Efficient Proofs of Computational Integrity from Code-Based Interactive Oracle Proofs

Sarah Bordage

Project-team GRACE
LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria Saclay Ile-de-France

GT GRACE
December 8, 2020

Motivation: Verifiable Computing

Powerful Prover
Weak Verifier

Motivation: Verifiable Computing

Powerful Prover
On input (F, x), output result y and proof of correctness π
y, π

Weak Verifier

On input (F, x, y, π), accept iff π is a valid proof for statement " $y=F(x)$ "

Motivation: Verifiable Computing

Powerful Prover

On input (F, x), output result y and proof of correctness π

Weak Verifier

 accept iff π is a valid proof for statement " $y=F(x)$ "Our wishlist:

Fast verification

Remark: possible for computations with succinct representation, not for generic circuits, or with pre-processing (setup phase delegated to a trusted party).

No trusted setup

Fast proof generation
Post-quantum security

A view of the "proofs-space" (by crypto assumptions)

	CRHF	DLOG	KoE/AGM/GGM (pairing-based)	Group of unknown order
2013			Pinocchio [PGHR]	
2014			[BCTV]	
2016	ZKBoo [GMO16] SCI [BBC+]	[BCCGP16]	[Groth16] [GM17]	
2017	Ligero [AHIV]	Bulletproof [BBB+] Hyrax [WTS+]	(ZK) vSQL [ZGK+]	
2018	Stark [BBHR] Aurora [BCR+]		vRAM [ZGK+]	
2019	Fractal [COS] Succinct Aurora [BCG+] RedShift [KPV] Virgo [ZXZS]	Spartan [Setty] Halo [BGH]	Sonic [MBK+] Plonk [GWC] Marlin [CHM+] Libra [XZZ+]	Supersonic [BFS]
2020	Virgo++ [ZWZZ]		Mirage [KKPS]	

Some implementations of succinct non-interactive arguments for general computations

PCP-based succinct non-interactive arguments

Starting point: PCP characterization of NP

PCP class

$L \in \mathbf{P C P}[r, q]$ if \exists efficient randomized \mathcal{V} such that

$$
\begin{array}{ll}
\text { Completeness: } & \forall x \in L, \exists \pi, \mathcal{V}^{\pi}(x)=1 \\
\text { Soundness: } & \forall x \notin L, \forall \tilde{\pi}, \operatorname{Pr}\left[\mathcal{V}^{\pi}(x)=0\right]>1 / 2
\end{array}
$$

where V reads π at $\leq q$ locations and tosses $\leq r$ coins.

NP class

$L \in \mathbf{N P}$ if \exists efficient \mathcal{V} such that:
Completeness: $\quad \forall x \in L, \exists w, \mathcal{V}(x, w)=1$
Soundness: $\quad \forall x \notin L, \forall \tilde{w}, \mathcal{V}(x, w)=0$

Starting point: PCP characterization of NP

PCP class

$$
\begin{aligned}
& L \in \mathbf{P C P}[r, q] \text { if } \exists \text { efficient randomized } \mathcal{V} \text { such that } \\
& \text { Completeness: } \\
& \quad \forall x \in L, \exists \pi, \mathcal{V}^{\pi}(x)=1 \\
& \text { Soundness: }
\end{aligned} \forall x \notin L, \forall \tilde{\pi}, \operatorname{Pr}\left[\mathcal{V}^{\pi}(x)=0\right]>1 / 2
$$

where V reads π at $\leq q$ locations and tosses $\leq r$ coins.

NP class

$L \in \mathbf{N P}$ if \exists efficient \mathcal{V} such that:
Completeness: $\quad \forall x \in L, \exists w, \mathcal{V}(x, w)=1$
Soundness: $\quad \forall x \notin L, \forall \tilde{w}, \mathcal{V}(x, w)=0$

ح Check NP statements way faster than checking an NP witness!
\times PCPs are not succinct proofs! \times PCP generation is too expensive!
Y. 30 years later: practical real-world deployment

Interactive Proof Systems and Zero-Knowledge

Allow interaction with unbounded prover \mathcal{P} [Goldwasser-Micali-Rackoff'85, Babai'85]

IP class

$L \in \mathbf{I P}$ if $\exists \mathcal{V}$ efficient randomized such that
Completeness: $\quad \forall x \in L, \exists P,\langle P, V\rangle(x)=1$
Soundness: $\quad \forall x \notin L, \forall \tilde{P}, \operatorname{Pr}[\langle\tilde{P}, V\rangle(x)=0]>\frac{1}{2}$

Y. Thm: IP = PSPACE [Shamir'86]

Interactive Proofs (IPS) can be

- Zero-knowledge (ZK): \mathcal{V} learns nothing more than the veracity of the statement.

Assuming the existence of one-way functions, all languages in NP have a ZK proof system.
[Goldreich-Micali-Wigderson'91]

- Public-coin: \mathcal{V} uses only public randomness

Public-coin IPs can be made non-interactive in the Random Oracle Model [Fiat-Shamir's6,

Succinct interactive arguments from PCPs

Succinct interactive arguments for NP
[Kilian'92]
Computationally
bounded
Compute PCP
π proving $x \in L$

$$
\xrightarrow[{=\left(\pi\left[q_{i}\right], \text { MerklePath }\left(\pi\left[q_{i}\right]\right)\right)_{i}}]{\text { Reveal }\left(\pi\left[q_{1}\right]\right), \operatorname{Reveal}\left(\pi\left[q_{2}\right]\right), \text { Reveal }\left(\pi\left[q_{3}\right]\right)} \quad \begin{array}{r}
\text { Check Merkle }
\end{array}
$$

[Kilian'92] First zero-knowledge sublinear argument i.e. $O(q \log |\pi|)$

Succinct Non-interactive ARGuments from PCPs


```
PCP \(\pi\) for \(x \in L\)
    \(h_{0}=\operatorname{MerkleRoot}(\pi)\)
Derive queries \(q_{1}, q_{2}, q_{3}\) from \(H\left(h_{0}\right)\)
    \(p_{1}=\operatorname{MerklePath}\left(\pi\left[q_{1}\right]\right)\)
    \(p_{2}=\operatorname{MerklePath}\left(\pi\left[q_{2}\right]\right)\)
    \(p_{3}=\operatorname{MerklePath}\left(\pi\left[q_{3}\right]\right)\)
\(\xrightarrow{\pi=\left(h_{0}, \pi\left[q_{1}\right], \pi\left[q_{2}\right], \pi\left[q_{3}\right], p_{1}, p_{2}, p_{3}\right)}\)
```

Derive queries, check Merkle paths and run $\mathcal{V}_{\text {PCP }}$
\checkmark Non-interactive in the Random Oracle model (\rightarrow SNARG)
, Compatible with: Zero-Knowledge, Proof of Knowledge (\rightarrow ZK-SNARK)

Succinct Non-interactive ARGuments from PCPs


```
PCP \(\pi\) for \(x \in L\)
    \(h_{0}=\operatorname{MerkleRoot}(\pi)\)
Derive queries \(q_{1}, q_{2}, q_{3}\) from \(H\left(h_{0}\right)\)
    \(p_{1}=\operatorname{MerklePath}\left(\pi\left[q_{1}\right]\right)\)
    \(p_{2}=\operatorname{MerklePath}\left(\pi\left[q_{2}\right]\right)\)
    \(p_{3}=\operatorname{MerklePath}\left(\pi\left[q_{3}\right]\right)\)
\(\xrightarrow{\pi=\left(h_{0}, \pi\left[q_{1}\right], \pi\left[q_{2}\right], \pi\left[q_{3}\right], p_{1}, p_{2}, p_{3}\right)}\)
```

Derive queries, check Merkle paths and run $\mathcal{V}_{\text {PCP }}$
\checkmark Non-interactive in the Random Oracle model (\rightarrow SNARG)
\checkmark Compatible with: Zero-Knowledge, Proof of Knowledge (\rightarrow ZK-SNARK)

Succinct Non-interactive ARGuments from PCPs

Applying Fiat-Shamir Paradigm to PCPs
[Micali'oo]
Computationally bounded


```
PCP \(\pi\) for \(x \in L\)
    \(h_{0}=\operatorname{MerkleRoot}(\pi)\)
Derive queries \(q_{1}, q_{2}, q_{3}\) from \(H\left(h_{0}\right)\)
    \(p_{1}=\operatorname{MerklePath}\left(\pi\left[q_{1}\right]\right)\)
    \(p_{2}=\operatorname{MerklePath}\left(\pi\left[q_{2}\right]\right)\)
    \(p_{3}=\operatorname{MerklePath}\left(\pi\left[q_{3}\right]\right)\)
\(\xrightarrow{\pi=\left(h_{0}, \pi\left[q_{1}\right], \pi\left[q_{2}\right], \pi\left[q_{3}\right], p_{1}, p_{2}, p_{3}\right)}\)
```

\checkmark Succinct argument
\checkmark One message
\checkmark Presumably post-quantum
\checkmark Lightweight crypto
\times PCP generation is too expensive

Derive queries, check Merkle paths and run $\mathcal{V}_{\text {PCP }}$
\checkmark Non-interactive in the Random Oracle model (\rightarrow SNARG)
, Compatible with: Zero-Knowledge, Proof of Knowledge (\rightarrow ZK-SNARK)

Succinct Non-interactive ARGuments from PCPs


```
PCP \(\pi\) for \(x \in L\)
    \(h_{0}=\operatorname{MerkleRoot}(\pi)\)
Derive queries \(q_{1}, q_{2}, q_{3}\) from \(H\left(h_{0}\right)\)
    \(p_{1}=\operatorname{MerklePath}\left(\pi\left[q_{1}\right]\right)\)
    \(p_{2}=\operatorname{MerklePath}\left(\pi\left[q_{2}\right]\right)\)
    \(p_{3}=\operatorname{MerklePath}\left(\pi\left[q_{3}\right]\right)\)
\(\xrightarrow{\pi=\left(h_{0}, \pi\left[q_{1}\right], \pi\left[q_{2}\right], \pi\left[q_{3}\right], p_{1}, p_{2}, p_{3}\right)}\)
```

Derive queries, check Merkle paths and run $\mathcal{V}_{\text {PCP }}$
\checkmark Non-interactive in the Random Oracle model (\rightarrow SNARG)
, Compatible with: Zero-Knowledge, Proof of Knowledge (\rightarrow ZK-SNARK)

IOP Model (Interactive Oracle Proofs)

\vdots

[BCS16, RRR'16]
IOPs generalize PCPs and IPs
public-coin IOP \rightarrow non-interactive
in the RO model (Fiat-Shamir paradigm)
with communication complexity:

- linear in query complexity of the IOP
- polylog in oracle proof length $\left|\pi_{1}\right|+\ldots+\left|\pi_{r}\right|$
= succinct arguments
information theoretic
+ hash function crypto

From computational integrity to low-degree testing

A computational integrity statement

$$
\text { " } z \text { is the result of running program } F \text { for } T \text { steps." }
$$

Verification can be exponentially faster than naively re-running the computation.
STARK: Scalable Transparent ARgument of Knowledge [bвнR18]
non-interactive argument for bounded halting problems of a Random-Access Machine (RAM)
Over a finite field \mathbb{F} of cryptographic size:

Setup	Prover	Verifier	Communication complexity	Post-Quantum
Transparent	$O\left(T \log ^{2} T\right)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$	yes

Applications:

Allows verification of multiple programs in a single proof (StarkEx, Cairo).
One can build PQ signatures from ZK-STARKs (see Ziggy STARK).

Arithmetization

constraints of a given computation captured by relation \mathcal{R}
\rightarrow constraints on low-degree polynomials (e.g. vanish on a given set)
\rightarrow low-degree testing

- If $(x, w) \in \mathcal{R}$, arithmetization produces $c \in C$,
- If $(x, w) \notin \mathcal{R}$, arithmetization produces \tilde{c} which is very far from C.

Overview of a STARK: our goal is to construct an IOP $(\mathcal{P}, \mathcal{V})$ with a polylog verifier, logarithmic query complexity, linear oracle proof length, quasilinear prover.

Let's consider a toy example on a Collatz sequence.

Start with any positive integer u.
Each term is computed from the previous one as follows:

- if the previous term is even, divide it by 2 ,
- if the previous term is odd, multiply it by 3 and add 1 ,

Example: for $u=42$, it gives (42, 21, 64, 32, 16, 8, 4, 2, 1, 4, 2, 1, ...).
Collatz conjecture: for any positive integer u, the sequence will always reach 1 .

Computational integrity statement:

"The Collatz sequence that starts with 42, ends with 1 after 8 iterations."

The initial relation to build a STARK
Collatz sequence: $\left(u_{i}\right)$ defined by $u_{0}=u \in \mathbb{N} \backslash\{0\}$ and $u_{i+1}= \begin{cases}u_{i} / 2 & \text { if } u_{i} \text { even, } \\ 3 u_{i}+1 & \text { if } u_{i} \text { odd. }\end{cases}$
Computational integrity statement:
"The Collatz sequence that starts with $u=42$ reaches 1 after $T=8$ iterations."

Algebraic Intermediate Representation (AIR)

Take \mathbb{F} a large enough prime field.

Witness $w_{\text {AIR }}$ (execution trace):

- array $(T+1) \times(a+1)$ of elements in \mathbb{F}
- row i : state $\mathbf{S}[i]=\left(R_{0}[i], \ldots, R_{a}[i]\right)$ of the computation at time i
- column j : contents of register R_{j} over time

Instance $x_{\text {AIR }}$

- Boundary constraints e.g. input u, output z
- Polynomial constraints
- $\mathcal{C} \subset \mathbb{F}[\boldsymbol{X}, \boldsymbol{Y}], \mathcal{C}:=\left\{C_{0}, \ldots, C_{p}\right\}$
- $\boldsymbol{X}=\left(X_{0}, \ldots, X_{a}\right) \rightsquigarrow$ current state registers
- $\boldsymbol{Y}=\left(Y_{0}, \ldots, Y_{a}\right) \rightsquigarrow$ next state registers

AIR relation $\mathcal{R}_{\text {AIR }}$

$$
\left(x_{\text {AIR }}, w_{\text {AIR }}\right) \in \mathcal{R}_{\text {AIR }} \Longleftrightarrow\left\{\begin{array}{l}
\text { "input is } u " \\
\text { "output is } z " \\
\forall C \in \mathcal{C}, \forall i<T, C(\mathbf{S}[i], \mathbf{S}[i+1])=0
\end{array}\right.
$$

An AIR for our toy example

(*) "The Collatz sequence that starts with $u=42$, ends with 1 after $T=8$ iterations."

$$
\text { Notation: } b:=\left(2^{j}\right)_{0 \leq j \leq 6},\langle\boldsymbol{b}, S[i]\rangle:=\sum_{j=0}^{a} 2^{j} R_{j}[i] \text { and }\langle\boldsymbol{b}, \boldsymbol{X}\rangle:=\sum_{j=0}^{a} 2^{j} X_{i}^{j}
$$

Witness $w_{\text {AIR }}:(T+1) \times(a+1)$ array of elts in \mathbb{F}

	R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	4221
$i=0$	0	1	0	1	0	1	0	
$i=1$	1	0	1	0	1	0	0	
$i=2$	0	0	0	0	0	0	1	64
$i=3$	0	0	0	0	O	1	0	32
$i=4$	0	0	0	0	1	0	0	16
$i=5$	0	0	0	1	0	0	0	8
$i=6$	0	0	1	0	0	0	0	4
$i=7$	0	1	0	0	0	0	0	2
$i=8$	1	0	0	0	0	0	0	1

Instance $x_{\text {AIR }}$:
Boundary constraints

1. $\langle\boldsymbol{b}, S[0]\rangle-42=0$
(first term is 42)
2. $\langle\boldsymbol{b}, S[T]\rangle-1=0$
(last term is 1)
Constraints $\mathcal{C}=\left\{C_{0}, \ldots, C_{7}\right\} \subset \mathbb{F}[\boldsymbol{X}, \boldsymbol{Y}]$
3. For $j=0, \ldots, 6, C_{j}(\boldsymbol{X}, \boldsymbol{Y})=X_{j}^{2}-X_{j}$
4. $C_{7}(\boldsymbol{X}, \boldsymbol{Y})=\left(1-X_{0}\right)(\langle\boldsymbol{b}, \boldsymbol{X}\rangle-2\langle\boldsymbol{b}, \boldsymbol{Y}\rangle)$

$$
+X_{0}(3\langle\boldsymbol{b}, \boldsymbol{X}\rangle+1-\langle\boldsymbol{b}, \boldsymbol{Y}\rangle)
$$

$$
\left(x_{\mathrm{AIR}}, w_{\mathrm{AIR}}\right) \in \mathcal{R}_{\text {AIR }} \Longleftrightarrow\left\{\begin{array}{l}
\langle\boldsymbol{b}, S[0]\rangle-42=0 \\
\langle\boldsymbol{b}, S[T]\rangle-1=0 \\
\forall C_{k} \in \mathcal{C}, \forall i<T, C_{k}(\mathbf{S}[i], \mathbf{S}[i+1])=0
\end{array}\right.
$$

In the previous episode

\checkmark constraints of a given computation captured by relation \mathcal{R}
\rightarrow constraints on low-degree polynomials (e.g. vanish on a given set) \rightarrow low-degree testing

- If $(x, w) \in \mathcal{R}$, arithmetization produces $c \in C$,
- If $(x, w) \notin \mathcal{R}$, arithmetization produces \tilde{c} which is very far from C.

Step 1: Rational functions which are low-degree polynomials

Assume it exists $g \in \mathbb{F}^{\times}$of order $T+1, G:=\langle g\rangle$.
Let $D \subset \mathbb{F}$ such that $D \cap G=\emptyset$ and $\rho|D|=T$.
Reed-Solomon code of dim. $k: \operatorname{RS}[\mathbb{F}, D, k]:=\left\{\left.P\right|_{D}: D \rightarrow \mathbb{F} \mid P \in \mathbb{F}[X], \operatorname{deg} P<k\right\}$.
Encoding the trace (prover's side) For j from 0 to a :

1. Interpolate $P_{j}(X)$ of degree $\leq T$ such that $P_{j}\left(g^{i}\right)=R_{j}[i]$
2. Evaluate $P_{j}(X)$ on D.

	R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	
$i=0$	0	1	0	1	0	1	0	42
$i=1$	1	0	1	0	1	O	0	21
$i=2$	0	0	0	0	0	O	1	64
$i=3$	0	0	0	O	0	1	0	32
$i=4$	0	0	0	0	1	O	0	16
$i=5$	0	0	0	1	o	0	0	8
$i=6$	0	0	1	0	0	0	0	4
$i=7$	0	1	0	0	0	0	0	2
$i=8$	1	0	0	0	0	0	0	1

Step 1: Rational functions which are low-degree polynomials

Assume it exists $g \in \mathbb{F}^{\times}$of order $T+1, G:=\langle g\rangle$.
Let $D \subset \mathbb{F}$ such that $D \cap G=\emptyset$ and $\rho|D|=T$.
Reed-Solomon code of dim. $k: \operatorname{RS}[\mathbb{F}, D, k]:=\left\{\left.P\right|_{D}: D \rightarrow \mathbb{F} \mid P \in \mathbb{F}[X], \operatorname{deg} P<k\right\}$.
Encoding the trace (prover's side) For j from 0 to a :

1. Interpolate $P_{j}(X)$ of degree $\leq T$ such that $P_{j}\left(g^{i}\right)=R_{j}[i]$
2. Evaluate $P_{j}(X)$ on D.

	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	
g^{0}	0	1	0	1	O	1	0	42
g^{1}	1	0	1	0	1	0	0	21
g^{2}	0	0	0	0	0	0	1	64
g^{3}	0	0	0	0	0	1	0	32
g^{4}	0	0	0	0	1	0	0	16
g^{5}	0	0	0	1	0	0	0	
g^{6}	0	0	1	0	0	0	0	
g^{7}	0	1	0	0	0	0	0	
g^{8}	1	0	0	0	0	0	0	

Step 1: Rational functions which are low-degree polynomials

Assume it exists $g \in \mathbb{F}^{\times}$of order $T+1, G:=\langle g\rangle$.
Let $D \subset \mathbb{F}$ such that $D \cap G=\emptyset$ and $\rho|D|=T$.
Reed-Solomon code of dim. $k: \operatorname{RS}[\mathbb{F}, D, k]:=\left\{\left.P\right|_{D}: D \rightarrow \mathbb{F} \mid P \in \mathbb{F}[X], \operatorname{deg} P<k\right\}$.
Encoding the trace (prover's side) For j from 0 to a :

1. Interpolate $P_{j}(X)$ of degree $\leq T$ such that $P_{j}\left(g^{i}\right)=R_{j}[i]$
2. Evaluate $P_{j}(X)$ on D.

	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	
g^{0}	0	1	0	1	O	1	0	42
g^{1}	1	0	1	0	1	0	0	21
g^{2}	0	0	0	0	0	0	1	64
g^{3}	0	0	0	0	0	1	0	32
g^{4}	0	0	0	0	1	0	0	16
g^{5}	0	0	0	1	0	0	0	
g^{6}	0	0	1	0	0	0	0	
g^{7}	0	1	0	0	0	0	0	
g^{8}	1	0	0	0	0	0	0	

Step 1: Rational functions which are low-degree polynomials

We want to transform ($x_{\text {AIR }}, w_{\text {AIR }}$) into "encoded" counterparts ($x_{\text {RS-AIR }}, w_{\text {RS-AIR }}$).
First, we force the encoded registers to be consistent with the specified input/output.
Instance reduction ($x_{\text {AIR }} \rightarrow x_{\text {RS-AIR }}$) [Part $1 / 2$]
Define $(a+1)$ "boundary" polynomials $\left(B_{j}(X)\right)_{0 \leq j \leq a}$ such that $\operatorname{deg} B_{j}<2$,

$$
\underbrace{\left(B_{j}\left(g^{0}\right)\right)_{0 \leq j \leq a}=(0,1,0,1,0,1,0)}_{\text {input }=42} \quad \text { and } \quad \underbrace{B_{j}\left(g^{T}\right)=\left\{\begin{array}{l}
1 \text { if } j=0, \\
0 \text { otherwise. }
\end{array}\right.}_{\text {output }=1}
$$

and vanishing polynomial $Z_{\mathrm{io}}(X):=(X-1)\left(X-g^{T}\right)$.
Witness reduction ($w_{\text {AIR }} \rightarrow w_{\text {RS-AIR }}$) For j from 0 to a :

1. Interpolate $P_{j}(X)$ of degree $\leq T$ such that $P_{j}\left(g^{i}\right)=R_{j}[i]$
2. Evaluate $\frac{P_{j}(X)-B_{j}(X)}{Z_{\mathrm{io}}(X)}$ on D to get $f_{j}: D \rightarrow \mathbb{F} \quad$ (expected to be a poly of deg $\leq T-2$)

$$
\left\{\begin{array} { l }
{ P _ { j } (g ^ { 0 }) = B _ { j } (g ^ { 0 }) } \\
{ P _ { j } (g ^ { T }) = B _ { j } (g ^ { T }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
(X-1) \mid\left(P_{j}(X)-B_{j}(X)\right) \\
\left(X-g^{T}\right) \mid\left(P_{j}(X)-B_{j}(X)\right)
\end{array}\right.\right.
$$

We want to transform ($x_{\text {AIR }}, w_{\text {AIR }}$) into "encoded" counterparts ($x_{\text {RS-AIR }}, w_{\text {RS-AIR }}$).
First, we force the encoded registers to be consistent with the specified input/output.
Instance reduction ($x_{\text {AIR }} \rightarrow x_{\text {RS-AIR }}$) [Part $1 / 2$]
Define $(a+1)$ "boundary" polynomials $\left(B_{j}(X)\right)_{0 \leq j \leq a}$ such that $\operatorname{deg} B_{j}<2$,

$$
\underbrace{\left(B_{j}\left(g^{0}\right)\right)_{0 \leq j \leq a}=(0,1,0,1,0,1,0)}_{\text {input }=42} \quad \text { and } \quad \underbrace{B_{j}\left(g^{T}\right)=\left\{\begin{array}{l}
1 \text { if } j=0, \\
0 \text { otherwise } .
\end{array}\right.}_{\text {output }=1}
$$

and vanishing polynomial $Z_{\mathrm{io}}(X):=(X-1)\left(X-g^{T}\right)$.
Witness reduction ($w_{\text {AIR }} \rightarrow w_{\text {RS-ARR }}$) For j from 0 to a :

1. Interpolate $P_{j}(X)$ of degree $\leq T$ such that $P_{j}\left(g^{i}\right)=R_{j}[i]$
2. Evaluate $\frac{P_{j}(X)-B_{j}(X)}{Z_{\mathrm{io}}(X)}$ on D to get $f_{j}: D \rightarrow \mathbb{F}$
(expected to be a poly of deg $\leq T-2$)
If $\mathbf{f}=\left(f_{0}, \ldots, f_{a}\right)$ is an encoding of a valid execution trace, then, for any $j_{j} f_{j}$ is a codeword of a code $\operatorname{RS}[\mathbb{F}, D, k]$.

Step 1: Rational functions which are low-degree polynomials
Witness $w_{\text {RS-AIR }}=\left(f_{0}, \ldots, f_{j}\right)$ such that $\forall x \in D, f_{j}(x)=\frac{P_{j}(x)-B_{j}(x)}{Z_{\text {io }}(x)}$.
Second, define "rational constraints" on the RS-encoded witness.
Recall AIR's polynomial constraints: $\forall C_{k} \in \mathcal{C}, \forall i<T, C_{k}(\mathbf{S}[i], \mathbf{S}[i+1])=0$.
This means $C_{k}\left(P_{0}(x), \ldots, P_{a}(x), P_{0}(g x), \ldots, P_{a}(g x)\right)=0$ for all $x \in\left\{g^{i} \mid 0 \leq i<T\right\}=G \backslash\left\{g^{T}\right\}$.

Step 1: Rational functions which are low-degree polynomials
Witness $w_{\text {RS-AIR }}=\left(f_{0}, \ldots, f_{j}\right)$ such that $\forall x \in D, f_{j}(x)=\frac{P_{j}(x)-B_{j}(x)}{Z_{\text {io }}(x)}$.
Second, define "rational constraints" on the RS-encoded witness.
Recall AIR's polynomial constraints: $\forall C_{k} \in \mathcal{C}, \forall i<T, C_{k}(\mathbf{S}[i], \mathbf{S}[i+1])=0$.
This means $C_{k}\left(P_{0}(x), \ldots, P_{a}(x), P_{0}(g x), \ldots, P_{a}(g x)\right)=0$ for all $x \in\left\{g^{i} \mid 0 \leq i<T\right\}=G \backslash\left\{g^{T}\right\}$.
Idea: Define $Z_{G}(X):=\prod_{h \in G}(X-h)$. Then,

$$
\frac{\left(X-g^{T}\right)}{Z_{G}(X)} C_{k}\left(\left(P_{0}(X), \ldots, P_{a}(X), P_{0}(g X), \ldots, P_{a}(g X)\right)\right. \text { must be a polynomial. }
$$

Step 1: Rational functions which are low-degree polynomials

Witness $w_{\text {RS-ARR }}=\left(f_{0}, \ldots, f_{j}\right)$ such that $\forall x \in D, f_{j}(x)=\frac{P_{j}(x)-B_{j}(x)}{Z_{\mathrm{io}}(x)}$.
Second, define "rational constraints" on the RS-encoded witness.
Recall AIR's polynomial constraints: $\forall C_{k} \in \mathcal{C}, \forall i<T, C_{k}(\mathbf{S}[i], \mathbf{S}[i+1])=0$.
This means $C_{k}\left(P_{0}(x), \ldots, P_{a}(x), P_{0}(g x), \ldots, P_{a}(g x)\right)=0$ for all $x \in\left\{g^{i} \mid 0 \leq i<T\right\}=G \backslash\left\{g^{T}\right\}$.
Idea: Define $Z_{G}(X):=\prod_{h \in G}(X-h)$. Then,

$$
\frac{\left(X-g^{T}\right)}{Z_{G}(X)} C_{k}\left(\left(P_{0}(X), \ldots, P_{a}(X), P_{0}(g X), \ldots, P_{a}(g X)\right)\right. \text { must be a polynomial. }
$$

We don't have access to P_{j} directly. But on D, it can be expressed with f_{j}, B_{j} and $Z_{\mathrm{i} 0}$! Instance reduction ($x_{\text {AIR }} \rightarrow x_{\text {RS-AIR }}$) [Part 2/2]

Let $\mathbf{f}=\left(f_{0}, \ldots, f_{a}\right) \in\left(\mathbb{F}^{D}\right)^{a+1}$. For each $C_{k} \in \mathcal{C}$, define $C_{k}[\mathbf{f}]: D \rightarrow \mathbb{F}$ s.t. for all $x \in D$: $C_{k}[\mathbf{f}](x)=\frac{\left(x-g^{T}\right)}{Z_{G}(x)} C_{k}\left(\left(f_{0} Z_{\text {io }}+B_{0}\right)(x), \ldots,\left(f_{a} Z_{\text {io }}+B_{a}\right)(x),\left(f_{0} Z_{\text {io }}+B_{0}\right)(g x), \ldots,\left(f_{a} Z_{\text {io }}+B_{a}\right)(g x)\right)$

Step 1: Rational functions which are low-degree polynomials

Witness $w_{\text {RS-AIR }}=\left(f_{0}, \ldots, f_{j}\right)$ such that $\forall x \in D, f_{j}(x)=\frac{P_{j}(x)-B_{j}(x)}{Z_{\mathrm{io}}(x)}$.
Second, define "rational constraints" on the RS-encoded witness.
Recall AIR's polynomial constraints: $\forall C_{k} \in \mathcal{C}, \forall i<T, C_{k}(\mathbf{S}[i], \mathbf{S}[i+1])=0$.
This means $C_{k}\left(P_{0}(x), \ldots, P_{a}(x), P_{0}(g x), \ldots, P_{a}(g x)\right)=0$ for all $x \in\left\{g^{i} \mid 0 \leq i<T\right\}=G \backslash\left\{g^{T}\right\}$.
Idea: Define $Z_{G}(X):=\prod_{h \in G}(X-h)$. Then,

$$
\frac{\left(X-g^{T}\right)}{Z_{G}(X)} C_{k}\left(\left(P_{0}(X), \ldots, P_{a}(X), P_{0}(g X), \ldots, P_{a}(g X)\right)\right. \text { must be a polynomial. }
$$

We don't have access to P_{j} directly. But on D, it can be expressed with f_{j}, B_{j} and $Z_{\mathrm{i} 0}$!
Instance reduction ($x_{\text {AIR }} \rightarrow x_{\text {RS-AIR }}$) [Part 2/2]
Let $\mathbf{f}=\left(f_{0}, \ldots, f_{a}\right) \in\left(\mathbb{F}^{D}\right)^{a+1}$. For each $C_{k} \in \mathcal{C}$, define $C_{k}[\mathbf{f}]: D \rightarrow \mathbb{F}$ s.t. for all $x \in D$:
$C_{k}[\mathbf{f}](x)=\frac{\left(x-g^{T}\right)}{Z_{G}(x)} C_{k}\left(\left(f_{0} Z_{\text {io }}+B_{0}\right)(x), \ldots,\left(f_{a} Z_{\text {io }}+B_{a}\right)(x),\left(f_{0} Z_{\text {io }}+B_{0}\right)(g x), \ldots,\left(f_{a} Z_{\text {io }}+B_{a}\right)(g x)\right)$
If $\mathbf{f}=\left(f_{0}, \ldots, f_{a}\right)$ is an encoding of a valid execution trace, then, for any $k, C_{k}[\mathbf{f}]$ is a codeword of a RS code $\operatorname{RS}\left[\mathbb{F}, D, k_{\mathrm{c}}\right]$.

Step 1: Recap

Witness $w_{\text {RS-AIR: }}$ an interleaved word $\mathrm{f}=\left(f_{0}, \ldots, f_{a}\right) \in\left(\mathbb{F}^{D}\right)^{a+1}$
Instance $x_{\mathrm{RS} \text {-AIR: }}$:
For input-output: $\left(B_{j}(X)\right)_{0 \leq j \leq a}$ of deg <1 and $Z_{\text {io }}(X)=\left(X-g^{0}\right)\left(X-g^{T}\right)$
Rational constraints $\left(C_{k}[\cdot]\right)_{0 \leq k \leq p} \quad C_{k}[\cdot]$ and any $\mathrm{f} \in\left(\mathbb{F}^{D}\right)^{a+1}$ jointly define $C_{k}[\mathbf{f}] \in \mathbb{F}^{D}$ Assignment code $\operatorname{RS}[\mathbb{F}, D, k]$ and constraint code $\operatorname{RS}\left[\mathbb{F}, D, k_{c}\right]$

RS-AIR relation $\mathcal{R}_{\text {RS-AIR }}$

$$
\left(x_{\mathrm{RS}-\mathrm{AR}}, w_{\mathrm{RS}-\mathrm{AR}}\right) \in \mathcal{R}_{\mathrm{RS}-\mathrm{AIR}} \Longleftrightarrow w_{\mathrm{RS}-\mathrm{ARR}}=\mathrm{f}=\left(f_{0}, \ldots, f_{a}\right) \text { satisfies }\left\{\begin{array}{l}
\forall j, f_{j} \in \operatorname{RS}[\mathbb{F}, D, k] \\
\forall k, C_{k}[\mathbf{f}] \in \operatorname{RS}\left[\mathbb{F}, D, k_{c}\right]
\end{array}\right.
$$

Reduction: From ($x_{\text {AIR }}, w_{\text {AIR }}$), we've just defined an RS-encoded pair ($x_{\text {RS-AIR }}, w_{\text {RS-AIR }}$) satisfying:

$$
\begin{array}{ll}
\text { Perfect completeness } & \text { If }\left(x_{\text {AIR }}, w_{\text {AIR }}\right) \in \mathcal{R}_{\text {Air }} \text {, then }\left(x_{\mathrm{RS}-\text { AIR }}, w_{\mathrm{RS} \text {-AIR }}\right) \in \mathcal{R}_{\text {RS-AIR }} . \\
\text { Perfect soundness } & \text { If } x_{\text {AIR }} \notin \mathcal{L}_{\text {AIR }}, \text { then } x_{\text {RS-AIR }} \neq \mathcal{L}_{\text {RS-AIR. }} .
\end{array}
$$

[^0]
Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V

Let V be a linear code and $u_{0}, \ldots, u_{l}: D \rightarrow \mathbb{F}$. Denote Δ relative Hamming distance.
Then, $\Delta\left(u_{0}+\sum_{j=1}^{l} r_{j} u_{j}, V\right) \simeq \max _{j} \Delta\left(u_{j}, V\right)$ with high proba over r_{1}, \ldots, r_{l}

Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V

Let V be a linear code and $u_{0}, \ldots, u_{l}: D \rightarrow \mathbb{F}$. Denote Δ relative Hamming distance.
Then, $\Delta\left(u_{0}+\sum_{j=1}^{l} r_{j} u_{j}, V\right) \simeq \max _{j} \Delta\left(u_{j}, V\right)$ with high proba over r_{1}, \ldots, r_{l}

virtual oracles

$f: D \rightarrow \mathbb{F}$
$g: D \rightarrow \mathbb{F}$

\mathcal{P} computes $\left\{\begin{array}{l}f:=f_{0}+\sum_{j=1}^{a} r_{j} f_{j} \\ g:=C_{0}[\mathbf{f}]+\sum_{k=1}^{p} r_{k}^{\prime} C_{k}[\mathbf{f}]\end{array}\right.$
\mathcal{P} and \mathcal{V} check if f and g are RS codewords, with $O(\log T)$ queries and verifier complexity.

Remark: \mathcal{P} doesn't need to send f and g. By querying $\mathbf{f}\left(x_{0}\right)$ and $\mathbf{f}\left(g x_{0}\right), \mathcal{V}$ can compute $f\left(x_{0}\right)$ and each $C_{k}[\mathbf{f}]\left(x_{0}\right)$, thus $g\left(x_{0}\right)$.

Notice that \mathcal{V} computes $Z_{G}\left(x_{0}\right)$ for $x_{0} \in D$ in $O(\log T)$ ops because $Z_{G}(X)=\prod_{h \in G}(X-h)=X^{T+1}-1$.

If the Collatz sequence starting with $u=42$ reaches 1 after $T=8$ iterations, then $f \in \operatorname{RS}[\mathbb{F}, D, k]$ and $g \in \operatorname{RS}\left[\mathbb{F}, D, k_{c}\right]$.

Otherwise, with very high proba, then f is δ-far from $\operatorname{RS}[\mathbb{F}, D, k]$ or g is δ-far from $\operatorname{RS}\left[\mathbb{F}, D, k_{c}\right]$, with $\delta \rightarrow 1$ when $\frac{\max \left(k, k_{c}\right)}{|D|} \rightarrow 0$.

An IOP with logarithmic query/verifier complexities is needed to test proximity to a Reed-Solomon code, meaning a verifier must distinguish between:

- functions which are RS codewords,
- functions which are δ-far from any codeword.

FRI: Prover-efficient RS IOPP (IOP of Proximity)

```
Reed-Solomon Proximity Testing
    Input: a code \(\operatorname{RS}[\mathbb{F}, D, k]\), a parameter \(\delta\)
    Input oracle: \(\quad f: D \rightarrow \mathbb{F}\)
    Completeness: If \(f \in \operatorname{RS}[\mathbb{F}, D, k]\), then \(\exists P \operatorname{Pr}[\langle P, V\rangle=1]=1\)
    Soundness: \(\quad\) If \(\Delta(f, \operatorname{RS}[\mathbb{F}, D, k])>\delta\), then \(\forall \tilde{P} \operatorname{Pr}[\langle\tilde{P}, V\rangle=1]<\operatorname{err}(\delta)\)
    \(\Delta\) relative Hamming distance
```

Naive test

1. Query k entries of $f \in \mathbb{F}^{D}: f\left(x_{0}\right), \ldots, f\left(x_{k-1}\right)$,
2. Reconstruct poly P by interpolation, then evaluate it in a $(k+1)$-th point $x_{k} \in D$,
3. Accept iff $P\left(x_{k}\right)=f\left(x_{k}\right)$.

Soundness: \mathcal{V} accepts with proba $<1-\delta$
Problem: \# queries is linear in $|D|$.
\mathcal{V} can't do better on his own. But a prover \mathcal{P} can help.

RS IOP of Proximity

FRI Protocol

[Ben-Sasson-Bentov-Horesh-Riabzev'18]
$\left[\begin{array}{ll}\text { \# rounds } & <\log |D| \\ \text { \# queries } & O(2 \log |D|) \\ \text { prover time } & <6|D| \\ \text { verifier time } & O(21 \log |D|) \\ \text { oracle length } & <|D| / 3\end{array}\right]$

Halving the size of the problem by folding

Let $k=2^{r}$. Assume there exists $\omega \in \mathbb{F}^{\times}$of order a large power of 2, and consider evaluation domains $D:=\langle\omega\rangle$ and $D^{\prime}:=\left\langle\omega^{2}\right\rangle(|D|>k)$.

How to check if $f: D \rightarrow \mathbb{F}$ is in $\operatorname{RS}[\mathbb{F}, D, k]$?

Halving the size of the problem by folding

Let $k=2^{r}$. Assume there exists $\omega \in \mathbb{F}^{\times}$of order a large power of 2, and consider evaluation domains $D:=\langle\omega\rangle$ and $D^{\prime}:=\left\langle\omega^{2}\right\rangle(|D|>k)$.

How to check if $f: D \rightarrow \mathbb{F}$ is in $\operatorname{RS}[\mathbb{F}, D, k]$?
Idea:

- Define $P(X)$ such that $P(x)=f(x)$ for every $x \in D \quad \operatorname{deg} P<|D|$
- Split P into g, h, such that $P(X)=g\left(X^{2}\right)+X h\left(X^{2}\right) \quad \operatorname{deg} g, \operatorname{deg} h<|D| / 2$
- For every $x \in D, f(x)=g\left(x^{2}\right)+x \cdot h\left(x^{2}\right)$
- Consider $g, h: D^{\prime} \rightarrow \mathbb{F}$ with $\left|D^{\prime}\right|=\frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define Fold $[f, \alpha]: D^{\prime} \rightarrow \mathbb{F}$ by Fold $[f, \alpha](y)=g(y)+\alpha \cdot h(y)$

Halving the size of the problem by folding

Let $k=2^{r}$. Assume there exists $\omega \in \mathbb{F}^{\times}$of order a large power of 2, and consider evaluation domains $D:=\langle\omega\rangle$ and $D^{\prime}:=\left\langle\omega^{2}\right\rangle(|D|>k)$.

How to check if $f: D \rightarrow \mathbb{F}$ is in $\operatorname{RS}[\mathbb{F}, D, k]$?
Idea:

- Define $P(X)$ such that $P(x)=f(x)$ for every $x \in D \quad \operatorname{deg} P<|D|$
- Split P into g, h, such that $P(X)=g\left(X^{2}\right)+X h\left(X^{2}\right) \quad \operatorname{deg} g, \operatorname{deg} h<|D| / 2$
- For every $x \in D, f(x)=g\left(x^{2}\right)+x \cdot h\left(x^{2}\right)$
- Consider $g, h: D^{\prime} \rightarrow \mathbb{F}$ with $\left|D^{\prime}\right|=\frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define Fold $[f, \alpha]: D^{\prime} \rightarrow \mathbb{F}$ by Fold $[f, \alpha](y)=g(y)+\alpha \cdot h(y)$

$$
\forall \alpha, f \in \operatorname{RS}[\mathbb{F}, D, k] \Longrightarrow \operatorname{FoLd}[f, \alpha] \in \operatorname{RS}\left[\mathbb{F}, D^{\prime}, k / 2\right]
$$

Halving the size of the problem by folding

Let $k=2^{r}$. Assume there exists $\omega \in \mathbb{F}^{\times}$of order a large power of 2 , and consider evaluation domains $D:=\langle\omega\rangle$ and $D^{\prime}:=\left\langle\omega^{2}\right\rangle(|D|>k)$.

How to check if $f: D \rightarrow \mathbb{F}$ is in $\operatorname{RS}[\mathbb{F}, D, k]$?
Idea:

- Define $P(X)$ such that $P(x)=f(x)$ for every $x \in D \quad \operatorname{deg} P<|D|$
- Split P into g, h, such that $P(X)=g\left(X^{2}\right)+X h\left(X^{2}\right) \quad \operatorname{deg} g, \operatorname{deg} h<|D| / 2$
- For every $x \in D, f(x)=g\left(x^{2}\right)+x \cdot h\left(x^{2}\right)$
- Consider $g, h: D^{\prime} \rightarrow \mathbb{F}$ with $\left|D^{\prime}\right|=\frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define Fold $[f, \alpha]: D^{\prime} \rightarrow \mathbb{F}$ by Fold $[f, \alpha](y)=g(y)+\alpha \cdot h(y)$

$$
\forall \alpha, f \in \operatorname{RS}[\mathbb{F}, D, k] \Longrightarrow \operatorname{FoLD}[f, \alpha] \in \operatorname{RS}\left[\mathbb{F}, D^{\prime}, k / 2\right]
$$

Observe, for all $x \in D$,

$$
\text { FOLD }[f, \alpha]\left(x^{2}\right)=\frac{f(x)+f(-x)}{2}+\alpha \frac{f(x)-f(-x)}{2 x} .
$$

Folding preserves distance to the code

Notations:

- $\mathrm{RS}_{0}:=\mathrm{RS}[\mathbb{F}, D, k]$ and $\mathrm{RS}_{1}:=\mathrm{RS}\left[\mathbb{F}, D^{\prime}, k / 2\right]$ of rate $\rho:=\frac{k}{|D|}$

Let κ be a security parameter. Assume $|\mathbb{F}|$ is large enough, i.e. $O_{\rho, \delta}\left(\frac{|D|^{2}}{|\mathbb{F}|}\right)=\operatorname{negl}(\kappa)$.
Theorem [Ben-Sasson-Carmon-Ishai-Kopparty'20]
Assume $\delta<1-\sqrt{\rho}$. Let $g, h: D^{\prime} \rightarrow \mathbb{F}$. If either $\Delta\left(g, \mathrm{RS}_{1}\right)>\delta$ or $\Delta\left(h, \mathrm{RS}_{1}\right)>\delta$, then

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}}\left[\Delta\left(g+\alpha h, \mathrm{RS}_{1}\right)<\delta\right]<\operatorname{negl}(\kappa)
$$

Corollary

Assume $\delta<1-\sqrt{\rho}$. If $\Delta\left(f, \mathrm{RS}_{0}\right)>\delta$, then

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}}\left[\Delta\left(\operatorname{FoLD}[f, \alpha], \operatorname{RS}_{1}\right)<\delta\right]<\operatorname{negl}(\kappa)
$$

FRI Protocol: Commit Phase

FRI Protocol: Query Phase

Soundness of the FRI Protocol

Soundness: If $\Delta(f, \operatorname{RS}[\mathbb{F}, D, k])>\delta, \mathcal{V}$ accepts with proba $<$ err.
κ security parameter

Theorem

Assuming $\delta<1-\sqrt{\rho}$ (ρ is code rate),

$$
\begin{aligned}
\text { err } & <\operatorname{errr}_{\text {commit }}+\left(\text { errquery }^{l}\right. \\
& <\operatorname{negl}(\kappa)+(1-\delta)^{l}
\end{aligned}
$$

To get error err $=$ negl (κ), repeat query phase enough time (l times $)$.
For instance, for $\kappa=128$.
Take $|\mathbb{F}|>2^{256},|D|=2^{20}, k=2^{16}, \delta=1-\sqrt{\rho}-2^{-14} \simeq 3 / 4$. Then, repeat $l=65$ times the query phase.
If $\Delta(f, \operatorname{RS}[\mathbb{F}, D, k])>\delta$, then \mathcal{V} accepts with proba $<2^{-128}$.

Beyond Reed-Solomon codes

Tensor product of RS codes

$$
\operatorname{RS}[\mathbb{F}, L, d]^{\otimes m}=\left\{f \in \mathbb{F}^{L^{m}}\left|P \in \mathbb{F}\left[X_{1}, \ldots, X_{m}\right], \operatorname{deg}_{X_{i}} P<d, f=P\right|_{L^{m}}\right\}
$$

Reed-Muller codes

$$
\operatorname{RM}[\mathbb{F}, L, d, m]=\left\{f \in \mathbb{F}^{L^{m}} \mid P \in \mathbb{F}\left[X_{1}, \ldots, X_{m}\right], \operatorname{deg}_{\mathrm{tot}} P<d, f=P_{\left.\right|_{L^{m}}}\right\}
$$

Is it possible to construct IOPP for RS $^{\otimes}$ and RM families with efficiency similar to the RS case?

Proximity tests for multivariate codes

Theorem (informal)

There exists an IOPP $(\mathcal{P}, \mathcal{V})$ for RS^{\otimes} (resp. RM codes) with
\checkmark linear prover time
\checkmark logarithmic query complexity
\checkmark linear (interactive) proof length
\checkmark logarithmic verifier time

Proximity tests for multivariate codes

Theorem (informal)

There exists an IOPP $(\mathcal{P}, \mathcal{V})$ for RS^{\otimes} (resp. RM codes) with
\checkmark linear prover time
\checkmark logarithmic query complexity
\checkmark linear (interactive) proof length
\checkmark logarithmic verifier time

1. Decompose m-variate polynomial f into $2^{m} m$-variate polynomials $g_{\boldsymbol{u}}, \boldsymbol{u} \in\{0,1\}^{m}$.
2. Define folding of f as a random linear combination of the g_{u} 's:

$$
\operatorname{FOLD}[f, p](y)=\sum_{u \in\{0,1\}^{m}} p^{u} g_{u}(y) .
$$

Properties:

completeness
locally computable
distance preservation

FoLD $[\cdot, \boldsymbol{p}](C) \subseteq C^{\prime}$
2^{m} queries
$f \delta$-far for $C \Longrightarrow$ FoLd $[f, p] \delta^{\prime}$-far from C^{\prime} (w.h.p.)

Proximity tests for multivariate codes

Theorem (informal)

There exists an IOPP $(\mathcal{P}, \mathcal{V})$ for RS^{\otimes} (resp. RM codes) with
\checkmark linear prover time
\checkmark logarithmic query complexity
\checkmark linear (interactive) proof length
\checkmark logarithmic verifier time

1. Decompose m-variate polynomial f into $2^{m} m$-variate polynomials $g_{\boldsymbol{u}}, \boldsymbol{u} \in\{0,1\}^{m}$.
2. Define folding of f as a random linear combination of the g_{u} 's:

$$
\begin{equation*}
\operatorname{FOLD}[f,(\boldsymbol{p}, \boldsymbol{q})](\boldsymbol{y})=\sum_{\boldsymbol{u} \in\{0,1\}^{m}} \boldsymbol{p}^{u} g_{\boldsymbol{u}}(\boldsymbol{y})+\sum_{\boldsymbol{u} \in\{0,1\}^{m} \backslash\{\mathbf{0}\}} \boldsymbol{q}^{\boldsymbol{u}} \boldsymbol{y}^{u} g_{\boldsymbol{u}}(\boldsymbol{y}) . \tag{RM}
\end{equation*}
$$

Properties:

completeness
locally computable
distance preservation

FOLD $[\cdot, p](C) \subseteq C^{\prime}$
2^{m} queries
$f \delta$-far for $C \Longrightarrow$ FoLd $[f, p] \delta^{\prime}$-far from C^{\prime} (w.h.p.)

Proximity tests for multivariate codes

Theorem (informal)

There exists an IOPP $(\mathcal{P}, \mathcal{V})$ for RS^{\otimes} (resp. RM codes) with
\checkmark linear prover time
\checkmark logarithmic query complexity
\checkmark linear (interactive) proof length \quad logarithmic verifier time

Soundness (informal)

Let δ be the relative distance of f to $\mathrm{RM}\left(r e s p . \mathrm{RS}^{\otimes}\right.$).
Assuming $\delta<c, \operatorname{err}(\delta)<\operatorname{negl}+(1-\delta)^{l}$.
\mathbf{x} Soundness threshold c not as good as $1-\sqrt{\rho}$ (RS case).
\rightarrow greater repetition parameter l, i.e. more queries, thus longer non-interactive proofs.

The rest of the story.

Recall: arithmetization transforms "instructions set" of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that $S(\boldsymbol{X})$ committed via $S_{\mid H^{m}}: H^{m} \rightarrow \mathbb{F}$ vanishes on a set G^{m}, where $G \cap H=\emptyset$ with a succinct proof.

What about other codes?

With Jade Nardi: a "FRI-like" IOPP for some families of Algebraic Geometry codes.
https://eccc.weizmann.ac.il/report/2020/165/

The rest of the story.

Recall: arithmetization transforms "instructions set" of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that $S(\boldsymbol{X})$ committed via $S_{\mid H^{m}}: H^{m} \rightarrow \mathbb{F}$ vanishes on a set G^{m}, where $G \cap H=\emptyset$ with a succinct proof.

What about other codes?

With Jade Nardi: a "FRI-like" IOPP for some families of Algebraic Geometry codes.
https://eccc.weizmann.ac.il/report/2020/165/

Future work:

- Construct building-blocks for multivariate/AG code-based arithmetization
- Find more "nice families" of AG codes
- Improve soundness of AG-IOPP

> Thank you for your attention!

[^0]: ${ }^{1}$ For a binary relation $\mathcal{R}=\{(x, w)\}$, its associated language is $\mathcal{L}=\{x \mid \exists w,(x, w) \in \mathcal{R}\}$.

