Efficient Proofs of Computational Integrity from Code-Based Interactive Oracle Proofs

Sarah Bordage

Project-team GRACE LIX, Ecole Polytechnique, Institut Polytechnique de Paris Inria Saclay Ile-de-France

> GT GRACE December 8, 2020

Motivation: Verifiable Computing

Powerful Prover

Weak Verifier

Motivation: Verifiable Computing

Motivation: Verifiable Computing

Our wishlist:

Fast verification

Remark: possible for computations with succinct representation, not for generic circuits,

or with pre-processing (setup phase delegated to a trusted party).

No trusted setup

Fast proof generation

Post-quantum security

A view of the "proofs-space" (by crypto assumptions)

	CRHF	DLOG	KoE/AGM/GGM (pairing-based)	Group of unknown order
2013			Pinocchio [PGHR]	
2014			[BCTV]	
2016	ZKBoo [GM016]	[BCCGP16]	[Groth16]	
	SCI [BBC+]		[GM17]	
2017	Ligero [AHIV]	Bulletproof [BBB+]	(ZK) vSQL [ZGK+]	
		Hyrax [WTS+]		
2018	Stark [BBHR]		VRAM [ZGK+]	
	Aurora [BCR+]			
2019	Fractal [cos]	Spartan [Setty]	Sonic [мвк+]	Supersonic [BFS]
	Succinct Aurora [BCG+]	Halo [BGH]	Plonk [GWC]	
	RedShift [KPV]		Marlin [СНМ+]	
	Virgo [zxzs]		Libra [xzz+]	
2020	Virgo++ [ZWZZ]		Mirage [KKPS]	

Some implementations of succinct non-interactive arguments for general computations

PCP-based succinct non-interactive arguments

Starting point: PCP characterization of NP

PCP class

 $L \in \mathsf{PCP}[r, q] \text{ if } \exists \text{ efficient randomized } \mathcal{V} \text{ such that}$ $\begin{array}{l} \mathsf{Completeness:} & \forall x \in L, \exists \pi, \mathcal{V}^{\pi}(x) = 1 \\ \texttt{Soundness:} & \forall x \notin L, \forall \tilde{\pi}, \Pr[\mathcal{V}^{\tilde{\pi}}(x) = 0] > 1/2 \\ \text{where } V \text{ reads } \pi \text{ at } \leq q \text{ locations and tosses} \leq r \text{ coins.} \end{array}$

Starting point: PCP characterization of NP

PCP class

```
L \in \mathsf{PCP}[r, q] \text{ if } \exists \text{ efficient randomized } \mathcal{V} \text{ such that}
\begin{array}{l} \mathsf{Completeness:} & \forall x \in L, \exists \pi, \mathcal{V}^{\pi}(x) = 1 \\ \texttt{Soundness:} & \forall x \notin L, \forall \tilde{\pi}, \Pr[\mathcal{V}^{\tilde{\pi}}(x) = 0] > 1/2 \\ \text{where } V \text{ reads } \pi \text{ at } \leq q \text{ locations and tosses} \leq r \text{ coins.} \end{array}
```


PCP Theorem: NP = PCP[log n, O(1)] [BFLS91, FGL*96, ALMSS'98, AS'98,...]
 Check NP statements way faster than checking an NP witness!
 PCPs are not succinct proofs! PCP generation is too expensive!
 30 years later: practical real-world deployment

Allow interaction with unbounded prover \mathcal{P} [Goldwasser-Micali-Rackoff'85, Babai'85]

IP class

 $\begin{array}{ll} L \in \textbf{IP} \text{ if } \exists \mathcal{V} \textit{ efficient randomized such that} \\ \textbf{Completeness:} & \forall x \in L, \exists P, \langle P, V \rangle(x) = 1 \\ \textbf{Soundness:} & \forall x \notin L, \forall \tilde{P}, \Pr[\langle \tilde{P}, V \rangle(x) = 0] > \frac{1}{2} \end{array}$

Thm: IP = PSPACE [Shamir'86]

Interactive Proofs (IPs) can be

• Zero-knowledge (ZK): \mathcal{V} learns nothing more than the veracity of the statement.

Assuming the existence of one-way functions, all languages in NP have a ZK proof system. [Goldreich-Micali-Wigderson'91]

 \bullet Public-coin: ${\cal V}$ uses only public randomness

Public-coin IPs can be made non-interactive in the Random Oracle Model [Fiat-Shamir'86, Pointcheval-Stern'96]

Succinct interactive arguments from PCPs

[Kilian'92] First zero-knowledge sublinear argument i.e. $O(q \log |\pi|)$


```
\begin{aligned} & \operatorname{PCP} \pi \ \operatorname{for} x \in L \\ & h_0 = \operatorname{MerkleRoot}(\pi) \\ & \operatorname{Derive queries} q_1, q_2, q_3 \ \operatorname{from} H(h_0) \\ & p_1 = \operatorname{MerklePath}(\pi[q_1]) \\ & p_2 = \operatorname{MerklePath}(\pi[q_2]) \\ & p_3 = \operatorname{MerklePath}(\pi[q_3]) \\ & \pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \end{aligned}
```

- ✓ Non-interactive in the Random Oracle model (→ SNARG)
- ✓ Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)

- ✓ Succinct argument
- ✓ One message
- Presumably post-quantum
- ✓ Lightweight crypto
- ✗ PCP generation is too expensive


```
\begin{array}{l} \mathsf{PCP}\ \pi\ \mathsf{for}\ x\in L\\ h_0 = \mathsf{MerkleRoot}(\pi)\\ \mathsf{Derive\ queries\ } q_1, q_2, q_3\ \mathsf{from}\ H(h_0)\\ p_1 = \mathsf{MerklePath}(\pi[q_1])\\ p_2 = \mathsf{MerklePath}(\pi[q_2])\\ p_3 = \mathsf{MerklePath}(\pi[q_3])\\ \hline \pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \end{array}
```

- ✓ Non-interactive in the Random Oracle model (→ SNARG)
- ✓ Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)

- ✓ Succinct argument
- ✓ One message
- Presumably post-quantum
- ✓ Lightweight crypto
- ✗ PCP generation is too expensive


```
\begin{split} & \mathsf{PCP} \ \pi \ \mathsf{for} \ x \in L \\ & h_0 = \mathsf{MerkleRoot}(\pi) \\ & \mathsf{Derive queries} \ q_1, q_2, q_3 \ \mathsf{from} \ H(h_0) \\ & p_1 = \mathsf{MerklePath}(\pi[q_1]) \\ & p_2 = \mathsf{MerklePath}(\pi[q_2]) \\ & p_3 = \mathsf{MerklePath}(\pi[q_3]) \\ & \underline{\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3)} \end{split}
```

- ✓ Non-interactive in the Random Oracle model (→ SNARG)
- ✓ Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)

- ✓ Succinct argument
- ✓ One message
- Presumably post-quantum
- ✓ Lightweight crypto
- ✗ PCP generation is too expensive


```
\begin{split} & \mathsf{PCP} \ \pi \ \mathsf{for} \ x \in L \\ & h_0 = \mathsf{MerkleRoot}(\pi) \\ & \mathsf{Derive queries} \ q_1, q_2, q_3 \ \mathsf{from} \ H(h_0) \\ & p_1 = \mathsf{MerklePath}(\pi[q_1]) \\ & p_2 = \mathsf{MerklePath}(\pi[q_2]) \\ & p_3 = \mathsf{MerklePath}(\pi[q_3]) \\ & \underline{\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3)} \end{split}
```

- ✓ Non-interactive in the Random Oracle model (→ SNARG)
- ✓ Compatible with: Zero-Knowledge, Proof of Knowledge (\rightarrow ZK-SNARK)

- ✓ Succinct argument
- ✓ One message
- Presumably post-quantum
- ✓ Lightweight crypto
- ✗ PCP generation is too expensive

IOP Model (Interactive Oracle Proofs)

From computational integrity to low-degree testing

A computational integrity statement

"z is the result of running program F for T steps."

Verification can be **exponentially faster** than naively re-running the computation.

STARK: Scalable Transparent ARgument of Knowledge [BBHR18]

non-interactive argument for bounded halting problems of a Random-Access Machine (RAM)

Over a finite field \mathbb{F} of cryptographic size:

Setup	Prover	Verifier	Communication complexity	Post-Quantum	
Transparent	$O(T\log^2 T)$	$O(\log^2 T)$	$O(\log^2 T)$	yes	

Applications:

Allows verification of multiple programs in a single proof (StarkEx, Cairo). One can build PQ signatures from ZK-STARKs (see Ziggy STARK).

constraints of a given computation captured by relation \mathcal{R} \rightarrow constraints on low-degree polynomials (e.g. vanish on a given set) \rightarrow low-degree testing

- If $(x, w) \in \mathcal{R}$, arithmetization produces $c \in C$,
- If $(x, w) \notin \mathcal{R}$, arithmetization produces \tilde{c} which is **very far** from C.

Overview of a STARK: our goal is to construct an IOP $(\mathcal{P}, \mathcal{V})$ with a polylog verifier, logarithmic query complexity, linear oracle proof length, quasilinear prover.

Let's consider a toy example on a **Collatz sequence**.

Start with any positive integer *u*. Each term is computed from the previous one as follows:

- if the previous term is even, divide it by 2,
- if the previous term is odd, multiply it by 3 and add 1,

Example: for u = 42, it gives (42, 21, 64, 32, 16, 8, 4, 2, 1, 4, 2, 1, ...).

Collatz conjecture: for any positive integer *u*, the sequence will always reach 1.

Computational integrity statement:

"The Collatz sequence that starts with 42, ends with 1 after 8 iterations."

Collatz sequence: (u_i) defined by $u_0 = u \in \mathbb{N} \setminus \{0\}$ and $u_{i+1} = \begin{cases} u_i/2 & \text{if } u_i \text{ even,} \\ 3u_i + 1 & \text{if } u_i \text{ odd.} \end{cases}$

Computational integrity statement:

"The Collatz sequence that starts with u = 42 reaches 1 after T = 8 iterations."

Algebraic Intermediate Representation (AIR)

Take ${\mathbb F}$ a large enough prime field.

Witness w_{AIR} (execution trace):

- array $(T+1) \times (a+1)$ of elements in \mathbb{F}
- row i: state $\mathbf{S}[i] = (R_0[i], \dots, R_a[i])$ of the computation at time i
- column j: contents of register R_j over time

Instance x_{AIR}

- Boundary constraints e.g. input u, output z
- Polynomial constraints
 - $\mathcal{C} \subset \mathbb{F}[\boldsymbol{X}, \boldsymbol{Y}], \mathcal{C} := \{C_0, \dots, C_p\}$
 - $\boldsymbol{X} = (X_0, \dots, X_a) \rightsquigarrow$ current state registers
 - $\boldsymbol{Y} = (Y_0, \dots, Y_a) \rightsquigarrow$ next state registers

AIR relation \mathcal{R}_{AIR}

 $(x_{\text{AIR}}, w_{\text{AIR}}) \in \mathcal{R}_{\text{AIR}} \iff \begin{cases} \text{"i} \\ \text{"o} \\ \forall \\ \forall \end{pmatrix}$

input is
$$u''$$

foutput is z''
 $dC \in C, \forall i < T, C(\mathbf{S}[i], \mathbf{S}[i+1]) = 0$

(*) "The Collatz sequence that starts with u = 42, ends with 1 after T = 8 iterations."

Notation:
$$\boldsymbol{b} := (2^j)_{0 \le j \le 6}$$
, $\langle \boldsymbol{b}, S[i] \rangle := \sum_{j=0}^a 2^j R_j[i]$ and $\langle \boldsymbol{b}, \boldsymbol{X} \rangle := \sum_{j=0}^a 2^j X_i^j$

Witness w_{AIR} : $(T+1) \times (a+1)$ array of elts in $\mathbb F$

	R_0	R_1	R_2	R_3	R_4	R_5	R_6	
i = 0	0	1	0	1	0	1	0	42
i = 1	1	0	1	0	1	0	0	21
i = 2	0	0	0	0	0	0	1	64
i = 3	0	0	0	0	0	1	0	32
i = 4	0	0	0	0	1	0	0	16
i = 5	0	0	0	1	0	0	0	8
i = 6	0	0	1	0	0	0	0	4
i = 7	0	1	0	0	0	0	0	2
i = 8	1	0	0	0	0	0	0	1

Boundary constraints

Instance x_{AIR} :

1. $\langle b, S[0] \rangle - 42 = 0$ (first term is 42) 2. $\langle b, S[T] \rangle - 1 = 0$ (last term is 1) Constraints $C = \{C_0, ..., C_7\} \subset \mathbb{F}[X, Y]$ 3. For $j = 0, ..., 6, C_j(X, Y) = X_j^2 - X_j$ 4. $C_7(X, Y) = (1 - X_0) (\langle b, X \rangle - 2 \langle b, Y \rangle) + X_0 (3 \langle b, X \rangle + 1 - \langle b, Y \rangle)$

$$(x_{\text{AIR}}, w_{\text{AIR}}) \in \mathcal{R}_{\text{AIR}} \iff \begin{cases} \langle \boldsymbol{b}, S[0] \rangle - 42 = 0\\ \langle \boldsymbol{b}, S[T] \rangle - 1 = 0\\ \forall C_k \in \mathcal{C}, \forall i < T, \ C_k(\mathbf{S}[i], \mathbf{S}[i+1]) = 0 \end{cases}$$

- \checkmark constraints of a given computation captured by relation \mathcal{R}
 - \rightarrow constraints on low-degree polynomials (e.g. vanish on a given set)
 - \rightarrow low-degree testing
 - If $(x, w) \in \mathcal{R}$, arithmetization produces $c \in C$,
 - If $(x, w) \notin \mathcal{R}$, arithmetization produces \tilde{c} which is **very far** from C.

Assume it exists $g \in \mathbb{F}^{\times}$ of order T + 1, $G := \langle g \rangle$. Let $D \subset \mathbb{F}$ such that $D \cap G = \emptyset$ and $\rho |D| = T$.

 $\rho \in (0,1)$

Reed-Solomon code of dim. $k : \mathsf{RS}[\mathbb{F}, D, k] := \{P|_D : D \to \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k\}.$

Encoding the trace (prover's side) For *j* from 0 to *a*:

- 1. Interpolate $P_j(X)$ of degree $\leq T$ such that $P_j(g^i) = R_j[i]$
- 2. Evaluate $P_j(X)$ on D.

	R_0	R_1	R_2	R_3	R_4	R_5	R_6	
i = 0	0	1	0	1	0	1	0	42
i = 1	1	0	1	0	1	0	0	21
i = 2	0	0	0	0	0	0	1	64
i = 3	0	0	0	0	0	1	0	32
i = 4	0	0	0	0	1	0	0	16
i = 5	0	0	0	1	0	0	0	8
i = 6	0	0	1	0	0	0	0	4
i = 7	0	1	0	0	0	0	0	2
i = 8	1	0	0	0	0	0	0	1

Assume it exists $g \in \mathbb{F}^{\times}$ of order T + 1, $G := \langle g \rangle$. Let $D \subset \mathbb{F}$ such that $D \cap G = \emptyset$ and $\rho |D| = T$. $\rho \in (0, 1)$

Reed-Solomon code of dim. $k : \mathsf{RS}[\mathbb{F}, D, k] := \{P|_D : D \to \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k\}.$

Encoding the trace (prover's side) For j from 0 to a:

- 1. Interpolate $P_j(X)$ of degree $\leq T$ such that $P_j(g^i) = R_j[i]$
- 2. Evaluate $P_j(X)$ on D.

	P_0	P_1	P_2	P_3	P_4	P_5	P_6	
g^0	0	1	0	1	0	1	0	42
g^1	1	0	1	0	1	0	0	21
g^2	0	0	0	0	0	0	1	64
g^3	0	0	0	0	0	1	0	32
g^4	0	0	0	0	1	0	0	16
g^5	0	0	0	1	0	0	0	8
g^6	0	0	1	0	0	0	0	4
g^7	0	1	0	0	0	0	0	2
g^8	1	0	0	0	0	0	0	1

Assume it exists $g \in \mathbb{F}^{\times}$ of order T + 1, $G := \langle g \rangle$. Let $D \subset \mathbb{F}$ such that $D \cap G = \emptyset$ and $\rho |D| = T$. $\rho \in (0, 1)$

Reed-Solomon code of dim. $k : \mathsf{RS}[\mathbb{F}, D, k] := \{P|_D : D \to \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k\}.$

Encoding the trace (prover's side) For j from 0 to a:

- 1. Interpolate $P_j(X)$ of degree $\leq T$ such that $P_j(g^i) = R_j[i]$
- 2. Evaluate $P_j(X)$ on D.

	P_0	P_1	P_2	P_3	P_4	P_5	P_6	
g^0	0	1	0	1	0	1	0	42
g^1	1	0	1	0	1	0	0	21
g^2	0	0	0	0	0	0	1	64
g^3	0	0	0	0	0	1	0	32
g^4	0	0	0	0	1	0	0	16
g^5	0	0	0	1	0	0	0	8
g^6	0	0	1	0	0	0	0	4
g^7	0	1	0	0	0	0	0	2
g^8	1	0	0	0	0	0	0	1

We want to transform (x_{AIR}, w_{AIR}) into "encoded" counterparts (x_{RS-AIR}, w_{RS-AIR}) .

First, we force the encoded registers to be consistent with the specified input/output. **Instance reduction** ($x_{AIR} \rightarrow x_{RS-AIR}$) [Part 1/2] Define (a + 1) "boundary" polynomials ($B_j(X)$) $_{0 \le j \le a}$ such that $\deg B_j < 2$,

and vanishing polynomial $Z_{io}(X) := (X - 1)(X - g^T)$.

Witness reduction ($w_{AIR} \rightarrow w_{RS-AIR}$) For j from 0 to a:

1. Interpolate $P_j(X)$ of degree $\leq T$ such that $P_j(g^i) = R_j[i]$

2. Evaluate $\frac{P_j(X) - B_j(X)}{Z_{io}(X)}$ on D to get $f_j : D \to \mathbb{F}$ (expected to be a poly of deg $\leq T - 2$)

$$\begin{cases} P_j(g^0) = B_j(g^0) \\ P_j(g^T) = B_j(g^T) \end{cases} \iff \begin{cases} (X-1) \mid (P_j(X) - B_j(X)) \\ (X-g^T) \mid (P_j(X) - B_j(X)) \end{cases}$$

We want to transform (x_{AIR}, w_{AIR}) into "encoded" counterparts (x_{RS-AIR}, w_{RS-AIR}) .

First, we force the encoded registers to be consistent with the specified input/output. **Instance reduction** ($x_{AIR} \rightarrow x_{RS-AIR}$) [Part 1/2] Define (a + 1) "boundary" polynomials ($B_i(X)$)_{0<i<a} such that deg $B_i < 2$,

and vanishing polynomial $Z_{io}(X) := (X - 1)(X - g^T)$.

Witness reduction ($w_{AIR} \rightarrow w_{RS-AIR}$) For j from 0 to a:

1. Interpolate $P_j(X)$ of degree $\leq T$ such that $P_j(g^i) = R_j[i]$

2. Evaluate $\frac{P_j(X) - B_j(X)}{Z_{io}(X)}$ on D to get $f_j : D \to \mathbb{F}$ (expected to be a poly of deg $\leq T - 2$)

If $\mathbf{f} = (f_0, \dots, f_a)$ is an encoding of a valid execution trace, then, for any j, f_j is a codeword of a code $RS[\mathbb{F}, D, k]$.

(Here, k = T - 1)

Witness $w_{\text{RS-AIR}} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{\text{io}}(x)}$.

Second, define "rational constraints" on the RS-encoded witness.

Recall AIR's polynomial constraints: $\forall C_k \in C, \forall i < T, C_k(\mathbf{S}[i], \mathbf{S}[i+1]) = 0.$ This means $C_k(P_0(x), \dots, P_a(x), P_0(gx), \dots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \le i < T\} = G \setminus \{g^T\}.$

Witness $w_{\text{RS-AIR}} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{\text{io}}(x)}$.

Second, define "rational constraints" on the RS-encoded witness.

Recall AIR's polynomial constraints: $\forall C_k \in \mathcal{C}, \forall i < T, C_k(\mathbf{S}[i], \mathbf{S}[i+1]) = 0.$ This means $C_k(P_0(x), \dots, P_a(x), P_0(gx), \dots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \le i < T\} = G \setminus \{g^T\}.$

Idea: Define $Z_G(X) := \prod_{h \in G} (X - h)$. Then,

 $\frac{(X-g^T)}{Z_G(X)}C_k((P_0(X),\ldots,P_a(X),P_0(gX),\ldots,P_a(gX)))$ must be a polynomial.

Witness $w_{\text{RS-AIR}} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{\text{io}}(x)}$.

Second, define "rational constraints" on the RS-encoded witness.

Recall AIR's polynomial constraints: $\forall C_k \in C, \forall i < T, C_k(\mathbf{S}[i], \mathbf{S}[i+1]) = 0.$ This means $C_k(P_0(x), \dots, P_a(x), P_0(gx), \dots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \le i < T\} = G \setminus \{g^T\}.$ Idea: Define $Z_G(X) := \prod_{h \in G} (X - h).$ Then, $\frac{(X - g^T)}{Z_G(X)} C_k((P_0(X), \dots, P_a(X), P_0(gX), \dots, P_a(gX)))$ must be a polynomial.

We don't have access to P_j directly. But on D, it can be expressed with f_j , B_j and Z_{io} ! Instance reduction ($x_{AIR} \rightarrow x_{RS-AIR}$) [Part 2/2]

Let $\mathbf{f} = (f_0, \dots, f_a) \in (\mathbb{F}^D)^{a+1}$. For each $C_k \in \mathcal{C}$, define $C_k[\mathbf{f}] : D \to \mathbb{F}$ s.t. for all $x \in D$: $C_k[\mathbf{f}](x) = \frac{(x - g^T)}{Z_G(x)} C_k \left((f_0 Z_{\mathsf{io}} + B_0)(x), \dots, (f_a Z_{\mathsf{io}} + B_a)(x), (f_0 Z_{\mathsf{io}} + B_0)(gx), \dots, (f_a Z_{\mathsf{io}} + B_a)(gx) \right)$ Witness $w_{\text{RS-AIR}} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{\text{io}}(x)}$.

Second, define "rational constraints" on the RS-encoded witness.

Recall AIR's polynomial constraints: $\forall C_k \in C, \forall i < T, C_k(\mathbf{S}[i], \mathbf{S}[i+1]) = 0.$ This means $C_k(P_0(x), \dots, P_a(x), P_0(gx), \dots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \le i < T\} = G \setminus \{g^T\}.$ Idea: Define $Z_G(X) := \prod_{h \in G} (X - h).$ Then, $\frac{(X - g^T)}{Z_G(X)} C_k((P_0(X), \dots, P_a(X), P_0(gX), \dots, P_a(gX)))$ must be a polynomial.

We don't have access to P_j directly. But on D, it can be expressed with f_j , B_j and Z_{io} ! Instance reduction ($x_{AIR} \rightarrow x_{RS-AIR}$) [Part 2/2]

Let $\mathbf{f} = (f_0, \dots, f_a) \in (\mathbb{F}^D)^{a+1}$. For each $C_k \in \mathcal{C}$, define $C_k[\mathbf{f}] : D \to \mathbb{F}$ s.t. for all $x \in D$: $C_k[\mathbf{f}](x) = \frac{(x - g^T)}{Z_G(x)} C_k \left((f_0 Z_{\mathsf{io}} + B_0)(x), \dots, (f_a Z_{\mathsf{io}} + B_a)(x), (f_0 Z_{\mathsf{io}} + B_0)(gx), \dots, (f_a Z_{\mathsf{io}} + B_a)(gx) \right)$

If $\mathbf{f} = (f_0, \dots, f_a)$ is an encoding of a valid execution trace, then, for any k, $C_k[\mathbf{f}]$ is a codeword of a RS code RS[\mathbb{F} , D, k_c]. (Here, $k_c = T + 5$) Witness $w_{\text{RS-AIR}}$: an interleaved word $\mathbf{f} = (f_0, \dots, f_a) \in (\mathbb{F}^D)^{a+1}$

Instance *x*_{RS-AIR}:

For input-output: $(B_j(X))_{0 \le j \le a}$ of deg < 1 and $Z_{io}(X) = (X - g^0)(X - g^T)$ Rational constraints $(C_k[\cdot])_{0 \le k \le p}$ $C_k[\cdot]$ and any $\mathbf{f} \in (\mathbb{F}^D)^{a+1}$ jointly define $C_k[\mathbf{f}] \in \mathbb{F}^D$ Assignment code $\mathsf{RS}[\mathbb{F}, D, k]$ and constraint code $\mathsf{RS}[\mathbb{F}, D, k_c]$

RS-AIR relation \mathcal{R}_{RS-AIR}

$$x_{\text{RS-AIR}}, w_{\text{RS-AIR}} \in \mathcal{R}_{\text{RS-AIR}} \iff w_{\text{RS-AIR}} = \mathbf{f} = (f_0, \dots, f_a) \text{ satisfies } \begin{cases} \forall j, f_j \in \text{RS}[\mathbb{F}, D, k] \\ \forall k, C_k[\mathbf{f}] \in \text{RS}[\mathbb{F}, D, k_c] \end{cases}$$

Reduction: From (x_{AIR}, w_{AIR}) , we've just defined an RS-encoded pair (x_{RS-AIR}, w_{RS-AIR}) satisfying:

Perfect completenessIf $(x_{AIR}, w_{AIR}) \in \mathcal{R}_{AiR}$, then $(x_{RS-AIR}, w_{RS-AIR}) \in \mathcal{R}_{RS-AIR}$.**Perfect soundness**If $x_{AIR} \notin \mathcal{L}_{AIR}^{1}$, then $x_{RS-AIR} \notin \mathcal{L}_{RS-AIR}$.

¹For a binary relation $\mathcal{R} = \{(x, w)\}$, its associated language is $\mathcal{L} = \{x \mid \exists w, (x, w) \in \mathcal{R}\}$.

Idea: average distance to a code V

Let V be a linear code and $u_0, \ldots, u_l : D \to \mathbb{F}$. Denote Δ relative Hamming distance. Then, $\Delta(u_0 + \sum_{j=1}^l r_j u_j, V) \simeq \max_j \Delta(u_j, V)$ with high proba over r_1, \ldots, r_l

$$\mathcal{P} \text{ computes} \left\{ egin{array}{l} f := f_0 + \sum_{j=1}^a r_j f_j \ g := C_0[\mathbf{f}] + \sum_{k=1}^p r'_k C_k[\mathbf{f}] \end{array}
ight.$$

 \mathcal{P} and \mathcal{V} check if f and g are RS codewords, with $O(\log T)$ queries and verifier complexity.

Idea: average distance to a code V

Let V be a linear code and $u_0, \ldots, u_l : D \to \mathbb{F}$. Denote Δ relative Hamming distance. Then, $\Delta(u_0 + \sum_{j=1}^l r_j u_j, V) \simeq \max_j \Delta(u_j, V)$ with high proba over r_1, \ldots, r_l

 ${\mathcal P}$ computes

$$\mathsf{es} \left\{ \begin{array}{l} f := f_0 + \sum_{j=1}^a r_j f_j \\ g := C_0[\mathbf{f}] + \sum_{k=1}^p r'_k C_k[\mathbf{f}] \end{array} \right.$$

 \mathcal{P} and \mathcal{V} check if f and g are RS codewords, with $O(\log T)$ queries and verifier complexity.

Remark: \mathcal{P} doesn't need to send f and g. By querying $\mathbf{f}(x_0)$ and $\mathbf{f}(gx_0)$, \mathcal{V} can compute $f(x_0)$ and each $C_k[\mathbf{f}](x_0)$, thus $g(x_0)$.

Notice that \mathcal{V} computes $Z_G(x_0)$ for $x_0 \in D$ in $O(\log T)$ ops because $Z_G(X) = \prod_{h \in G} (X - h) = X^{T+1} - 1$.

```
If the Collatz sequence starting with u = 42 reaches 1 after T = 8 iterations,
then f \in RS[\mathbb{F}, D, k] and g \in RS[\mathbb{F}, D, k_c].
```

```
Otherwise, with very high proba,
then f is \delta-far from RS[\mathbb{F}, D, k] or g is \delta-far from RS[\mathbb{F}, D, k_c],
with \delta \to 1 when \frac{\max(k, k_c)}{|D|} \to 0.
```

An IOP with logarithmic query/verifier complexities is needed to **test proximity** to a Reed-Solomon code, meaning a verifier must distinguish between:

- functions which are RS codewords,
- functions which are δ -far from any codeword.

Univariate low-degree test: FRI protocol

Reed-Solomon Proximity Testing

Input:	a code $RS[\mathbb{F},D,k]$, a parameter δ	
Input oracle:	$f:D \to \mathbb{F}$	
Completeness:	If $f \in RS[\mathbb{F}, D, k]$, then $\exists P \Pr[\langle P, V angle = 1] = 1$	
Soundness:	If $\Delta(f, RS[\mathbb{F}, D, k]) > \delta$, then $\forall \tilde{P} \Pr[\langle \tilde{P}, V \rangle = 1] < err(\delta)$	
	Δ relative Hamming distance	

Naive test

- 1. Query k entries of $f \in \mathbb{F}^D$: $f(x_0), \ldots, f(x_{k-1})$,
- 2. Reconstruct poly P by interpolation, then evaluate it in a (k + 1)-th point $x_k \in D$,
- 3. Accept iff $P(x_k) = f(x_k)$.

Soundness: \mathcal{V} accepts with proba $< 1 - \delta$ **Problem:** # queries is **linear** in |D|. \mathcal{V} can't do better on his own. But a prover \mathcal{P} can help.

RS IOP of Proximity FRI Protocol

[Ben-Sasson-Bentov-Horesh-Riabzev'18]

Γ	# rounds	$< \log D $
	# queries	$O(2\log D)$
	prover time	< 6 D
	verifier time	$O(21 \log D)$
L	oracle length	< D /3

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^{\times}$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle (|D| > k)$.

How to check if $f: D \to \mathbb{F}$ is in RS[\mathbb{F}, D, k]?

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^{\times}$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle (|D| > k)$.

How to check if $f: D \to \mathbb{F}$ is in RS[\mathbb{F}, D, k]?

Idea:

- Define P(X) such that P(x) = f(x) for every $x \in D$
- Split P into g, h, such that $P(X) = g(X^2) + Xh(X^2)$ deg $g, \deg h < |D|/2$

 $\deg P < |D|$
deg $g, \deg \frac{h}{l} < |D|/2$

- For every $x \in D$, $f(x) = g(x^2) + x \cdot h(x^2)$
- Consider $g, h: D' \to \mathbb{F}$ with $|D'| = \frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define Fold $[f, \alpha] : D' \to \mathbb{F}$ by Fold $[f, \alpha](y) = g(y) + \alpha \cdot h(y)$

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^{\times}$ of order a large power of 2. and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle$ (|D| > k).

How to check if $f: D \to \mathbb{F}$ is in RS[\mathbb{F}, D, k]?

Idea:

- Define P(X) such that P(x) = f(x) for every $x \in D$ $\deg P < |D|$
- Split P into q, h, such that $P(X) = q(X^2) + Xh(X^2)$ deg q, deg h < |D|/2

- For every $x \in D$, $f(x) = q(x^2) + x \cdot h(x^2)$
- Consider $g, h: D' \to \mathbb{F}$ with $|D'| = \frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define FOLD $[f, \alpha] : D' \to \mathbb{F}$ by FOLD $[f, \alpha](y) = q(y) + \alpha \cdot h(y)$

 $\forall \alpha, f \in \mathsf{RS}[\mathbb{F}, D, k] \implies \mathsf{Fold}[f, \alpha] \in \mathsf{RS}[\mathbb{F}, D', k/2]$

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^{\times}$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle$ (|D| > k).

How to check if $f: D \to \mathbb{F}$ is in RS[\mathbb{F}, D, k]?

Idea:

- Define P(X) such that P(x) = f(x) for every $x \in D$ $\deg P < |D|$
- Split P into q, h, such that $P(X) = q(X^2) + Xh(X^2)$ deg q, deg h < |D|/2

- For every $x \in D$, $f(x) = q(x^2) + x \cdot h(x^2)$
- Consider $g, h: D' \to \mathbb{F}$ with $|D'| = \frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define FOLD $[f, \alpha] : D' \to \mathbb{F}$ by FOLD $[f, \alpha](y) = q(y) + \alpha \cdot h(y)$

 $\forall \alpha, f \in \mathsf{RS}[\mathbb{F}, D, k] \implies \mathsf{FOLD}[f, \alpha] \in \mathsf{RS}[\mathbb{F}, D', k/2]$

Observe, for all $x \in D$,

$$\operatorname{FOLD}\left[f,\alpha\right](x^2) = \frac{f(x)+f(-x)}{2} + \alpha \frac{f(x)-f(-x)}{2x}.$$

Compute FOLD $[f, \alpha](y)$ with only **2 queries** to f.

Folding preserves distance to the code

Notations:

• $\mathsf{RS}_0 := \mathsf{RS}[\mathbb{F}, D, k]$ and $\mathsf{RS}_1 := \mathsf{RS}[\mathbb{F}, D', k/2]$ of rate $\rho := \frac{k}{|D|}$

Let κ be a security parameter. Assume $|\mathbb{F}|$ is large enough, i.e. $O_{\rho,\delta}\left(\frac{|D|^2}{|\mathbb{F}|}\right) = \operatorname{negl}(\kappa)$.

Theorem [Ben-Sasson-Carmon-Ishai-Kopparty'20]

Assume $\delta < 1 - \sqrt{\rho}$. Let $g, h : D' \to \mathbb{F}$. If either $\Delta(g, \mathsf{RS}_1) > \delta$ or $\Delta(h, \mathsf{RS}_1) > \delta$, then

$$\Pr_{\alpha \in \mathbb{F}}[\Delta(g + \alpha h, \mathsf{RS}_1) < \delta] < \mathsf{negl}(\kappa)$$

Corollary

Assume $\delta < 1 - \sqrt{\rho}$. If $\Delta(f, \mathsf{RS}_0) > \delta$, then

```
\Pr_{\alpha \in \mathbb{F}}[\Delta(\mathsf{FOLD}\left[f,\alpha\right],\mathsf{RS}_1) < \delta] < \mathsf{negl}(\kappa)
```


Soundness: If $\Delta(f, \mathsf{RS}[\mathbb{F}, D, k]) > \delta$, \mathcal{V} accepts with proba $< \mathsf{err}$.

 κ security parameter

Theorem

Assuming $\delta < 1 - \sqrt{\rho}$ (ρ is code rate),

```
\begin{split} & \mathsf{err} < \mathsf{err}_{\mathsf{commit}} + \left(\mathsf{err}_{\mathsf{query}}\right)^l \\ & < \mathsf{negl}(\kappa) + (1 - \delta)^l \end{split}
```

To get error $err = negl(\kappa)$, repeat query phase enough time (*l* times).

For instance, for $\kappa = 128$.

Take $|\mathbb{F}| > 2^{256}$, $|D| = 2^{20}$, $k = 2^{16}$, $\delta = 1 - \sqrt{\rho} - 2^{-14} \simeq 3/4$. Then, repeat l = 65 times the query phase.

If $\Delta(f, \mathsf{RS}[\mathbb{F}, D, k]) > \delta$, then \mathcal{V} accepts with proba $< 2^{-128}$.

Beyond Reed-Solomon codes

Tensor product of RS codes

$$\mathsf{RS}[\mathbb{F}, L, d]^{\otimes m} = \left\{ f \in {\mathbb{F}^L}^m \mid P \in \mathbb{F}[X_1, ..., X_m], \operatorname{deg}_{X_i} P < d, f = P \mid_{L^m} \right\}$$

Reed-Muller codes

$$\mathsf{RM}[\mathbb{F}, L, d, m] = \left\{ f \in \mathbb{F}^{L^m} \mid P \in \mathbb{F}[X_1, ..., X_m], \operatorname{deg_{tot}} P < d, f = P|_{L^m} \right\}$$

Is it possible to construct IOPP for RS^{\otimes} and RM families with efficiency similar to the RS case?

Theorem (informal)

There exists an IOPP $(\mathcal{P},\mathcal{V})$ for RS^\otimes (resp. RM codes) with

- ✓ linear prover time
- ✓ linear (interactive) proof length

- logarithmic query complexity
- logarithmic verifier time

Theorem (informal)

There exists an IOPP $(\mathcal{P},\mathcal{V})$ for RS^\otimes (resp. RM codes) with

- linear prover time
- linear (interactive) proof length

- logarithmic query complexity
- ✓ logarithmic verifier time
- 1. Decompose *m*-variate polynomial f into 2^m *m*-variate polynomials $g_u, u \in \{0, 1\}^m$.
- 2. Define folding of f as a random linear combination of the g_u 's:

$$\operatorname{Fold}\left[f,p\right](y) = \sum_{u \in \{0,1\}^m} p^u g_u(y). \tag{RS}^{\otimes}$$

Properties:

completeness locally computable distance preservation

$$\begin{array}{l} \mathsf{Fold}\left[\cdot,p\right](C)\subseteq C'\\ 2^m \text{ queries}\\ f \ \delta\text{-far for } C \implies \mathsf{Fold}\left[f,p\right]\delta'\text{-far from } C' \text{ (w.h.p.)} \end{array}$$

Theorem (informal)

There exists an IOPP $(\mathcal{P},\mathcal{V})$ for RS^\otimes (resp. RM codes) with

- linear prover time
- linear (interactive) proof length

- logarithmic query complexity
- logarithmic verifier time
- 1. Decompose *m*-variate polynomial f into 2^m *m*-variate polynomials $g_u, u \in \{0, 1\}^m$.
- 2. Define folding of f as a random linear combination of the g_u 's:

$$\mathsf{FOLD}\left[f,(p,q)\right](y) = \sum_{u \in \{0,1\}^m} p^u g_u(y) + \sum_{u \in \{0,1\}^m \setminus \{0\}} q^u y^u g_u(y). \tag{RM}$$

Properties:

 $\begin{array}{ll} \mbox{completeness} & \mbox{FOLD}\,[\cdot,p]\,(C)\subseteq C' \\ \mbox{locally computable} & 2^m \mbox{ queries} \\ \mbox{distance preservation} & f \ \delta\mbox{-far for } C \implies \mbox{FOLD}\,[f,p] \ \delta'\mbox{-far from } C' \ \mbox{(w.h.p.)} \end{array}$

Theorem (informal)

There exists an IOPP $(\mathcal{P},\mathcal{V})$ for RS^\otimes (resp. RM codes) with

- linear prover time
- linear (interactive) proof length

- logarithmic query complexity
- 🖌 logarithmic verifier time

Soundness (informal)

```
Let \delta be the relative distance of f to RM (resp. RS<sup>\otimes</sup>).
```

Assuming $\delta < c$, $err(\delta) < negl + (1 - \delta)^l$.

X Soundness threshold c not as good as $1 - \sqrt{\rho}$ (RS case).

ightarrow greater repetition parameter l, i.e. more queries, thus longer non-interactive proofs.

The rest of the story.

Recall: arithmetization transforms "instructions set" of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that $S(\mathbf{X})$ committed via $S_{|H^m} : H^m \to \mathbb{F}$ vanishes on a set G^m , where $G \cap H = \emptyset$ with a succinct proof.

What about other codes?

With Jade Nardi: a "FRI-like" IOPP for some families of **Algebraic Geometry codes**. https://eccc.weizmann.ac.il/report/2020/165/

The rest of the story.

Recall: arithmetization transforms "instructions set" of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that $S(\mathbf{X})$ committed via $S_{|H^m} : H^m \to \mathbb{F}$ vanishes on a set G^m , where $G \cap H = \emptyset$ with a succinct proof.

What about other codes?

With Jade Nardi: a "FRI-like" IOPP for some families of **Algebraic Geometry codes**. https://eccc.weizmann.ac.il/report/2020/165/

Future work:

- · Construct building-blocks for multivariate/AG code-based arithmetization
- Find more "nice families" of AG codes
- Improve soundness of AG-IOPP