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Motivation: Verifiable Computing

Please, run program
F on input = for me.

| want to check
if your result is correct.

Ty

Powerful Prover Weak Verifier
On input (F, z), output result y Ys On input (F,x,y, ),
and accept iff 7 is a valid proof
for statement “y = F(x)”
Our wishlist:
Fast verification

Remark: possible for computations with succinct representation, not for generic circuits,
or with pre-processing (setup phase delegated to a trusted party).

No trusted setup

Fast proof generation

Post-quantum security
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A view of the “proofs-space” (by crypto assumptions)

CRHF DLOG KoE/AGM/GGM Group of
(pairing-based) | unknown order
2013 Pinocchio [PGHR]
2014 [BCTV]
2016 ZKB0O [GMO16] [BCCGP16] [Groth16]
SCI [BBC+] [GM17]
2017 Ligero [AHIV] Bulletproof [BeB+] | (ZK) vSQL [zGKk+]
Hyrax [wrs+]
2018 Stark [BBHR] VRAM [zGK+]
Aurora [BCR+]
2019 Fractal [cos] Spartan [setty] Sonic [MBK+] Supersonic [BFs]
Succinct Aurora [BCG+] Halo [BGH] Plonk [Gwc]
RedShift [kpv] Marlin [cHM+]
Virgo [zxzs] Libra [xzz+]
2020 Virgo++ [zwzz] Mirage [KKPS]

Some implementations of succinct non-interactive arguments for general computations
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PCP-based succinct non-interactive arguments



Starting point: PCP characterization of NP

PCP class
L € PCP[r, q] if 3 efficient randomized V such that
Completeness: Ve L,3r, V" (z)=1
Soundness: Vo ¢ L,V7, Pr[V" (z) =0] > 1/2
where V reads = at < ¢ locations and tosses < r coins.

PCP: Probabilistically Checkable Proof
NP class /

L € NP if 3 efficient V such that: E redundant encoding
Completeness: Vi € L,3w,V(z,w) =1

Soundness: Vz ¢ L,V, V(z,w) =0 1%
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Completeness: Ve L,3r, V" (z)=1
Soundness: Vo ¢ L,V7, Pr[V" (z) =0] > 1/2
where V reads = at < ¢ locations and tosses < r coins.

PCP: Probabilistically Checkable Proof
NP class /

L € NP if 3 efficient V such that: E redundant encoding
Completeness: Vi € L,3w,V(z,w) =1

Soundness: Vz ¢ L,V, V(z,w) =0 1%
7/ PCP Theorem: [BFLS91, FGL+96, ALMSS'98, AS'98,...]
« Check NP statements way faster than checking an NP witness!
X PCPs are not succinct proofs! % PCP generation is too expensive!

/" 30 years later: practical real-world deployment
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Interactive Proof Systems and Zero-Knowledge

Allow interaction with unbounded prover P [Goldwasser-Micali-Rackoff'8s, Babai'8s]

IP class

L € IP if 3V efficient randomized such that
Completeness: Va e L,3P,(P,V)(z) =1
Soundness: Vo ¢ L,YP,Pr[(P,V)(z) =0] > %

Z Thm: [Shamir'ge]
Interactive Proofs (IPs) can be
e Zero-knowledge (ZK): V learns nothing more than the veracity of the statement.

/Z Assuming the existence of one-way functions, all languages in NP have a ZK proof system.
[Goldreich-Micali-Wigderson'o1]

o Public-coin: V uses only public randomness

# Public-coin IPs can be made non-interactive in the Random Oracle Model [Fiat-Shamir'ss,

Pointcheval-Stern’'96] 128
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Succinct interactive arguments from PCPs

Succinct interactive arguments for NP
[Kilian'92]

Computationally ~§
bounded
Prover Verifier
Collision-resistant hash function H (CRHF)

Compute PCP

mprovingz € L Commit(x)

MerkleRoot(r)

random queries q1, g2, g3

Reveal(m[q1]), Reveal(w[g2]), Reveal(w[qs])
=(n

[qi], MerklePath(7[g;])); Check Merkle
paths and run Vpcp

[Kilian'e2] First zero-knowledge sublinear argument i.e. O(qlog |r|)
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Succinct Non-interactive ARGuments from PCPs

Applying Fiat-Shamir Paradigm to PCPs

[Micali'oo]

Verifier

Computationally Same public-randomness

bounded

i.e.a CRHF H
Prover

PCPrforxz € L
ho = MerkleRoot(7)
Derive queries g1, g2, g3 from H (hq)
p1 = MerklePath(m[q1])
p2 = MerklePath(m[q2])
p3 = MerklePath(r[qs])

7 = (ho, 7[q1], 7[q2], w[qs], p1, P2, P3)

Succinct argument

One message

Presumably post-quantum
Lightweight crypto

x & < <KL

PCP generation is too
expensive

Derive queries,

check Merkle paths

« Non-interactive in the Random Oracle model (— SN

and run Vecp

ARG)

v Compatible with: Zero-Knowledge, Proof of Knowledge (— ZK-SNARK)
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IOP Model (Interactive Oracle Proofs)

&

Verifier [BCS16, RRR'16]

Prover

T IOPs generalize PCPs and IPs
— [ b e s
m public-coin IOP — non-interactive
— T k----- > in the RO model (Fiat-Shamir paradigm)
with communication complexity:
« linear in query complexity of the I0P
+ polylog in oracle proof length |71 | + ... + |7r|
mr—1
— T k----- >
Before: PCP + hash function = succinct arguments
~—~ —_—————

information theoretic crypto
From now on: Replace PCPs by I0Ps ~ practical succinct arguments
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From computational integrity to low-degree
testing



ZK-STARK

A computational integrity statement
“z is the result of running program F for 7" steps.”
Verification can be exponentially faster than naively re-running the computation.

STARK: Scalable Transparent ARgument of Knowledge [BBHR18]
non-interactive argument for bounded halting problems of a Random-Access Machine (RAM)

Over a finite field I of cryptographic size:

Setup Prover Verifier | Communication complexity | Post-Quantum
Transparent | O(T'log?T) | O(log®T) O(log?T) yes
Applications:

Allows verification of multiple programs in a single proof (StarkEx, Cairo).
One can build PQ signatures from ZK-STARKs (see Ziggy STARK).
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Arithmetization

Relation R

front-end ! . . o Py
Program i — (Intermediate Arithmetization —>| Proximity to a code C
1

representation)

Proof system (P, V)

constraints of a given computation captured by relation R
— constraints on low-degree polynomials (e.g. vanish on a given set)
— low-degree testing

« If (z,w) € R, arithmetization produces c € C,
« If (z,w) ¢ R, arithmetization produces ¢ which is very far from C.

Overview of a STARK: our goal is to construct an IOP (P, V) with a polylog verifier, logarithmic
query complexity, linear oracle proof length, quasilinear prover.
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Toy example: a Collatz Sequence

Let’s consider a toy example on a Collatz sequence.

Start with any positive integer w.
Each term is computed from the previous one as follows:

- if the previous term is even, divide it by 2,
- if the previous term is odd, multiply it by 3 and add 1,

Example: for u = 42, it gives (42, 21, 64, 32,16, 8, 4,2, 1, 4, 2, 1, ...).

Collatz conjecture: for any positive integer u, the sequence will always reach 1.

Computational integrity statement:

“The Collatz sequence that starts with 42, ends with 1 after 8 iterations.”
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The initial relation to build a STARK

u; /2 if u; even,

Collatz sequence: (u;) defined by up = v € N\ {0} and w41 = { 3u,+1 ifu odd.

Computational integrity statement:
“The Collatz sequence that starts with « = 42 reaches 1 after 7' = 8 iterations.”

Algebraic Intermediate Representation (AIR)
Take IF a large enough prime field.

Witness war (execution trace): Instance zar

< array (T'+1) x (a+ 1) of elements in F « Boundary constraints e.g. input u, output z
- row i: state S[i] = (Roli],. .., Ra[i]) of the + Polynomial constraints
computation at time ¢ + CCF[X,Y],C:={Co,...,Cp} .
‘ ) . + X = (Xo,...,Xa) ~ current state registers
+ column j: contents of register R, over time « Y = (Yo, ..., Ya) ~ next state registers
AIR relation Rar
"input is u”
(zaIR, WAR) € RarR < "output is 2"
VC € C,Vi < T,C(S[i],S[i+1]) = 0
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An AIR for our toy example

(*) “The Collatz sequence that starts with u = 42, ends with 1 after T = 8 iterations.”

Notation: b := (27)o<;<s, (b, EZJH ] and ( ZZJX’
j=0 3=0
Witness war: (T + 1) x (a + 1) array of elts in F Instance zaR:
Ry Ri Ry R3 Ry Rs Rg Boundary constraints
i=01 0 ! o ! 0 ! 9| 1. (b,S[0]) —42=0 (first term is 42)
=il 1 o 1 o 1 o o 21
i=2| 0 | o] o] o] o] o 1 | 64 2. (b,S[T])—1=0 (last term is 1)
¢=310 101010101 1]01J3 copstraintsC = {Co,...,Cr} C F[X,Y]
i=4] o | o | o o 1 0 o | 16
i=5[ 0| o | o] 1] 0] o o] 8 3. Forj=0,...,6,C;(X,Y) = X — X;
i=6] o | o 1 o | o] o o 4 1 _
8= o 1 o o o o 0 2 4. 07(X7Y) - (1 XO) (<b>X> 2<b/Y>)
i=8| 1] o | o | o | o] o] o 1 +Xo (3(b,X) +1—(b,Y))

(b, S[0]) —42 =0
(zaR, WAR) € Rar < b, S[T)h)—1=0
VCy € C,¥i < T, Cu(S[i], S[i + 1]) =
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In the previous episode

Relation R

front-end ! . . o P
e (Intermediate +—— Arithmetization —>| Proximity to a code C
P ! representation)

Proof system (P, V)

« constraints of a given computation captured by relation R
— constraints on low-degree polynomials (e.g. vanish on a given set)
— low-degree testing

« If (z,w) € R, arithmetization produces ¢ € C,

« If (z,w) ¢ R, arithmetization produces ¢ which is very far from C.
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Step 1: Rational functions which are low-degree polynomials

Assume it exists g € F* of order 7'+ 1, G := {g).
Let D Cc Fsuchthat DNG =0 and p|D| =T. p€(0,1)

Reed-Solomon code of dim. k: RS[F, D, k] :== {Pip : D — F | P € F[X],deg P < k}.
Encoding the trace (prover’s side) For j from 0 to a:

1. Interpolate P;(X) of degree < T such that P;(g°) = R;]i]
2. Evaluate P;(X) on D.

Ry Ri Rx R3 Ry Rs Rs
i=0] o 1 [5) 1 o 1 0 | 42
i=1 1 o 1 o 1 o o 21
i=21| o o [5) o o o 1 64
i=3| o o [§) o o 1 o | 32
i=41| o o [5) o 1 o o | 16
i=5| 0 o [9) 1 o o o 8
i=61| 0 o 1 o o o o 4
i=7] o 1 [5) o o o o 2
i=8 | 1 o [S) o o o o 1
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Step 1: Rational functions which are low-degree polynomials

We want to transform (zar, war) into “encoded” counterparts (zrs-ar, Wrs-aR)-
First, we force the encoded registers to be consistent with the specified input/output.

Instance reduction (zxar — zrs-ar) [Part 1/2]
Define (a + 1) “boundary” polynomials (B;(X))o<,<a such that deg B; < 2,

1ifj =0,

0 _ TN J )

(Bj(g ))ogjga =(0,1,0,1,0,1,0) e Bilg") = { 0 otherwise.
input = 42 output =1

and vanishing polynomial Z,(X) := (X — 1)(X — ¢g7).
Witness reduction (war — wrs-air) For j from 0 to a:

1. Interpolate P;(X) of degree < T such that P;(¢") = R,[i]

2. Evaluate % onDtogetf;:D—F (expected to be a poly of deg < T — 2)

Pi(g°) = B;(¢°) (X = 1) | (F(X) = B;(X))
{ Pilg") = Bi(s") { (X —g") | (P(X) = B;(X))
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Define (a + 1) “boundary” polynomials (B;(X))o<,<a such that deg B; < 2,

1ifj=0
B;(g° =(0,1,0,1,0,1,0 and B;(g") = ;
( ](g ))OSjSa ( 9 =9 Wy =g Wy <59 ) J(g ) { 00therW|Se.
input = 42 output =1
and vanishing polynomial Z,(X) := (X — 1)(X — g7).
Witness reduction (war — wrs-air) For j from 0 to a:
1. Interpolate P;(X) of degree < T such that P;(g*) = R,[i]
2. Evaluate M onDtogetf;:D—TF (expected to be a poly of deg < T — 2)
Iff = (fo,..., f.) is an encoding of a valid execution trace,
then, for any j, f; is a codeword of a code RS[F, D, k]. (Here, k =T — 1)
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Step 1: Rational functions which are low-degree polynomials

Witness wes-ar = (fo,. ., f;) such that Vo € D, f;(z) = 252,

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: VCi, € C,Vi < T, Cx(S[i], S[i + 1]) = 0.
This means Cy(Po(x), ..., Po(x), Po(gx),. .., P.(gz)) =0forallz € {gi |[0<i< T} =G\ {;/T}.
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ZG ($

If f = (fo,...,f.) is an encoding of a valid execution trace,

then, for any k, Cy[f] is a codeword of a RS code RS[F, D, k.]. (Here, k. =T +5)
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Witness wgs-ar: an interleaved word f = (fo,..., fa) € (IFD)(“L1

Instance zgrs-ar:

For input-output: (B;(X))o<;<. of deg < 1 and Z,(X) = (X — ¢°)(X — g7)

Rational constraints (C[-])o<r<, Cx[-] and any f € (FP)*™! jointly define Cy[f] € FP
Assignment code RS[F, D, k] and constraint code RS[F, D, k.]

RS-AIR relation Rgs-ar

Vj, f; € RSIF, D, k]
Vk, Ck[f] € RSIF, D, k]

Reduction: From (zar, war), we've just defined an RS-encoded pair (zgs-ar, wrs-air) satisfying:

Perfect completeness If (IA|R, waAR) € Rairy then (ZRs-AIR, WRs-AIR) € TRRs-AIR-
Perfect soundness If TAIR % £AIR11 then TRS-AIR ¢ »CRS—AIR-

"For a binary relation R = {(z, w)}, its associated language is £ = {z | Jw, (z,w) € R}.
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Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V'
Let V be a linear code and uy, ..., u; : D — FF. Denote A relative Hamming distance.
Then, A(uo + 23:1 rjuj, V) ~ max; A(uj, V) with high proba over r1,...,r;

' fe=fot+ 32 mifi
E % P computes =1
P ﬁ oracle proofs % p { g = Colf] + 22:1 7 C [£]
— fo:D—TF - '

— A:DoSF k--»

P and V check if f and g are RS codewords,
with O(log T') queries and verifier complexity.

— fazlé—HF k--»

! /

Pilg o 00 9 Pag Pilgo oo o Fi
— f:D—>F VRN
— g:D—F VRN
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Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V'

Let V be a linear code and uy, ..., u; : D — FF. Denote A relative Hamming distance.
Then, A(uo + 23:1 rjuj, V) ~ max; A(uj, V) with high proba over r1,...,r;

fe=fo+d 2 rifi

: P computes
P ﬁ oracle proofs @ % p { g = Colf] + Z£:1 T;@Ck [£]
— fo:D—F  k--»

P and V check if f and g are RS codewords,

— fi: D —F N with O(log T') queries and verifier complexity.
4>| Jo:D—F |‘* ks ‘P doesn’t need to send f and g.
TlyeoosTasTl, ey Tp By querying f(zo) and f(gzo), V can compute f(zo) and

each Cy[f](zo), thus g(zo).

virtual oracles

J Do F ’ Notice that V computes Zg (zo) for zo € D in O(logT') ops
g:D—TF > because Zg(X) = [[,co(X —h) = XTH —1.
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Final step: Low-degree testing

If the Collatz sequence starting with u = 42 reaches 1 after 7' = 8 iterations,
then f € RS[F, D, k]l and g € RS[F, D, k.].

Otherwise, with very high proba,
then f is é-far from RS[F, D, k] or g is é-far from RS[F, D, k.],

with § — 1 when % — 0.

An IOP with logarithmic query/verifier complexities is needed to test proximity to a
Reed-Solomon code, meaning a verifier must distinguish between:

« functions which are RS codewords,

« functions which are §-far from any codeword.
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Univariate low-degree test: FRI protocol




FRI: Prover-efficient RS IOPP (IOP of Proximity)

Reed-Solomon Proximity Testing

Input: a code RS[F, D, k], a parameter §

Input oracle: f:D—F

Completeness: If f € RS[F, D, k], then 3P Pr[(P, V) =1] =1

Soundness: If A (f,RSIF, D, kl) > 6, then VP Pr[(P,V) = 1] < err(d)

A relative Hamming distance
Naive test L.
RS IOP of Proximity
FRI Protocol

[Ben-Sasson-Bentov-Horesh-Riabzev'18]

1. Query k entries of f € F?: f(zo),..., f(zr_1),

2. Reconstruct poly P by interpolation, then evaluate
itina (k + 1)-th point z, € D,

) # rounds < log|D|
3. Accept iff P(zr) = f(zk). # queries 0(2log |D|)
Soundness: V accepts with proba < 1 —4¢ prover time < 6|D|
# queries is linear in | D|. verifier time  O(21log|D|)
V can’t do better on his own. But a prover P can help. oracle length < |D|/3
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Halving the size of the problem by folding

Let k£ = 2". Assume there exists w € F* of order a large power of 2,
and consider evaluation domains D := (w) and D’ := (w?) (|D| > k).

How to checkif f : D — Fisin RS[F, D, k]?
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Let k£ = 2". Assume there exists w € F* of order a large power of 2,
and consider evaluation domains D := (w) and D’ := (w?) (|D| > k).

How to checkif f : D — Fisin RS[F, D, k]?

Idea:
+ Define P(X) such that P(z) = f(z) foreveryz € D deg P < |D|
« Split P into g, h, such that P(X) = ¢(X?) + X1 (X?) deg g,degh < |D| /2

« Foreveryx € D, f(x) = (x2) L gpec (1,2)
- Consider g, h: D’ — F with |D'| = 1|D|
* For a € F, define FoLp [f, ] : D' — F by FoLb [£, o] () = 4(y) + o~ (y)
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« Split P into g, h, such that P(X) = ¢(X?) + X1 (X?) deg g,degh < |D| /2

« Foreveryz € D, f(z) = g(x?) + z - h(2?)

- Consider g,h : D" — F with |D’| = | D|

* For a € IF, define FoLD [f,a] : D' — F by FOLD [f, o] (y) = 9(y) + - h(y)
Va, f € RS[F, D, k] = FoLD [f, o] € RS[F, D', k/2]
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Halving the size of the problem by folding

Let k£ = 2". Assume there exists w € F* of order a large power of 2,
and consider evaluation domains D := (w) and D’ := (w?) (|D| > k).

How to checkif f : D — Fisin RS[F, D, k]?

Idea:
+ Define P(X) such that P(z) = f(z) foreveryz € D deg P < |D|
« Split P into g, h, such that P(X) = ¢(X?) + X1 (X?) deg g,degh < |D| /2

« Foreveryz € D, f(z) = g(x?) + z - h(2?)

- Consider g,h : D" — F with |D’| = | D|

* For a € IF, define FoLD [f,a] : D' — F by FOLD [f, o] (y) = 9(y) + - h(y)
Va, f € RS[F, D, k] = FoLD [f, o] € RS[F, D', k/2]

Observe, forall z € D,

FoLD [f, a] (?) = L@HCa) | f@)=f(=2)

Compute FoLD [f, o] (y) with only 2 queries to f.
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Folding preserves distance to the code

Notations:

« RSy := RS[F, D, k] and RS, := RS[F, D', k/2] of rate p :=

k
D]

Let x be a security parameter. Assume |F| is large enough, i.e. O, s (‘ﬁ“f) = negl(k).

Theorem [Ben-Sasson-Carmon-Ishai-Kopparty'20]

Assume § < 1—/p. Letg,h: D" — F. If either A(g,RS1) > & or A(h,RS1) > 4, then

Pr]F[A(g + ah,RS1) < 4] < negl(x)
(1S

Corollary
Assume 6 < 1 — /p. If A(f,RSo) > 4, then

1361%[A(F0LD [f,a],RS1) < 6] < negl(k)
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FRI Protocol: Commit Phase

| 7
T ~ ~
/ RS :
Honest prover computes:

Prover Verifier
o

*>| i |«———> f1 = FoLD [fo, ao]

4) ,,,,,,, N f2 = FOLD [f1, a1]

,,,,,,,,, N fr =FOLD [fr_1, ctr_1]
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FRI Protocol: Query Phase

| fo |
v > ~
z ~T§ Check consistency
. at random locations
TR
.- 7 Verifier
k / //
/ ?
| h |,’ fi(s1) = FoLD [fo, ao] (s1)
7’ /
4 /

7 f2(s2) = FOLD [f1, e (s2)

Fr(50) Z FOLD [fr_1, @r_1] (s)
Final test: f. ¢ RS,
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Soundness of the FRI Protocol

Soundness: If A(f,RS[F, D, k]) > 4, V accepts with proba <
K security parameter
Theorem

Assuming § < 1 — ,/p (p is code rate),

l
< errcommit + (€rrquery)

< negl(k) + (1 — 8)"

To get error err = negl(x), repeat query phase enough time (I times).

For instance, for x = 128.

Take [F| > 2°°°, |D| = 2%,k =2'%,§ =1 — /p — 27 '* ~ 3/4. Then, repeat | = 65 times the query
phase.

If A(f,RS[F, D, k]) > §, then V accepts with proba < 27128,
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Beyond Reed-Solomon codes




Tensored RS codes, Reed-Muller codes

Tensor product of RS codes

RS[F,L,d}®m — {f EFLM |P GF[thmeLdegx,P < dvf:P‘Lm}

Reed-Muller codes

RM[F, L, d, m] = {f EF™ | P € FX1, ..., Xm], dego P < d, f = pm}

Is it possible to construct IOPP for RS® and RM families
with efficiency similar to the RS case?
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Proximity tests for multivariate codes

There exists an I0PP (P, V) for RS® (resp. RM codes) with

linear prover time logarithmic query complexity

linear (interactive) proof length logarithmic verifier time
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Proximity tests for multivariate codes

There exists an I0PP (P, V) for RS® (resp. RM codes) with
linear prover time logarithmic query complexity

linear (interactive) proof length logarithmic verifier time

1. Decompose m-variate polynomial f into 2™ m-variate polynomials g..,w € {0,1}™.
2. Define folding of f as a random linear combination of the g,,'s:

FoLp [f, p] (y) = Z P gu(y)-

uwe{0,1}m

(RS¥)
Properties:
completeness

locally computable
distance preservation

FoLp [+, p] (C) C '
2™ queries

f o-far for C = FoLD [f, p] &’'-far from C’ (w.h.p.)
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Proximity tests for multivariate codes

There exists an I0PP (P, V) for RS® (resp. RM codes) with

linear prover time logarithmic query complexity

linear (interactive) proof length logarithmic verifier time

1. Decompose m-variate polynomial f into 2™ m-variate polynomials g..,w € {0,1}™.

2. Define folding of f as a random linear combination of the g,,'s:

oo (f, (0, @)l (W) = Y Plou+ Y. a'y ou(y). (RM)
ue{0,1}™ u€e{0,1}™\{0}
Properties:
completeness FoLp [, p] (C) C '
locally computable 2™ queries

distance preservation  f §-far for C = FoLbp [f, p] §'-far from C’ (w.h.p.)

27/28



Proximity tests for multivariate codes

There exists an I0PP (P, V) for RS® (resp. RM codes) with

linear prover time logarithmic query complexity
linear (interactive) proof length logarithmic verifier time
Soundness (informal)

Let § be the relative distance of f to RM (resp. RS®).
Assuming § < ¢, err(9) < negl + (1 — §)".

% Soundness threshold ¢ not as good as 1 — ,/p (RS case).
— greater repetition parameter /, i.e. more queries, thus longer non-interactive proofs.
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The rest of the story.

Recall: arithmetization transforms “instructions set” of a program into constraints on low-degree
polynomials, e.g. vanish on a given set.

We can use our IOPP to check that S(X) committed via S\yzm : H™ — F vanishes on a set G™,
where G N H = () with a succinct proof.

What about other codes?

With Jade Nardi: a “FRI-like” IOPP for some families of Algebraic Geometry codes.
https://eccc.weizmann.ac.il/report/2020/165/
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Recall: arithmetization transforms “instructions set” of a program into constraints on low-degree
polynomials, e.g. vanish on a given set.

We can use our IOPP to check that S(X) committed via S\yzm : H™ — F vanishes on a set G™,
where G N H = () with a succinct proof.

What about other codes?

With Jade Nardi: a “FRI-like” IOPP for some families of Algebraic Geometry codes.
https://eccc.weizmann.ac.il/report/2020/165/

Future work:

« Construct building-blocks for multivariate/AG code-based arithmetization
+ Find more “nice families” of AG codes

« Improve soundness of AG-IOPP

Thank you for your attention!
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