Efficient Proofs of Computational Integrity from Code-Based Interactive Oracle Proofs

Sarah Bordage

Project-team GRACE
LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria Saclay Ile-de-France

GT GRACE
December 8, 2020
Motivation: Verifiable Computing

Please, run program \(F \) on input \(x \) for me.

I want to quickly check if your result is correct.

Our wishlist:
- Fast verification
- Remark: possible for computations with succinct representation, not for generic circuits, or with pre-processing (setup phase delegated to a trusted party).
- No trusted setup
- Fast proof generation
- Post-quantum security

Powerful Prover

Weak Verifier
Motivation: Verifiable Computing

Please, run program F on input x for me.

I want to quickly check if your result is correct.

Powerful Prover
On input (F, x), output result y and proof of correctness π

Weak Verifier
On input (F, x, y, π), accept iff π is a valid proof for statement “$y = F(x)$”

Our wishlist:
- Fast verification
- Remark: possible for computations with succinct representation, not for generic circuits, or with pre-processing (setup phase delegated to a trusted party).
- No trusted setup
- Fast proof generation
- Post-quantum security
Motivation: Verifiable Computing

Please, run program F on input x for me.

I want to quickly check if your result is correct.

Powerful Prover

On input (F, x), output result y and proof of correctness π

Weak Verifier

On input (F, x, y, π), accept iff π is a valid proof for statement “$y = F(x)$”

Our wishlist:

- **Fast verification**
 - Remark: possible for computations with succinct representation, not for generic circuits, or with pre-processing (setup phase delegated to a trusted party).

- **No trusted setup**
- **Fast proof generation**
- **Post-quantum security**
A view of the “proofs-space” (by crypto assumptions)

<table>
<thead>
<tr>
<th>Year</th>
<th>CRHF</th>
<th>DLOG</th>
<th>KoE/AGM/GGM (pairing-based)</th>
<th>Group of unknown order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td>Pinocchio [PGHR]</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td>[BCTV]</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>ZKBoo [GMO16]</td>
<td>[BCCGP16]</td>
<td>[Groth16]</td>
<td>[GM17]</td>
</tr>
<tr>
<td></td>
<td>SCI [BBC+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Ligero [AHIV]</td>
<td>Bulletproof [BBB+]</td>
<td>(ZK) vSQL [ZGK+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyrax [WTS+]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Stark [BBHR]</td>
<td></td>
<td>vRAM [ZGK+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aurora [BCR+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RedShift [KPV]</td>
<td></td>
<td>Marlin [CHM+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virgo [ZXZS]</td>
<td></td>
<td>Libra [XZZ+]</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Virgo++ [ZWZZ]</td>
<td></td>
<td>Mirage [KKPS]</td>
<td></td>
</tr>
</tbody>
</table>

Some implementations of succinct non-interactive arguments for general computations
PCP-based succinct non-interactive arguments
Starting point: PCP characterization of NP

PCP class

$L \in \text{PCP}[r, q]$ if \(\exists \) efficient randomized \(V \) such that

- **Completeness:** \(\forall x \in L, \exists \pi, V^\pi(x) = 1 \)
- **Soundness:** \(\forall x \notin L, \forall \tilde{\pi}, \Pr[V^{\tilde{\pi}}(x) = 0] > 1/2 \)

where \(V \) reads \(\pi \) at \(\leq q \) locations and tosses \(\leq r \) coins.

NP class

$L \in \text{NP}$ if \(\exists \) efficient \(V \) such that:

- **Completeness:** \(\forall x \in L, \exists w, V(x, w) = 1 \)
- **Soundness:** \(\forall x \notin L, \forall \tilde{w}, V(x, \tilde{w}) = 0 \)

PCP Theorem: \(\text{NP} = \text{PCP}[\log n, O(1)] \)

- BFLS: nine.osf/nine.osf
- FGL: plus.osf/nine.osf/six.osf
- ALMSS': nine.osf/eight.osf
- AS': nine.osf/eight.osf

PCPs are not succinct proofs! PCP generation is too expensive! Three.osf years later: practical real-world deployment.
Starting point: PCP characterization of NP

PCP class

$L \in \text{PCP}[r, q]$ if \exists efficient randomized V such that

Completeness: \(\forall x \in L, \exists \pi, V^\pi(x) = 1 \)

Soundness: \(\forall x \notin L, \forall \tilde{\pi}, Pr[V^{\tilde{\pi}}(x) = 0] > 1/2 \)

where V reads π at $\leq q$ locations and tosses $\leq r$ coins.

NP class

$L \in \text{NP}$ if \exists efficient V such that:

Completeness: \(\forall x \in L, \exists w, V(x, w) = 1 \)

Soundness: \(\forall x \notin L, \forall \tilde{w}, V(x, \tilde{w}) = 0 \)

\[\text{PCP} \text{ Theorem: } \text{NP} = \text{PCP}[\log n, O(1)] \text{ [BFLS91, FGL+96, ALMSS'98, AS'98,...]}\]

✓ Check NP statements way faster than checking an NP witness!

❌ PCPs are not succinct proofs! ❌ PCP generation is too expensive!

ynamo: 30 years later: practical real-world deployment
Interactive Proof Systems and Zero-Knowledge

Allow interaction with unbounded prover \mathcal{P} [Goldwasser-Micali-Rackoff’85, Babai’85]

IP class

$L \in \text{IP}$ if $\exists V$ efficient randomized such that

- **Completeness:** $\forall x \in L, \exists P, \langle P, V \rangle(x) = 1$
- **Soundness:** $\forall x \notin L, \forall \bar{P}, \Pr[\langle \bar{P}, V \rangle(x) = 0] > \frac{1}{2}$

🔍 **Thm:** $\text{IP} = \text{PSPACE}$ [Shamir’86]

Interactive Proofs (IPs) can be

- **Zero-knowledge** (ZK): V learns nothing more than the veracity of the statement.

🔍 Assuming the existence of one-way functions, all languages in NP have a ZK proof system. [Goldreich-Micali-Wigderson’91]

- **Public-coin:** V uses only public randomness

🔍 Public-coin IPs can be made non-interactive in the Random Oracle Model [Fiat-Shamir’86, Pointcheval-Stern’96]
Succinct interactive arguments from PCPs

Succinct interactive arguments for \textbf{NP}

[Kilian'92]

Computationally bounded

Prover

Verifier

Collision-resistant hash function H (CRHF)

$\text{Commit}(\pi)$

$\text{MerkleRoot}(\pi)$

random queries q_1, q_2, q_3

$\text{Reveal}(\pi[q_1]), \text{Reveal}(\pi[q_2]), \text{Reveal}(\pi[q_3])$

$= (\pi[q_i], \text{MerklePath}(\pi[q_i]))_i$

Check Merkle paths and run ν_{PCP}

[Kilian'92] First zero-knowledge sublinear argument i.e. $O(q \log |\pi|)$
Succinct Non-interactive ARGuments from PCPs

Applying Fiat-Shamir Paradigm to PCPs

[Prover] Computationally bounded

[Verifier]

PCP \(\pi \) for \(x \in L \)

\(h_0 = \text{MerkleRoot}(\pi) \)

Derive queries \(q_1, q_2, q_3 \) from \(H(h_0) \)

\(p_1 = \text{MerklePath}(\pi[q_1]) \)

\(p_2 = \text{MerklePath}(\pi[q_2]) \)

\(p_3 = \text{MerklePath}(\pi[q_3]) \)

\(\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \)

\(\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \)

Derive queries,
check Merkle paths
and run \(\nu_{PCP} \)

- Succinct argument
- One message
- Presumably post-quantum
- Lightweight crypto
- PCP generation is too expensive

- Non-interactive in the Random Oracle model (\(\rightarrow \) SNARG)
- Compatible with: Zero-Knowledge, Proof of Knowledge (\(\rightarrow \) ZK-SNARK)
Succinct Non-interactive ARGuments from PCPs

Applying Fiat-Shamir Paradigm to PCPs

[Prover] Computationally bounded → Same public-randomness i.e. a CRHF H → [Verifier]

PCP π for $x \in L$

$h_0 = \text{MerkleRoot}(\pi)$

Derive queries q_1, q_2, q_3 from $H(h_0)$

$p_1 = \text{MerklePath}(\pi[q_1])$
$p_2 = \text{MerklePath}(\pi[q_2])$
$p_3 = \text{MerklePath}(\pi[q_3])$

$\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3)$

Derive queries, check Merkle paths and run V_{PCP}

✓ Succinct argument
✓ One message
✓ Presumably post-quantum
✓ Lightweight crypto
✗ PCP generation is too expensive

✓ Non-interactive in the Random Oracle model (→ SNARG)
✓ Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)
Succinct Non-interactive ARGuments from PCPs

Applying Fiat-Shamir Paradigm to PCPs

- **Prover**
 - Computationally bounded
 - PCP π for $x \in L$
 - $h_0 = \text{MerkleRoot}(\pi)$
 - Derive queries q_1, q_2, q_3 from $H(h_0)$
 - $p_1 = \text{MerklePath}(\pi[q_1])$
 - $p_2 = \text{MerklePath}(\pi[q_2])$
 - $p_3 = \text{MerklePath}(\pi[q_3])$

- **Verifier**
 - Same public-randomness
 - i.e. a CRHF H

\[\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \]

Derive queries, check Merkle paths and run V_{PCP}

- **✓ Succinct argument**
- **✓ One message**
- **✓ Presumably post-quantum**
- **✓ Lightweight crypto**
- **✗ PCP generation is too expensive**

- **✓ Non-interactive in the Random Oracle model (→ SNARG)**
- **✓ Compatible with: Zero-Knowledge, Proof of Knowledge (→ ZK-SNARK)**
Succinct Non-interactive ARGuments from PCPs

PCP \(\pi \) for \(x \in L \)

\[h_0 = \text{MerkleRoot}(\pi) \]

Derive queries \(q_1, q_2, q_3 \) from \(H(h_0) \)

\[p_1 = \text{MerklePath}(\pi[q_1]) \]
\[p_2 = \text{MerklePath}(\pi[q_2]) \]
\[p_3 = \text{MerklePath}(\pi[q_3]) \]

\[\pi = (h_0, \pi[q_1], \pi[q_2], \pi[q_3], p_1, p_2, p_3) \]

Derive queries, check Merkle paths and run \(\nu_{PCP} \)

✅ Succinct argument
✅ One message
✅ Presumably post-quantum
✅ Lightweight crypto
❌ PCP generation is too expensive

✅ Non-interactive in the Random Oracle model (\(\rightarrow \) SNARG)
✅ Compatible with: Zero-Knowledge, Proof of Knowledge (\(\rightarrow \) ZK-SNARK)
IOP Model (Interactive Oracle Proofs)

IOPs generalize PCPs and IPs

public-coin IOP \rightarrow non-interactive in the RO model (Fiat-Shamir paradigm)

with communication complexity:

• linear in query complexity of the IOP
• polylog in oracle proof length $|\pi_1| + \ldots + |\pi_r|$

Before: PCP + hash function = succinct arguments

From now on: Replace PCPs by IOPs \rightsquigarrow practical succinct arguments

[BCS16, RRR’16]
From computational integrity to low-degree testing
A computational integrity statement

“\(z\) is the result of running program \(F\) for \(T\) steps.”

Verification can be **exponentially faster** than naively re-running the computation.

STARK: Scalable Transparent ARgument of Knowledge [BBHR18]

non-interactive argument for bounded halting problems of a Random-Access Machine (RAM)

Over a finite field \(\mathbb{F}\) of cryptographic size:

<table>
<thead>
<tr>
<th>Setup</th>
<th>Prover</th>
<th>Verifier</th>
<th>Communication complexity</th>
<th>Post-Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent</td>
<td>(O(T \log^2 T))</td>
<td>(O(\log^2 T))</td>
<td>(O(\log^2 T))</td>
<td>yes</td>
</tr>
</tbody>
</table>

Applications:

- Allows verification of multiple programs in a single proof (StarkEx, Cairo).
- One can build PQ signatures from ZK-STARKs (see Ziggy STARK).
Arithmetization

Constraints of a given computation captured by relation \mathcal{R}
- \rightarrow Constraints on low-degree polynomials (e.g., vanish on a given set)
- \rightarrow Low-degree testing

- If $(x, w) \in \mathcal{R}$, arithmetization produces $c \in C$,
- If $(x, w) \notin \mathcal{R}$, arithmetization produces \tilde{c} which is very far from C.

Overview of a STARK: our goal is to construct an IOP (P, V) with a polylog verifier, logarithmic query complexity, linear oracle proof length, quasilinear prover.
Let’s consider a toy example on a **Collatz sequence**.

Start with any positive integer \(u \).
Each term is computed from the previous one as follows:
- if the previous term is even, divide it by 2,
- if the previous term is odd, multiply it by 3 and add 1,

Example: for \(u = 42 \), it gives \((42, 21, 64, 32, 16, 8, 4, 2, 1, 4, 2, 1, ...)\).

Collatz conjecture: for any positive integer \(u \), the sequence will always reach 1.

Computational integrity statement:

“The Collatz sequence that starts with 42, ends with 1 after 8 iterations.”
The initial relation to build a STARK

Collatz sequence: \((u_i)\) defined by \(u_0 = u \in \mathbb{N} \setminus \{0\}\) and \(u_{i+1} = \begin{cases} u_i/2 & \text{if } u_i \text{ even}, \\ 3u_i + 1 & \text{if } u_i \text{ odd.} \end{cases}\)

Computational integrity statement:
"The Collatz sequence that starts with \(u = 42\) reaches 1 after \(T = 8\) iterations."

Algebraic Intermediate Representation (AIR)
Take \(\mathbb{F}\) a large enough prime field.

Witness \(w_{\text{AIR}}\) (execution trace):
- array \((T + 1) \times (a + 1)\) of elements in \(\mathbb{F}\)
- row \(i\): state \(S[i] = (R_0[i], \ldots, R_a[i])\) of the computation at time \(i\)
- column \(j\): contents of register \(R_j\) over time

Instance \(x_{\text{AIR}}\)
- **Boundary constraints** e.g. input \(u\), output \(z\)
- **Polynomial constraints**
 - \(C \subset \mathbb{F}[X, Y], C := \{C_0, \ldots, C_p\}\)
 - \(X = (X_0, \ldots, X_a) \leadsto \text{current state registers}\)
 - \(Y = (Y_0, \ldots, Y_a) \leadsto \text{next state registers}\)

AIR relation \(R_{\text{AIR}}\)
\[
(x_{\text{AIR}}, w_{\text{AIR}}) \in R_{\text{AIR}} \iff \begin{cases} \text{"input is } u \" \\ \text{"output is } z\" \\ \forall C \in C, \forall i < T, C(S[i], S[i + 1]) = 0 \end{cases}
\]
An AIR for our toy example

(*) “The Collatz sequence that starts with $u = 42$, ends with 1 after $T = 8$ iterations.”

Notation: $b := (2^j)_{0 \leq j \leq 6}$, $\langle b, S[i] \rangle := \sum_{j=0}^{a} 2^j R_j[i]$ and $\langle b, X \rangle := \sum_{j=0}^{a} 2^j X_i^j$

Witness w_{AIR}: $(T + 1) \times (a + 1)$ array of elts in \mathbb{F}

<table>
<thead>
<tr>
<th>i</th>
<th>R_0</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Instance x_{AIR}:

Boundary constraints
1. $\langle b, S[0] \rangle - 42 = 0$ (first term is 42)
2. $\langle b, S[T] \rangle - 1 = 0$ (last term is 1)

Constraints $C = \{C_0, \ldots, C_7\} \subset \mathbb{F}[X, Y]$
3. For $j = 0, \ldots, 6$, $C_j(X, Y) = X_j^2 - X_j$
4. $C_7(X, Y) = (1 - X_0) (\langle b, X \rangle - 2\langle b, Y \rangle) + X_0 (3\langle b, X \rangle + 1 - \langle b, Y \rangle)$

$(x_{\text{AIR}}, w_{\text{AIR}}) \in R_{\text{AIR}} \iff \begin{cases} \langle b, S[0] \rangle - 42 = 0 \\
\langle b, S[T] \rangle - 1 = 0 \\
\forall C_k \in C, \forall i < T, C_k(S[i], S[i+1]) = 0 \end{cases}$
In the previous episode

- Constraints of a given computation captured by relation R
 - Constraints on low-degree polynomials (e.g. vanish on a given set)
 - Low-degree testing

- If $(x, w) \in R$, arithmetization produces $c \in C$,
- If $(x, w) \notin R$, arithmetization produces \tilde{c} which is very far from C.

Proof system (P, V)

Program \rightarrow front-end compiler \rightarrow Relation R (Intermediate representation) \rightarrow Arithmetization \rightarrow Proximity to a code C
Step 1: Rational functions which are low-degree polynomials

Assume it exists \(g \in \mathbb{F}^\times \) of order \(T + 1 \), \(G := \langle g \rangle \).

Let \(D \subset \mathbb{F} \) such that \(D \cap G = \emptyset \) and \(\rho | D | = T \).

Reed-Solomon code of dim. \(k \) : \(\text{RS}[\mathbb{F}, D, k] := \{ P | D : D \rightarrow \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k \} \).

Encoding the trace (prover's side) For \(j \) from 0 to \(a \):

1. Interpolate \(P_j(X) \) of degree \(\leq T \) such that \(P_j(g^i) = R_j[i] \)
2. Evaluate \(P_j(X) \) on \(D \).

\[
\begin{array}{cccccccc}
 & R_0 & R_1 & R_2 & R_3 & R_4 & R_5 & R_6 \\
 i = 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 i = 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
 i = 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 i = 3 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 i = 4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 i = 5 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 i = 6 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 i = 7 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 i = 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Step 1: Rational functions which are low-degree polynomials

Assume it exists \(g \in \mathbb{F}^\times \) of order \(T + 1 \), \(G := \langle g \rangle \).

Let \(D \subset \mathbb{F} \) such that \(D \cap G = \emptyset \) and \(\rho |D| = T \).

Reed-Solomon code of dim. \(k \) : \(\text{RS}[\mathbb{F}, D, k] := \{ P|_D : D \to \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k \} \).

Encoding the trace (prover's side) For \(j \) from 0 to \(a \):

1. Interpolate \(P_j(X) \) of degree \(\leq T \) such that \(P_j(g^i) = R_j[i] \)
2. Evaluate \(P_j(X) \) on \(D \).

<table>
<thead>
<tr>
<th>(g^0)</th>
<th>(g^1)</th>
<th>(g^2)</th>
<th>(g^3)</th>
<th>(g^4)</th>
<th>(g^5)</th>
<th>(g^6)</th>
<th>(g^7)</th>
<th>(g^8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\rho \in (0, 1) \)
Step 1: Rational functions which are low-degree polynomials

Assume it exists \(g \in \mathbb{F}^\times \) of order \(T + 1 \), \(G := \langle g \rangle \).
Let \(D \subset \mathbb{F} \) such that \(D \cap G = \emptyset \) and \(\rho \mid D \mid = T \).

Reed-Solomon code of dim. \(k \) : \(\text{RS}[\mathbb{F}, D, k] := \{ P_D : D \to \mathbb{F} \mid P \in \mathbb{F}[X], \deg P < k \} \).

Encoding the trace (prover’s side) For \(j \) from 0 to \(a \):

1. Interpolate \(P_j(X) \) of degree \(\leq T \) such that \(P_j(g^i) = R_j[i] \)
2. Evaluate \(P_j(X) \) on \(D \):

\[
\begin{align*}
\begin{array}{cccccccc}
\hline
P_0 & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 \\
\hline
P_0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
P_1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
P_2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
P_3 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
P_4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
P_5 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
P_6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
P_7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\end{align*}
\]

\(\rho \in (0, 1) \)
Step 1: Rational functions which are low-degree polynomials

We want to transform \((x_{\text{AIR}}, w_{\text{AIR}})\) into “encoded” counterparts \((x_{\text{RS-AIR}}, w_{\text{RS-AIR}})\).

First, we force the encoded registers to be consistent with the specified input/output.

Instance reduction \((x_{\text{AIR}} \rightarrow x_{\text{RS-AIR}}) [\text{Part 1/2}]\)

Define \((a + 1)\) “boundary” polynomials \((B_j(X))_{0 \leq j \leq a}\) such that \(\deg B_j < 2\),

\[
\begin{align*}
(B_j(g^0))_{0 \leq j \leq a} &= (0, 1, 0, 1, 0, 1, 0) \\
B_j(g^T) &= \begin{cases}
1 & \text{if } j = 0, \\
0 & \text{otherwise.}
\end{cases}
\]

and vanishing polynomial \(Z_{\text{io}}(X) := (X - 1)(X - g^T)\).

Witness reduction \((w_{\text{AIR}} \rightarrow w_{\text{RS-AIR}})\) For \(j\) from 0 to \(a\):

1. Interpolate \(P_j(X)\) of degree \(\leq T\) such that \(P_j(g^i) = R_j[i]\)
2. Evaluate \(\frac{P_j(X) - B_j(X)}{Z_{\text{io}}(X)}\) on \(D\) to get \(f_j : D \rightarrow \mathbb{F}\) (expected to be a poly of \(\deg \leq T - 2\))

\[
\begin{align*}
\{ & P_j(g^0) = B_j(g^0) \} & \iff & \{ & (X - 1) | (P_j(X) - B_j(X)) \\
\{ & P_j(g^T) = B_j(g^T) \} & & \{ & (X - g^T) | (P_j(X) - B_j(X)) \\
\end{align*}
\]
Step 1: Rational functions which are low-degree polynomials

We want to transform \((x_{\text{AIR}}, w_{\text{AIR}})\) into “encoded” counterparts \((x_{\text{RS-AIR}}, w_{\text{RS-AIR}})\).

First, we force the encoded registers to be consistent with the specified input/output.

Instance reduction \((x_{\text{AIR}} \to x_{\text{RS-AIR}})\) [Part 1/2]

Define \((a + 1)\) “boundary” polynomials \((B_j(X))_{0 \leq j \leq a}\) such that \(\deg B_j < 2\),

\[
\left(B_j(g^0) \right)_{0 \leq j \leq a} = (0, 1, 0, 1, 0, 1, 0)
\]

\(\text{input} = 42\)

and

\[
B_j(g^T) = \begin{cases} 1 & \text{if } j = 0, \\ 0 & \text{otherwise}. \end{cases}
\]

\(\text{output} = 1\)

and vanishing polynomial \(Z_{\text{io}}(X) := (X - 1)(X - g^T)\).

Witness reduction \((w_{\text{AIR}} \to w_{\text{RS-AIR}})\) For \(j\) from 0 to \(a\):

1. Interpolate \(P_j(X)\) of degree \(\leq T\) such that \(P_j(g^i) = R_j[i]\)
2. Evaluate \(\frac{P_j(X) - B_j(X)}{Z_{\text{io}}(X)}\) on \(D\) to get \(f_j : D \to \mathbb{F}\) (expected to be a poly of \(\deg \leq T - 2\))

If \(f = (f_0, \ldots, f_a)\) is an encoding of a valid execution trace, then, for any \(j\), \(f_j\) is a codeword of a code \(\text{RS}[\mathbb{F}, D, k]\). (Here, \(k = T - 1\))
Step 1: Rational functions which are low-degree polynomials

Witness $w_{RS-AIR} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{io}(x)}$.

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: $\forall C_k \in C, \forall i < T, C_k(S[i], S[i+1]) = 0$.
This means $C_k(P_0(x), \ldots, P_a(x), P_0(gx), \ldots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \leq i < T\} = G \setminus \{g^T\}$.
Step 1: Rational functions which are low-degree polynomials

Witness \(w_{\text{RS-AIR}} = (f_0, \ldots, f_j) \) such that \(\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{io}(x)} \).

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: \(\forall C_k \in C, \forall i < T, C_k(S[i], S[i + 1]) = 0 \).

This means \(C_k(P_0(x), \ldots, P_a(x), P_0(gx), \ldots, P_a(gx)) = 0 \) for all \(x \in \{g^i | 0 \leq i < T\} = G \setminus \{g^T\} \).

Idea: Define \(Z_G(X) := \prod_{h \in G} (X - h) \). Then,

\[
\frac{(X - g^T)}{Z_G(X)} C_k \left((P_0(X), \ldots, P_a(X), P_0(gX), \ldots, P_a(gX)) \right)
\]

must be a polynomial.
Step 1: Rational functions which are low-degree polynomials

Witness $w_{\text{RS-AIR}} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{\text{io}}(x)}$.

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: $\forall C_k \in C, \forall i < T, C_k(S[i], S[i + 1]) = 0$.
This means $C_k(P_0(x), \ldots, P_a(x), P_0(gx), \ldots, P_a(gx)) = 0$ for all $x \in \{g^i | 0 \leq i < T\} = G \setminus \{g^T\}$.

Idea: Define $Z_G(X) := \prod_{h \in G}(X - h)$. Then,
\[
\frac{x - g^T}{Z_G(x)} C_k\left(\left(P_0(X), \ldots, P_a(X), P_0(gX), \ldots, P_a(gX)\right)\right)
\] must be a polynomial.

We don’t have access to P_j directly. But on D, it can be expressed with f_j, B_j and Z_{io}!

Instance reduction $(x_{\text{AIR}} \rightarrow x_{\text{RS-AIR}})$ [Part 2/2]

Let $f = (f_0, \ldots, f_a) \in (\mathbb{F}^D)^{a+1}$. For each $C_k \in C$, define $C_k[f] : D \rightarrow \mathbb{F}$ s.t. for all $x \in D$:
\[
C_k[f](x) = \frac{x - g^T}{Z_G(x)} C_k\left(\left(f_0Z_{\text{io}} + B_0\right)(x), \ldots, \left(f_aZ_{\text{io}} + B_a\right)(x), \left(f_0Z_{\text{io}} + B_0\right)(gx), \ldots, \left(f_aZ_{\text{io}} + B_a\right)(gx)\right)
\]
Step 1: Rational functions which are low-degree polynomials

Witness $w_{RS-AIR} = (f_0, \ldots, f_j)$ such that $\forall x \in D, f_j(x) = \frac{P_j(x) - B_j(x)}{Z_{io}(x)}$.

Second, define “rational constraints” on the RS-encoded witness.

Recall AIR’s polynomial constraints: $\forall C_k \in \mathcal{C}, \forall i < T, C_k(S[i], S[i + 1]) = 0$.
This means $C_k(P_0(x), \ldots, P_a(x), P_0(gx), \ldots, P_a(gx)) = 0$ for all $x \in \{g^i \mid 0 \leq i < T\} = G \setminus \{g^T\}$.

Idea: Define $Z_G(X) := \prod_{h \in G}(X - h)$. Then,
$$\frac{(X - g^T)}{Z_G(X)} C_k((P_0(X), \ldots, P_a(X), P_0(gX), \ldots, P_a(gX))$$
must be a polynomial.

We don’t have access to P_j directly. But on D, it can be expressed with f_j, B_j and Z_{io}!

Instance reduction $(x_{AIR} \rightarrow x_{RS-AIR})$ [Part 2/2]

Let $f = (f_0, \ldots, f_a) \in (\mathbb{F}^D)^{a+1}$. For each $C_k \in \mathcal{C}$, define $C_k[f] : D \rightarrow \mathbb{F}$ s.t. for all $x \in D$:
$$C_k[f](x) = \frac{(x - g^T)}{Z_G(x)} C_k((f_0Z_{io} + B_0)(x), \ldots, (f_aZ_{io} + B_a)(x), (f_0Z_{io} + B_0)(gx), \ldots, (f_aZ_{io} + B_a)(gx))$$

If $f = (f_0, \ldots, f_a)$ is an encoding of a valid execution trace, then, for any k, $C_k[f]$ is a codeword of a RS code $RS[\mathbb{F}, D, k_c]$.
(Here, $k_c = T + 5$)
Witness w_{RS-AIR}: an interleaved word $f = (f_0, \ldots, f_a) \in (\mathbb{F}^D)^{a+1}$

Instance x_{RS-AIR}:
For input-output: $(B_j(X))_{0 \leq j \leq a}$ of deg < 1 and $Z_{io}(X) = (X - g^0)(X - g^T)$
Rational constraints $(C_k[\cdot])_{0 \leq k \leq p}$ $C_k[\cdot]$ and any $f \in (\mathbb{F}^D)^{a+1}$ jointly define $C_k[f] \in \mathbb{F}^D$
Assignment code $RS[\mathbb{F}, D, k]$ and constraint code $RS[\mathbb{F}, D, k_c]$

RS-AIR relation \mathcal{R}_{RS-AIR}

\[
(x_{RS-AIR}, w_{RS-AIR}) \in \mathcal{R}_{RS-AIR} \iff w_{RS-AIR} = f = (f_0, \ldots, f_a) \text{ satisfies } \begin{cases}
\forall j, f_j \in RS[\mathbb{F}, D, k] \\
\forall k, C_k[f] \in RS[\mathbb{F}, D, k_c]
\end{cases}
\]

Reduction: From (x_{AIR}, w_{AIR}), we’ve just defined an RS-encoded pair (x_{RS-AIR}, w_{RS-AIR}) satisfying:

Perfect completeness
If $(x_{AIR}, w_{AIR}) \in \mathcal{R}_{AIR}$, then $(x_{RS-AIR}, w_{RS-AIR}) \in \mathcal{R}_{RS-AIR}$.

Perfect soundness
If $x_{AIR} \notin \mathcal{L}_{AIR}$, then $x_{RS-AIR} \notin \mathcal{L}_{RS-AIR}$.

1For a binary relation $\mathcal{R} = \{(x, w)\}$, its associated language is $\mathcal{L} = \{x \mid \exists w, (x, w) \in \mathcal{R}\}$.
Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V

Let V be a linear code and $u_0, \ldots, u_l : D \to \mathbb{F}$. Denote Δ relative Hamming distance. Then, $\Delta(u_0 + \sum_{j=1}^l r_j u_j, V) \simeq \max_j \Delta(u_j, V)$ with high proba over r_1, \ldots, r_l

\mathcal{P} computes

\[
\begin{align*}
\mathcal{P} &\text{ computes } \left\{ \begin{array}{l}
 f := f_0 + \sum_{j=1}^a r_j f_j \\
 g := C_0[f] + \sum_{k=1}^p r'_k C_k[f]
\end{array} \right.
\end{align*}
\]

\mathcal{P} and \mathcal{V} check if f and g are RS codewords, with $O(\log T)$ queries and verifier complexity.
Step 2: Aggregating low-degree tests via 1-round IOP

Idea: average distance to a code V

Let V be a linear code and $u_0, \ldots, u_l : D \rightarrow \mathbb{F}$. Denote Δ relative Hamming distance.

Then, $\Delta(u_0 + \sum_{j=1}^{l} r_j u_j, V) \simeq \max_j \Delta(u_j, V)$ with high proba over r_1, \ldots, r_l.

\[P \text{ computes } \left\{ \begin{array}{l}
f := f_0 + \sum_{j=1}^{a} r_j f_j \\
g := C_0[f] + \sum_{k=1}^{p} r'_k C_k[f]
\end{array} \right. \]

P and V check if f and g are RS codewords, with $O(\log T)$ queries and verifier complexity.

Remark: P doesn’t need to send f and g.

By querying $f(x_0)$ and $f(gx_0)$, V can compute $f(x_0)$ and each $C_k[f](x_0)$, thus $g(x_0)$.

Notice that V computes $Z_G(x_0)$ for $x_0 \in D$ in $O(\log T)$ ops because $Z_G(X) = \prod_{h \in G}(X - h) = X^{T+1} - 1$.

Final step: Low-degree testing

If the Collatz sequence starting with $u = 42$ reaches 1 after $T = 8$ iterations, then $f \in \text{RS}[F, D, k]$ and $g \in \text{RS}[F, D, k_c]$.

Otherwise, with very high proba, then f is δ-far from $\text{RS}[F, D, k]$ or g is δ-far from $\text{RS}[F, D, k_c]$, with $\delta \to 1$ when $\max(k, k_c) \to 0$.

An IOP with logarithmic query/verifier complexities is needed to test proximity to a Reed-Solomon code, meaning a verifier must distinguish between:

- functions which are RS codewords,
- functions which are δ-far from any codeword.
FRI: Prover-efficient RS IOPP (IOP of Proximity)

Reed-Solomon Proximity Testing

Input: a code RS[F, D, k], a parameter δ

Input oracle: \(f : D \rightarrow F \)

Completeness: If \(f \in RS[F, D, k] \), then \(\exists P \ Pr[\langle P, V \rangle = 1] = 1 \)

Soundness: If \(\Delta (f, RS[F, D, k]) > \delta \), then \(\forall \tilde{P} \ Pr[\langle \tilde{P}, V \rangle = 1] < \text{err}(\delta) \)

\(\Delta \) relative Hamming distance

Naive test

1. Query \(k \) entries of \(f \in F^D : f(x_0), \ldots, f(x_{k-1}) \),
2. Reconstruct poly \(P \) by interpolation, then evaluate it in a \((k + 1) \)-th point \(x_k \in D \),
3. Accept iff \(P(x_k) = f(x_k) \).

Soundness: \(\mathcal{V} \) accepts with proba \(< 1 - \delta\)

Problem: \# queries is **linear** in \(|D|\).

\(\mathcal{V} \) can’t do better on his own. But a prover \(\mathcal{P} \) can help.

RS IOP of Proximity

FRI Protocol

[Ben-Sasson-Bentov-Horesh-Riabzev’18]

| # rounds | \(< \log |D| \) |
|--------------------------|------------------|
| # queries | \(O(2 \log |D|) \) |
| prover time | \(< 6|D| \) |
| verifier time | \(O(21 \log |D|) \) |
| oracle length | \(< |D|/3 \) |
Halving the size of the problem by folding

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^\times$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle$ ($|D| > k$).

How to check if $f : D \to \mathbb{F}$ is in $\text{RS}[\mathbb{F}, D, k]$?
Halving the size of the problem by folding

Let \(k = 2^r \). Assume there exists \(\omega \in \mathbb{F}^\times \) of order a large power of two, and consider evaluation domains \(D := \langle \omega \rangle \) and \(D' := \langle \omega^2 \rangle \) (\(|D| > k \)).

How to check if \(f : D \to \mathbb{F} \) is in \(\text{RS}[\mathbb{F}, D, k] \)?

Idea:

- Define \(P(X) \) such that \(P(x) = f(x) \) for every \(x \in D \) \(\quad \deg P < |D| \)
- Split \(P \) into \(g, h \), such that \(P(X) = g(X^2) + Xh(X^2) \) \(\quad \deg g, \deg h < |D|/2 \)
- For every \(x \in D \), \(f(x) = g(x^2) + x \cdot h(x^2) \)
- Consider \(g, h : D' \to \mathbb{F} \) with \(|D'| = \frac{1}{2}|D| \)
- For \(\alpha \in \mathbb{F} \), define \(\text{FOLD}[f, \alpha] : D' \to \mathbb{F} \) by \(\text{FOLD}[f, \alpha](y) = g(y) + \alpha \cdot h(y) \)
Halving the size of the problem by folding

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^\times$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle (|D| > k)$.

How to check if $f : D \to \mathbb{F}$ is in $\text{RS}[\mathbb{F}, D, k]$?

Idea:

- Define $P(X)$ such that $P(x) = f(x)$ for every $x \in D$ \quad $\deg P < |D|$
- Split P into g, h, such that $P(X) = g(X^2) + Xh(X^2)$ \quad $\deg g, \deg h < |D| / 2$
- For every $x \in D$, $f(x) = g(x^2) + x \cdot h(x^2)$
- Consider $g, h : D' \to \mathbb{F}$ with $|D'| = \frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define $\text{FOLD}[f, \alpha] : D' \to \mathbb{F}$ by $\text{FOLD}[f, \alpha](y) = g(y) + \alpha \cdot h(y)$

\[
\forall \alpha, f \in \text{RS}[\mathbb{F}, D, k] \implies \text{FOLD}[f, \alpha] \in \text{RS}[\mathbb{F}, D', k/2]
\]
Halving the size of the problem by folding

Let $k = 2^r$. Assume there exists $\omega \in \mathbb{F}^\times$ of order a large power of 2, and consider evaluation domains $D := \langle \omega \rangle$ and $D' := \langle \omega^2 \rangle$ ($|D| > k$).

How to check if $f : D \to \mathbb{F}$ is in $\text{RS}[^F, D, k]$?

Idea:

- Define $P(X)$ such that $P(x) = f(x)$ for every $x \in D$ \hspace{1cm} $\deg P < |D|$
- Split P into g, h, such that $P(X) = g(X^2) + Xh(X^2)$ \hspace{1cm} $\deg g, \deg h < |D|/2$
- For every $x \in D$, $f(x) = g(x^2) + x \cdot h(x^2)$
- Consider $g, h : D' \to \mathbb{F}$ with $|D'| = \frac{1}{2}|D|$
- For $\alpha \in \mathbb{F}$, define $\text{FOLD} [f, \alpha] : D' \to \mathbb{F}$ by $\text{FOLD} [f, \alpha] (y) = g(y) + \alpha \cdot h(y)$

$$\forall \alpha, f \in \text{RS}[\mathbb{F}, D, k] \implies \text{FOLD} [f, \alpha] \in \text{RS}[\mathbb{F}, D', k/2]$$

Observe, for all $x \in D$,

$$\text{FOLD} [f, \alpha] \left(x^2 \right) = \frac{f(x) + f(-x)}{2} + \alpha \frac{f(x) - f(-x)}{2x}.$$

Compute $\text{FOLD} [f, \alpha] (y)$ with only 2 queries to f.

Folding preserves distance to the code

Notations:

- $RS_0 := RS[F, D, k]$ and $RS_1 := RS[F, D', k/2]$ of rate $\rho := k/|D|$

Let κ be a security parameter. Assume $|F|$ is large enough, i.e. $O_{\rho, \delta} \left(\frac{|D|^2}{|F|} \right) = \text{negl}(\kappa)$.

Theorem [Ben–Sasson–Carmon–Ishai–Kopparty'20]

Assume $\delta < 1 - \sqrt{\rho}$. Let $g, h : D' \to F$. If either $\Delta(g, RS_1) > \delta$ or $\Delta(h, RS_1) > \delta$, then

$$\Pr_{\alpha \in F} \left[\Delta(g + \alpha h, RS_1) < \delta \right] < \text{negl}(\kappa)$$

Corollary

Assume $\delta < 1 - \sqrt{\rho}$. If $\Delta(f, RS_0) > \delta$, then

$$\Pr_{\alpha \in F} \left[\Delta(\text{FOLD}[f, \alpha], RS_1) < \delta \right] < \text{negl}(\kappa)$$
FRI Protocol: Commit Phase

Honest prover computes:

\[f_1 = \text{FOLD} [f_0, \alpha_0] \]
\[f_2 = \text{FOLD} [f_1, \alpha_1] \]
\[\vdots \]
\[f_r = \text{FOLD} [f_{r-1}, \alpha_{r-1}] \]
FRI Protocol: Query Phase

Check consistency at random locations

\[f_1(s_1) = \text{FOLD}[f_0, \alpha_0](s_1) \]
\[f_2(s_2) = \text{FOLD}[f_1, \alpha_1](s_2) \]
\[\vdots \]
\[f_r(s_r) = \text{FOLD}[f_{r-1}, \alpha_{r-1}](s_r) \]

Final test: \(f_r \in RS_r \)
Soundness of the FRI Protocol

Soundness: If $\Delta(f, RS[F, D, k]) > \delta$, ν accepts with proba $< \text{err}$.

κ security parameter

Theorem

Assuming $\delta < 1 - \sqrt{\rho}$ (ρ is code rate),

$$\text{err} < \text{err}_{\text{commit}} + (\text{err}_{\text{query}})^l$$

$$< \text{negl}(\kappa) + (1 - \delta)^l$$

To get error $\text{err} = \text{negl}(\kappa)$, repeat query phase enough time (l times).

For instance, for $\kappa = 128$.

Take $|F| > 2^{256}$, $|D| = 2^{20}$, $k = 2^{16}$, $\delta = 1 - \sqrt{\rho} - 2^{-14} \approx 3/4$. Then, repeat $l = 65$ times the query phase.

If $\Delta(f, RS[F, D, k]) > \delta$, then ν accepts with proba $< 2^{-128}$.
Beyond Reed-Solomon codes
Tensored RS codes, Reed-Muller codes

Tensor product of RS codes

$$\text{RS}([F, L, d])^\otimes m = \left\{ f \in \mathbb{F}^L^m \mid P \in \mathbb{F}[X_1, \ldots, X_m], \deg_{X_i} P < d, f = P|_L^m \right\}$$

Reed-Muller codes

$$\text{RM}([F, L, d, m]) = \left\{ f \in \mathbb{F}^L^m \mid P \in \mathbb{F}[X_1, \ldots, X_m], \deg_{\text{tot}} P < d, f = P|_L^m \right\}$$

Is it possible to construct IOPP for RS\(^\otimes\) and RM families with efficiency similar to the RS case?
Theorem (informal)

There exists an IOPP \((\mathcal{P}, \mathcal{V})\) for \(\text{RS} \otimes \) (resp. RM codes) with

- ✔ linear prover time
- ✔ linear (interactive) proof length
- ✔ logarithmic query complexity
- ✔ logarithmic verifier time
Proximity tests for multivariate codes

Theorem (informal)

There exists an IOPP \((P, V)\) for RS\(^{\otimes}\) (resp. RM codes) with

- ✓ linear prover time
- ✓ linear (interactive) proof length
- ✓ logarithmic query complexity
- ✓ logarithmic verifier time

1. Decompose \(m\)-variate polynomial \(f\) into \(2^m\) \(m\)-variate polynomials \(g_u, u \in \{0, 1\}^m\).
2. Define folding of \(f\) as a random linear combination of the \(g_u\)’s:

\[
FOLD [f, p] (y) = \sum_{u \in \{0, 1\}^m} p^u g_u (y).
\]

\((RS^{\otimes})\)

Properties:

- Completeness: \(FOLD [\cdot, p] (C) \subseteq C'\)
- Locally computable: \(2^m\) queries
- Distance preservation: \(f \delta\)-far for \(C\) \(\implies\) \(FOLD [f, p] \delta'\)-far from \(C'\) (w.h.p.)
Proximity tests for multivariate codes

Theorem (informal)
There exists an IOPP \((\mathcal{P}, \mathcal{V})\) for \(\text{RS}\otimes\) (resp. RM codes) with:

- ✔️ linear prover time
- ✔️ linear (interactive) proof length
- ✔️ logarithmic query complexity
- ✔️ logarithmic verifier time

1. Decompose \(m\)-variate polynomial \(f\) into \(2^m\) \(m\)-variate polynomials \(g_u, u \in \{0, 1\}^m\).

2. Define folding of \(f\) as a random linear combination of the \(g_u\)'s:

\[
\text{FOLD} [f, (p, q)] (y) = \sum_{u \in \{0,1\}^m} p^u g_u(y) + \sum_{u \in \{0,1\}^m\setminus\{0\}} q^u y^u g_u(y). \quad \text{(RM)}
\]

Properties:
- completeness \(\text{FOLD} [\cdot, p] (C) \subseteq C'\)
- locally computable \(2^m\) queries
- distance preservation \(f \delta\)-far for \(C \implies \text{FOLD} [f, p] \delta'\)-far from \(C'\) (w.h.p.)
Theorem (informal)
There exists an IOPP \((P, V)\) for \(\text{RS} \otimes\) (resp. \(\text{RM}\) codes) with
- ✓ linear prover time
- ✓ linear (interactive) proof length
- ✓ logarithmic query complexity
- ✓ logarithmic verifier time

Soundness (informal)
Let \(\delta\) be the relative distance of \(f\) to \(\text{RM}\) (resp. \(\text{RS} \otimes\)).

Assuming \(\delta < c\), \(\text{err}(\delta) < \text{negl} + (1 - \delta)^l\).

✗ Soundness threshold \(c\) not as good as \(1 - \sqrt{\rho}\) (\(\text{RS}\) case).
→ greater repetition parameter \(l\), i.e. more queries, thus longer non-interactive proofs.
Recall: arithmetization transforms “instructions set” of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that \(S(X) \) committed via \(S|_{H^m} : H^m \to \mathbb{F} \) vanishes on a set \(G^m \), where \(G \cap H = \emptyset \) with a succinct proof.

What about other codes?

With Jade Nardi: a “FRI-like” IOPP for some families of **Algebraic Geometry codes**.

https://eccc.weizmann.ac.il/report/2020/165/
Recall: arithmetization transforms “instructions set” of a program into constraints on low-degree polynomials, e.g. vanish on a given set.

We can use our IOPP to check that $S(X)$ committed via $S_{|H^m} : H^m \rightarrow \mathbb{F}$ vanishes on a set G^m, where $G \cap H = \emptyset$ with a succinct proof.

What about other codes?

With Jade Nardi: a “FRI-like” IOPP for some families of Algebraic Geometry codes.

https://eccc.weizmann.ac.il/report/2020/165/

Future work:

• Construct building-blocks for multivariate/AG code-based arithmetization
• Find more “nice families” of AG codes
• Improve soundness of AG-IOPP

Thank you for your attention!