 1, then degh < d — 1 iff degh,degvh < d)
To avoid C’ to be too large, we want D’ to be one of the E;. For simplicity, assume D’ = Ej.

(Final attempt) For any (21, 22) € F?, define Fold [f, (21, 22)] : P — F s.t.

m—1 m—1
Fold [f7 (21,22)] = Z Z{fj + Z Z%l/]fj'
J=0 J=1

Lemma: v; is a balancing function iff (v;). = D' — Ej.
Such functions v; may not exist! (Weierstrass gaps)

— Need to choose carefully D.

13/18

Let us fold several times! Back to Kummer curves.

Write N = [[/Zy p; and N; = H:;zl D ; 2
T, = <A/[> N Z/p[Z where o (.Z’,y) . (JC,Q:U) (G;, =1) %/[)()%O Co : ,//'\ = f(z)= H(l' — CW)
1m0 =1

ZImLC Cy :yw = f(z)

$m1

Z|piZ C C; = yNi = f(x)
i (2, y) = (2, yP7)

Cry:f(x)

14/18

Let us fold several times! Back to Kummer curves.

Write N = [[/Zy p; and N; = H:;Zl Dj) d
Ty i= (y:) ~ Z/piZ where 5; : (z,y) = (z,Gy) (% =1) | Z/PZC Co:y" = f(a)=]| [(z — o)
iﬂ'o {=1

We want a sequence of divisors (D;) supported by Z/mZC Cy : y% = f(x)

I';—fixed points (P, := (ay,0) and P% (pt at c0)) that s

ensure distance preservation at each step. :

Proposition [Bordage, N.] Z/piZC Ci: yNi = f(x)

Taking Do = >_ a¢ Py + bPY with and imit (z,y) = (2, yP7)
guarantees the existence of the balancing :

functions. Cr iy = flz)

14/18

Let us fold several times! Back to Kummer curves.

Write N = []'_, " pi and N; = 1= D, d
Ty i= (y:) ~ Z/piZ where 5; : (z,y) = (z,Gy) (% =1) | Z/PZC Co:y" = f(a)=]| [(z — o)
iﬂ'o {=1

We want a sequence of divisors (D;) supported by Z/mZC Cy : y% = f(x)

I';—fixed points (P, := (ay,0) and P% (pt at c0)) that s

ensure distance preservation at each step. :

Proposition [Bordage, N.] Z/piZC Ci: yNi = f(x)

Taking Do = >_ a¢ Py + bPY with and imit (z,y) = (2, yP7)
guarantees the existence of the balancing :

functions. Cr iy = flz)

Proximity test to Cy = C(Co, Py, Do) of length n — membership test to RS [W(Pg), {@H

of | %, deg(DO) + 1| and relative minimum distance 1 — 9820

N n

14/18

Overview of the AG-10PP?

| — - | COMMIT Phase
ﬁl_(F,CO,PO,DO) “@

Prover 20 « 2 Verifier
— fi k---+ f1 = Fold [fo, o]
Z1 F?

é ——————— > f2 = Fold [f1, 1]

4> ********* > fr = Fold [fr—h Zr—1

8This slide is kindly provided by Sarah Bordage. 15/18

Overview of the AG-10PP?

QUERY Phase

Round consistency tests:

| fo |
/ T < N
T
(F, C(),P(),Do) A—% Sample QO S P(),
Define query path (Q1,...,Q;) s.t. Qi11 = m(Q;).
Prover 20 « 2 Verifier

— h k=== £1(Q1) < Fold [fo, z0] (@)

" f f------ . £2(Q2) = Fold [f1, 21] (Q2)

?
e I S * Q) £ Fold (1, 2] (Q1)
Final test: f. € C(C,,P;,D,)
8This slide is kindly provided by Sarah Bordage.

15/18

| To |
ﬁ (&

Prover 20 « 2 Verifier

4>| f1 k ___s | Theorem [Bordage, N.]

21 <« F2 Completeness:

(» X If fo € Cy, V accepts with proba 1.

N
Soundness: (relies on [BKS18] and [BGKS19])
If fo is d-far from Cy, V accepts with proba

Zr_1 < F? err(d) < erfcommit + (€rrquery(9))®

4> ,,,,,,,,, N « : repetition parameter

8This slide is kindly provided by Sarah Bordage. 15/18

Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if with T; := G;/Giy1 ~ Z/p; 7.
composition series
1. Assume G € Aut(Cy) is a group acting freely on Py,
— Sequence of curves (C;) s.t. C;11 :=C;/T;
F(] I Fi F’H»l
Q o (x, st U Ti+1 Tr—1
Co Cy e —%C; Cit1 e Cr

16 /18

Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if with T; := G;/Giy1 ~ Z/p; 7.
composition series
1. Assume G € Aut(Cy) is a group acting freely on Py,
— Sequence of curves (C;) s.t. C;11 :=C;/T;
F(] I F,L' F'H»l
Q o (x, st U Ti+1 Tr—1
Co Cy e — C; Cit1 Cr

— Sequence of evaluation points (P;) s.t. Piy1 = mi(Pi) ~ [Pi1| = |Pi| /ps
2. There exists a “nice” sequence of divisors (D;) that ensure distance preservation at each
step.

— The AG code Cy = C(Cy, Py, Do) is said to be foldable.

16 /18

Ingredients to fold several times: intermediary cyclic quotients

A group G is solvable if G = Gy > Gy > -+ > G, = 1 with T'; := G; /G, 11 ~ Z/p; Z.

composition series

1. Assume G € Aut(Cy) is a large solvable group acting freely on Py,

— Sequence of curves (C;) s.t. C;11 :=C;/T;
FO Fl F,L' F'H»l

O %

Y s v Ti41 Tpr—1
Co —»C —» -+ —» C; —» Cip1 s ——» Gy

— Sequence of evaluation points (P;) s.t. Piy1 = mi(Pi) ~ [Pi1| = |Pi| /ps
2. There exists a “nice” sequence of divisors (D;) that ensure distance preservation at each
step.

— The AG code Cy = C(Cy, Py, Do) is said to be foldable.
— Sequence of AG codes C; = C(C;, P;, D;) with length and dimension

— Proximity test to Cy reduced to membership test to C,
16/18

Main properties

Assume the code C'(Co, Py, Do) of length n is foldable thanks to the action of G on Cjy.

Set |G| := N.
N >n e€(0,1) N >n/logn

Proof length <n <n

Round complexity <logn <logn

Co/G ~P! and C, = RS

Query complexity O(n'—*) < O Prmag - logn
Prover complexity O(n) O(n)

Verifier complexity O(n'~9) O(logn)

(repetition param «, Ppas := maxp;)

?
Recall final test “f, € C,.” of length /N (code C,. constant in FRI).
~» One needs G to be large enough for good complexities.

However, if C). is a RS code, membership test to C,. might be substituted by FRI.
17/18

Remarks and open questions

Number of rounds
e as many as needed in FRI,

e limited by the size of G unless C, ~ P! here.

Soundness: Improved in FRI using DEEP technique and Proximity gaps.

What about with AG-codes?

Other foldable codes? Good candidates from asymptotically good towers of curves

~> "nice” sequence of divisors?

Thank you for your attention!

18/18

Distance preservation by folding (?)

Problem: all the L¢/p(E;) are not the same.

m—1
Define Fold [f,2] = > 2/ f;. We want to prove that A(f,C) > 6 = A(Fold([f,z],C") > &'
j=0 with high probability on z.

Strategy (by converse): Assume A(Fold [f,z],C") < ¢ and exhibit f € C s.t. A(f, f) < 6.

18/18

Distance preservation by folding (?)

Problem: all the L¢/p(E;) are not the same.

m—1
Define Fold [f,2] = > 2/ f;. We want to prove that A(f,C) > 6 = A(Fold([f,z],C") > &'
7=0 with high probability on z.

Strategy (by converse): Assume A(Fold [f,z],C") < ¢ and exhibit f € C s.t. A(f, f) < 6.
Proposition [Ben-Sasson-Kopparty-Saraf’18]

Let V C F" be a [F-vector space. Let ug,u1,...,Un_1 € F™.

If A" 2%u;, V) < & w.h.p. on z, then for every i, A(u;, V) < 6.

If A(Fold [f,2],C") < & w.h.p. on z, then 3 f; € C" = L¢/r(D') s.t. A(f;, f;) < 0.
Set f = Z,ujfj om. Then A(f, f) < & but we cannot ensure f ¢ C' = L¢(D)!

If deg f < 4, then for f(z) = fo(z*) + zf1(2®), deg fo < 2 and deg f1 < 1.

But if deg fo, f1 < 2, setting f(x) = fo(2?) + = fi(z?), we just have deg f < 5.

18/18

Fixing the folding operator to ensure distance preservation

We need f/ € Ler(E;) € Ler(D)!
Define balancing functions v; € F(C/T') s.t. h € L¢/r(Ej) iff h, vjh € Le/r(D’).
(on PL: if degrv = 1, then degh < d — 1 iff degh,degvh < d)

To avoid C’ to be too large, we want D’ to be one of the E;. For simplicity, assume [’ = Ej.

18/18

Fixing the folding operator to ensure distance preservation

We need f; € Le/r(E;) € Ler(D')!
Define balancing functions v; € F(C/T') s.t. h € L¢/r(Ej) iff h, vjh € Le/r(D’).

(on PL: if degrv = 1, then degh < d — 1 iff degh,degvh < d)
To avoid C’ to be too large, we want D’ to be one of the E;. For simplicity, assume [’ = Ej.

(Final attempt) For any (21, 22) € F?, define Fold [f, (21, 22)] : P’ — F s.t.

m—1 m—1
Fold [f, (21, 22)] = Z 2 fi+ Z T i
i=0 g=1

Lemma: v; is a balancing function iff (v,)., = D' — Ej.
Such functions »; may not exist! (Weierstrass gaps)

— Need to choose carefully D.

18/18

	Proximity test to RS codes Univariate low-degree testing
	AG codes

