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Motivation: Verifiable Computing

Powerful Prover Weak Verifier

Please, run program
F on input x for me.

I want to quickly check
if your result is correct.

3

3

On input (F , x), output result y
and proof of correctness π

y, π On input (F , x, y, π),
accept i� π is a valid proof
for statement “y = F (x)”

Our wishlist:
Fast verification

Remark: possible for computations with succinct representation, not for generic circuits,
or with pre-processing (setup phase delegated to a trusted party).

No trusted setup
Fast proof generation
Post-quantum security
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A view of the “proofs-space” (by crypto assumptions)

CRHF DLOG KoE/AGM/GGM Group of
(pairing-based) unknown order

2013 Pinocchio [PGHR]

2014 [BCTV]

2016 ZKBoo [GMO16] [BCCGP16] [Groth16]

SCI [BBC+] [GM17]

2017 Ligero [AHIV] Bulletproof [BBB+] (ZK) vSQL [ZGK+]

Hyrax [WTS+]

2018 Stark [BBHR] vRAM [ZGK+]

Aurora [BCR+]

2019 Fractal [COS] Spartan [Setty] Sonic [MBK+] Supersonic [BFS]

Succinct Aurora [BCG+] Halo [BGH] Plonk [GWC]

RedShift [KPV] Marlin [CHM+]

Virgo [ZXZS] Libra [XZZ+]

2020 Virgo++ [ZWZZ] Mirage [KKPS]

Some implementations of succinct non-interactive arguments for general computations
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PCP-based succinct non-interactive arguments



Starting point: PCP characterization of NP

PCP class
L ∈ PCP[r, q] if ∃ e�cient randomized V such that

Completeness: ∀x ∈ L, ∃π,Vπ(x) = 1
Soundness: ∀x /∈ L, ∀π̃,Pr[V π̃(x) = 0] > 1/2

where V reads π at ≤ q locations and tosses ≤ r coins.

NP class
L ∈ NP if ∃ e�cient V such that:

Completeness: ∀x ∈ L,∃w,V(x,w) = 1
Soundness: ∀x /∈ L,∀w̃,V(x,w) = 0

PCP: Probabilistically Checkable Proof

 w π
redundant encoding

V

º PCP Theorem: NP = PCP[logn,O(1)] [BFLS91, FGL+96, ALMSS’98, AS’98,...]

Ë Check NP statements way faster than checking an NP witness!
é PCPs are not succinct proofs! é PCP generation is too expensive!

º 30 years later: practical real-world deployment

3 / 28



Starting point: PCP characterization of NP

PCP class
L ∈ PCP[r, q] if ∃ e�cient randomized V such that

Completeness: ∀x ∈ L, ∃π,Vπ(x) = 1
Soundness: ∀x /∈ L, ∀π̃,Pr[V π̃(x) = 0] > 1/2

where V reads π at ≤ q locations and tosses ≤ r coins.

NP class
L ∈ NP if ∃ e�cient V such that:

Completeness: ∀x ∈ L,∃w,V(x,w) = 1
Soundness: ∀x /∈ L,∀w̃,V(x,w) = 0

PCP: Probabilistically Checkable Proof

 w π
redundant encoding

V

º PCP Theorem: NP = PCP[logn,O(1)] [BFLS91, FGL+96, ALMSS’98, AS’98,...]

Ë Check NP statements way faster than checking an NP witness!
é PCPs are not succinct proofs! é PCP generation is too expensive!

º 30 years later: practical real-world deployment

3 / 28



Interactive Proof Systems and Zero-Knowledge

Allow interaction with unbounded prover P [Goldwasser-Micali-Racko�’85, Babai’85]

IP class
L ∈ IP if ∃V e�cient randomized such that

Completeness: ∀x ∈ L, ∃P, 〈P, V 〉(x) = 1
Soundness: ∀x /∈ L, ∀P̃ ,Pr[〈P̃ , V 〉(x) = 0] > 1

2

º Thm: IP = PSPACE [Shamir’86]

Interactive Proofs (IPs) can be

• Zero-knowledge (ZK): V learns nothing more than the veracity of the statement.

º Assuming the existence of one-way functions, all languages in NP have a ZK proof system.
[Goldreich-Micali-Wigderson’91]

• Public-coin: V uses only public randomness

º Public-coin IPs can be made non-interactive in the Random Oracle Model [Fiat-Shamir’86,

Pointcheval-Stern’96]
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Succinct interactive arguments from PCPs

Prover Verifier

Computationally
bounded

Collision-resistant hash function H (CRHF)
Compute PCP
π proving x ∈ L Commit(π)

MerkleRoot(π)

random queries q1, q2, q3

Reveal(π[q1]), Reveal(π[q2]), Reveal(π[q3])

= (π[qi], MerklePath(π[qi]))i Check Merkle
paths and run VPCP

Succinct interactive arguments for NP
[Kilian’92]

[Kilian’92] First zero-knowledge sublinear argument i.e. O(q log |π|)
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Succinct Non-interactive ARGuments from PCPs

Prover Verifier

Computationally
bounded

Same public-randomness

i.e. a CRHF H

PCP π for x ∈ L

h0 = MerkleRoot(π)
Derive queries q1, q2, q3 from H(h0)

p1 = MerklePath(π[q1])
p2 = MerklePath(π[q2])
p3 = MerklePath(π[q3])

π = (h0, π[q1], π[q2], π[q3], p1, p2, p3)

Derive queries,
check Merkle paths

and run VPCP

Applying Fiat-Shamir Paradigm to PCPs
[Micali’00]

Ë Succinct argument

Ë One message

Ë Presumably post-quantum

Ë Lightweight crypto

é PCP generation is too
expensive

Ë Non-interactive in the Random Oracle model (→ SNARG)
Ë Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)
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IOP Model (Interactive Oracle Proofs)

Prover Verifier
m0

π1
oracle access

m1

π2

...

mr−1

πr

[BCS16, RRR’16]

IOPs generalize PCPs and IPs

public-coin IOP→ non-interactive
in the RO model (Fiat-Shamir paradigm)

with communication complexity:
• linear in query complexity of the IOP
• polylog in oracle proof length |π1|+ ...+ |πr|

Before: PCP︸︷︷︸
information theoretic

+ hash function︸ ︷︷ ︸
crypto

= succinct arguments

From now on: Replace PCPs by IOPs practical succinct arguments
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From computational integrity to low-degree
testing



ZK-STARK

A computational integrity statement
“z is the result of running program F for T steps.”

Verification can be exponentially faster than naively re-running the computation.

STARK: Scalable Transparent ARgument of Knowledge [BBHR18]

non-interactive argument for bounded halting problems of a Random-Access Machine (RAM)

Over a finite field F of cryptographic size:

Setup Prover Verifier Communication complexity Post-Quantum
Transparent O(T log2 T ) O(log2 T ) O(log2 T ) yes

Applications:
Allows verification of multiple programs in a single proof (StarkEx, Cairo).
One can build PQ signatures from ZK-STARKs (see Ziggy STARK).
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Arithmetization

Relation R
(Intermediate

representation)
Arithmetization Proximity to a code Cfront-end

compilerProgram

Proof system (P, V)

constraints of a given computation captured by relation R
→ constraints on low-degree polynomials (e.g. vanish on a given set)
→ low-degree testing

• If (x,w) ∈ R, arithmetization produces c ∈ C,

• If (x,w) /∈ R, arithmetization produces c̃ which is very far from C.

Overview of a STARK: our goal is to construct an IOP (P,V) with a polylog verifier, logarithmic
query complexity, linear oracle proof length, quasilinear prover.
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Toy example: a Collatz Sequence

Let’s consider a toy example on a Collatz sequence.

Start with any positive integer u.
Each term is computed from the previous one as follows:

• if the previous term is even, divide it by 2,

• if the previous term is odd, multiply it by 3 and add 1,

Example: for u = 42, it gives (42, 21, 64, 32, 16, 8, 4, 2, 1, 4, 2, 1, ...).

Collatz conjecture: for any positive integer u, the sequence will always reach 1.

Computational integrity statement:

“The Collatz sequence that starts with 42, ends with 1 after 8 iterations.”
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The initial relation to build a STARK

Collatz sequence: (ui) defined by u0 = u ∈ N \ {0} and ui+1 =
{

ui/2 if ui even,
3ui + 1 if ui odd.

Computational integrity statement:
“The Collatz sequence that starts with u = 42 reaches 1 after T = 8 iterations.”

Algebraic Intermediate Representation (AIR)
Take F a large enough prime field.

Witness wAIR (execution trace):
• array (T + 1)× (a+ 1) of elements in F

• row i: state S[i] = (R0[i], . . . , Ra[i]) of the
computation at time i

• column j: contents of register Rj over time

Instance xAIR

• Boundary constraints e.g. input u, output z
• Polynomial constraints

• C ⊂ F[X,Y ], C := {C0, . . . , Cp}
• X = (X0, . . . , Xa) current state registers
• Y = (Y0, . . . , Ya) next state registers

AIR relationRAIR

(xAIR, wAIR) ∈ RAIR ⇐⇒


”input is u”
”output is z”
∀C ∈ C, ∀i < T,C(S[i],S[i+ 1]) = 0
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An AIR for our toy example

(*) “The Collatz sequence that starts with u = 42, ends with 1 after T = 8 iterations.”

Notation: b := (2j)0≤j≤6, 〈b, S[i]〉 :=
a∑
j=0

2jRj [i] and 〈b,X〉 :=
a∑
j=0

2jXj
i

Witness wAIR: (T + 1)× (a+ 1) array of elts in F

R0 R1 R2 R3 R4 R5 R6
i = 0 0 1 0 1 0 1 0 42
i = 1 1 0 1 0 1 0 0 21
i = 2 0 0 0 0 0 0 1 64
i = 3 0 0 0 0 0 1 0 32
i = 4 0 0 0 0 1 0 0 16
i = 5 0 0 0 1 0 0 0 8
i = 6 0 0 1 0 0 0 0 4
i = 7 0 1 0 0 0 0 0 2
i = 8 1 0 0 0 0 0 0 1

Instance xAIR:
Boundary constraints

1. 〈b, S[0]〉 − 42 = 0 (first term is 42)

2. 〈b, S[T ]〉 − 1 = 0 (last term is 1)

Constraints C = {C0, . . . , C7} ⊂ F[X,Y ]

3. For j = 0, . . . , 6, Cj(X,Y ) = X2
j −Xj

4. C7(X,Y ) = (1−X0) (〈b,X〉 − 2〈b,Y 〉)
+X0 (3〈b,X〉+ 1− 〈b,Y 〉)

(xAIR, wAIR) ∈ RAIR ⇐⇒


〈b, S[0]〉 − 42 = 0
〈b, S[T ]〉 − 1 = 0
∀Ck ∈ C,∀i < T, Ck(S[i],S[i+ 1]) = 0
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In the previous episode

Relation R
(Intermediate

representation)
Arithmetization Proximity to a code Cfront-end

compilerProgram

Proof system (P, V)

Ë constraints of a given computation captured by relation R
→ constraints on low-degree polynomials (e.g. vanish on a given set)
→ low-degree testing

• If (x,w) ∈ R, arithmetization produces c ∈ C,

• If (x,w) /∈ R, arithmetization produces c̃ which is very far from C.
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Step 1: Rational functions which are low-degree polynomials

Assume it exists g ∈ F× of order T + 1, G := 〈g〉.
Let D ⊂ F such that D ∩G = ∅ and ρ |D| = T . ρ ∈ (0, 1)

Reed-Solomon code of dim. k : RS[F, D, k] := {P D : D → F | P ∈ F[X], degP < k}.

Encoding the trace (prover’s side) For j from 0 to a:

1. Interpolate Pj(X) of degree ≤ T such that Pj(gi) = Rj [i]
2. Evaluate Pj(X) on D.

R0 R1 R2 R3 R4 R5 R6
i = 0 0 1 0 1 0 1 0 42
i = 1 1 0 1 0 1 0 0 21
i = 2 0 0 0 0 0 0 1 64
i = 3 0 0 0 0 0 1 0 32
i = 4 0 0 0 0 1 0 0 16
i = 5 0 0 0 1 0 0 0 8
i = 6 0 0 1 0 0 0 0 4
i = 7 0 1 0 0 0 0 0 2
i = 8 1 0 0 0 0 0 0 1

P0 P1 P2 P3 P4 P5 P6
g0 0 1 0 1 0 1 0 42
g1 1 0 1 0 1 0 0 21
g2 0 0 0 0 0 0 1 64
g3 0 0 0 0 0 1 0 32
g4 0 0 0 0 1 0 0 16
g5 0 0 0 1 0 0 0 8
g6 0 0 1 0 0 0 0 4
g7 0 1 0 0 0 0 0 2
g8 1 0 0 0 0 0 0 1
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Step 1: Rational functions which are low-degree polynomials

We want to transform (xAIR, wAIR) into “encoded” counterparts (xRS-AIR, wRS-AIR).

First, we force the encoded registers to be consistent with the specified input/output.

Instance reduction (xAIR → xRS-AIR) [Part 1/2]
Define (a+ 1) “boundary” polynomials (Bj(X))0≤j≤a such that degBj < 2,(

Bj(g0)
)

0≤j≤a
= (0, 1, 0, 1, 0, 1, 0)︸ ︷︷ ︸

input = 42

and Bj(gT ) =
{

1 if j = 0,
0 otherwise.︸ ︷︷ ︸

output = 1

and vanishing polynomial Zio(X) := (X − 1)(X − gT ).

Witness reduction (wAIR → wRS-AIR) For j from 0 to a:

1. Interpolate Pj(X) of degree ≤ T such that Pj(gi) = Rj [i]
2. Evaluate Pj (X)−Bj (X)

Zio(X) on D to get fj : D → F (expected to be a poly of deg ≤ T − 2){
Pj(g0) = Bj(g0)
Pj(gT ) = Bj(gT )

⇐⇒
{

(X − 1) | (Pj(X)−Bj(X))
(X − gT ) | (Pj(X)−Bj(X))

If f = (f0, . . . , fa) is an encoding of a valid execution trace,
then, for any j, fj is a codeword of a code RS[F, D, k]. (Here, k = T − 1)
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Step 1: Rational functions which are low-degree polynomials

Witness wRS-AIR = (f0, . . . , fj) such that ∀x ∈ D, fj(x) = Pj (x)−Bj (x)
Zio(x) .

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: ∀Ck ∈ C,∀i < T, Ck(S[i],S[i+ 1]) = 0.
This means Ck(P0(x), . . . , Pa(x), P0(gx), . . . , Pa(gx)) = 0 for all x ∈

{
gi | 0 ≤ i < T

}
= G \

{
gT
}

.

Idea: Define ZG(X) :=
∏
h∈G(X − h). Then,

(X−gT )
ZG(X) Ck

(
(P0(X), . . . , Pa(X), P0(gX), . . . , Pa(gX)

)
must be a polynomial.

We don’t have access to Pj directly. But on D, it can be expressed with fj , Bj and Zio!

Instance reduction (xAIR → xRS-AIR) [Part 2/2]

Let f = (f0, . . . , fa) ∈ (FD)a+1. For each Ck ∈ C, define Ck[f ] : D → F s.t. for all x ∈ D:

Ck[f ](x) = (x− gT )
ZG(x) Ck

(
(f0Zio +B0)(x), . . . , (faZio +Ba)(x), (f0Zio +B0)(gx), . . . , (faZio +Ba)(gx)

)
If f = (f0, . . . , fa) is an encoding of a valid execution trace,
then, for any k, Ck[f ] is a codeword of a RS code RS[F, D, kc]. (Here, kc = T + 5)
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Step 1: Recap

Witness wRS-AIR: an interleaved word f = (f0, . . . , fa) ∈ (FD)a+1

Instance xRS-AIR:
For input-output: (Bj(X))0≤j≤a of deg < 1 and Zio(X) = (X − g0)(X − gT )
Rational constraints (Ck[·])0≤k≤p Ck[·] and any f ∈ (FD)a+1 jointly define Ck[f ] ∈ FD

Assignment code RS[F, D, k] and constraint code RS[F, D, kc]

RS-AIR relation RRS-AIR

(xRS-AIR, wRS-AIR) ∈ RRS-AIR ⇐⇒ wRS-AIR = f = (f0, . . . , fa) satisfies
{
∀j, fj ∈ RS[F, D, k]
∀k, Ck[f ] ∈ RS[F, D, kc]

Reduction: From (xAIR, wAIR), we’ve just defined an RS-encoded pair (xRS-AIR, wRS-AIR) satisfying:

Perfect completeness If (xAIR, wAIR) ∈ RAiR, then (xRS-AIR, wRS-AIR) ∈ RRS-AIR.
Perfect soundness If xAIR /∈ LAIR

1, then xRS-AIR /∈ LRS-AIR.

1For a binary relation R = {(x,w)}, its associated language is L = {x | ∃w, (x,w) ∈ R}.
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Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V
Let V be a linear code and u0, . . . , ul : D → F. Denote ∆ relative Hamming distance.
Then, ∆(u0 +

∑l

j=1 rjuj , V ) ' maxj ∆(uj , V ) with high proba over r1, . . . , rl

P Voracle proofs

f0 : D → F

f1 : D → F
...

fa : D → F

r1, . . . , ra, r
′
1, . . . , r

′
p

f : D → F

g : D → F

virtual oracles

f : D → F

g : D → F

P computes
{

f := f0 +
∑a

j=1 rjfj

g := C0[f ] +
∑p

k=1 r
′
kCk[f ]

P and V check if f and g are RS codewords,
with O(log T ) queries and verifier complexity.

Remark: P doesn’t need to send f and g.
By querying f(x0) and f(gx0), V can compute f(x0) and
each Ck[f ](x0), thus g(x0).

Notice that V computes ZG(x0) for x0 ∈ D in O(log T ) ops
because ZG(X) =

∏
h∈G(X − h) = XT+1 − 1.
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Final step: Low-degree testing

If the Collatz sequence starting with u = 42 reaches 1 after T = 8 iterations,
then f ∈ RS[F, D, k] and g ∈ RS[F, D, kc].

Otherwise, with very high proba,
then f is δ-far from RS[F, D, k] or g is δ-far from RS[F, D, kc],
with δ → 1 when max(k,kc)

|D| → 0.

An IOP with logarithmic query/verifier complexities is needed to test proximity to a
Reed-Solomon code, meaning a verifier must distinguish between:

• functions which are RS codewords,

• functions which are δ-far from any codeword.
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Univariate low-degree test: FRI protocol



FRI: Prover-e�cient RS IOPP (IOP of Proximity)

Reed-Solomon Proximity Testing

Input: a code RS[F, D, k], a parameter δ
Input oracle: f : D → F
Completeness: If f ∈ RS[F, D, k], then ∃P Pr[〈P, V 〉 = 1] = 1
Soundness: If ∆

(
f,RS[F, D, k]

)
> δ, then ∀P̃ Pr[〈P̃ , V 〉 = 1] < err(δ)

∆ relative Hamming distance

Naive test
1. Query k entries of f ∈ FD : f(x0), . . . , f(xk−1),

2. Reconstruct poly P by interpolation, then evaluate
it in a (k + 1)-th point xk ∈ D,

3. Accept i� P (xk) = f(xk).

Soundness: V accepts with proba < 1− δ
Problem: # queries is linear in |D|.
V can’t do better on his own. But a prover P can help.

RS IOP of Proximity
FRI Protocol

[Ben–Sasson-Bentov-Horesh-Riabzev’18]
# rounds < log |D|
# queries O(2 log |D|)
prover time < 6|D|
verifier time O(21 log |D|)
oracle length < |D|/3
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Halving the size of the problem by folding

Let k = 2r . Assume there exists ω ∈ F× of order a large power of 2,
and consider evaluation domains D := 〈ω〉 and D′ := 〈ω2〉 (|D| > k).

How to check if f : D → F is in RS[F, D, k]?

Idea:
• Define P (X) such that P (x) = f(x) for every x ∈ D degP < |D|

• Split P into g, h, such that P (X) = g(X2) +Xh(X2) deg g,deg h < |D| /2

• For every x ∈ D, f(x) = g(x2) + x · h(x2)

• Consider g, h : D′ → F with |D′| = 1
2 |D|

• For α ∈ F, define Fold [f, α] : D′ → F by Fold [f, α] (y) = g(y) + α · h(y)

∀α, f ∈ RS[F, D, k] =⇒ Fold [f, α] ∈ RS[F, D′, k/2]

Observe, for all x ∈ D,

Fold [f, α] (x2) = f(x)+f(−x)
2 + α f(x)−f(−x)

2x .

Compute Fold [f, α] (y) with only 2 queries to f .
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Folding preserves distance to the code

Notations:
• RS0 := RS[F, D, k] and RS1 := RS[F, D′, k/2] of rate ρ := k

|D|

Let κ be a security parameter. Assume |F| is large enough, i.e. Oρ,δ
(
|D|2
|F|

)
= negl(κ).

Theorem [Ben–Sasson-Carmon-Ishai-Kopparty’20]

Assume δ < 1−√ρ. Let g, h : D′ → F. If either ∆(g,RS1) > δ or ∆(h,RS1) > δ, then

Pr
α∈F

[∆(g + αh,RS1) < δ] < negl(κ)

Corollary
Assume δ < 1−√ρ. If ∆(f,RS0) > δ, then

Pr
α∈F

[∆(Fold [f, α] ,RS1) < δ] < negl(κ)
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FRI Protocol: Commit Phase

Prover Verifier

f0

F, D, k

α0

f1

α1

f2

...

αr−1

fr

Honest prover computes:

f1 = Fold [f0, α0]

f2 = Fold [f1, α1]

...

fr = Fold [fr−1, αr−1]

fr
?
∈ RS[F, D(2r), k/2r]
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FRI Protocol: Query Phase

Verifier

f0

f1

f2

...

fr

Check consistency
at random locations

f1(s1) ?= Fold [f0, α0] (s1)

f2(s2) ?= Fold [f1, α1] (s2)

...

fr(sr)
?= Fold [fr−1, αr−1] (sr)

Final test: fr
?
∈ RSr
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Soundness of the FRI Protocol

Soundness: If ∆(f,RS[F, D, k]) > δ, V accepts with proba < err.

κ security parameter

Theorem
Assuming δ < 1−√ρ (ρ is code rate),

err < errcommit + (errquery)l

< negl(κ) + (1− δ)l

To get error err = negl(κ), repeat query phase enough time (l times).

For instance, for κ = 128.

Take |F| > 2256, |D| = 220, k = 216, δ = 1−√ρ− 2−14 ' 3/4. Then, repeat l = 65 times the query
phase.

If ∆(f,RS[F, D, k]) > δ, then V accepts with proba < 2−128.
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Beyond Reed-Solomon codes



Tensored RS codes, Reed-Muller codes

Tensor product of RS codes

RS[F, L, d]⊗m =
{
f ∈ FL

m

| P ∈ F[X1, ..., Xm],degXi
P < d, f = P Lm

}
Reed-Muller codes

RM[F, L, d,m] =
{
f ∈ FL

m

| P ∈ F[X1, ..., Xm], degtotP < d, f = P Lm

}
Is it possible to construct IOPP for RS⊗ and RM families

with e�ciency similar to the RS case?
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Proximity tests for multivariate codes

Theorem (informal)
There exists an IOPP (P,V) for RS⊗ (resp. RM codes) with

Ë linear prover time

Ë linear (interactive) proof length

Ë logarithmic query complexity

Ë logarithmic verifier time
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1. Decompose m-variate polynomial f into 2m m-variate polynomials gu,u ∈ {0, 1}m.

2. Define folding of f as a random linear combination of the gu’s:

Fold [f,p] (y) =
∑

u∈{0,1}m

pugu(y). (RS⊗)

Properties:
completeness Fold [·,p] (C) ⊆ C′

locally computable 2m queries
distance preservation f δ-far for C =⇒ Fold [f,p] δ′-far from C′ (w.h.p.)
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Proximity tests for multivariate codes

Theorem (informal)
There exists an IOPP (P,V) for RS⊗ (resp. RM codes) with

Ë linear prover time

Ë linear (interactive) proof length

Ë logarithmic query complexity

Ë logarithmic verifier time

Soundness (informal)
Let δ be the relative distance of f to RM (resp. RS⊗).

Assuming δ < c, err(δ) < negl + (1− δ)l.

é Soundness threshold c not as good as 1−√ρ (RS case).
→ greater repetition parameter l, i.e. more queries, thus longer non-interactive proofs.
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The rest of the story.

Recall: arithmetization transforms “instructions set” of a program into constraints on low-degree
polynomials, e.g. vanish on a given set.

We can use our IOPP to check that S(X) committed via S|Hm : Hm → F vanishes on a set Gm,
where G ∩H = ∅ with a succinct proof.

What about other codes?

With Jade Nardi: a “FRI-like” IOPP for some families of Algebraic Geometry codes.

https://eccc.weizmann.ac.il/report/2020/165/

Future work:

• Construct building-blocks for multivariate/AG code-based arithmetization

• Find more “nice families” of AG codes

• Improve soundness of AG-IOPP

Thank you for your attention!
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