Recent progress on computing Riemann-Roch spaces

Simon Abelard Laboratoire d'informatique de l'École Polytechnique Institut Polytechnique de Paris, CNRS, Inria

Part of a project funded by the Agence de l'Innovation de Défense.

October 13, 2020

First assumption: ordinary curves

Input curves

An absolutely irreducible ordinary plane projective curve. Given by an equation C : Q(X, Y, Z) = 0. **Ordinary:** multiple points with distinct tangents at each branch.

Results given for characteristic 0, see papers for other perfect fields.

Riemann-Roch problem

Goal: find all functions $\frac{G(X,Y)}{H(X,Y)}$ such that:

- Z has to be a zero of G.
- The P_i 's may be zeros H.
- *G*/*H* has no other pole (including at infinity).

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide : $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide : $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator *H* passes through *P*. This means $H(X, Y) \mod X = 0$.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide : $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator H passes through P. This means $H(X, Y) \mod X = 0$. Numerators G pass through Z. It means $G(X, Y) = 0 \mod (X - 1)$.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide : $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator *H* passes through *P*. This means $H(X, Y) \mod X = 0$. Numerators *G* pass through *Z*. It means $G(X, Y) = 0 \mod (X - 1)$. We recover the solution $\frac{X-1}{X}$.

Divisors and Riemann-Roch spaces

Smooth divisor D: finite formal sum $\sum_P m_P P$ of smooth points on C. Degree of a divisor: deg $(D) = \sum_P m_P$.

Riemann-Roch space L(D): set of rational fractions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, *P* can be a pole of *h* with multiplicity $\leq m_P$.

Divisors and Riemann-Roch spaces

Smooth divisor *D*: finite formal sum $\sum_P m_P P$ of smooth points on *C*. Degree of a divisor: deg(*D*) = $\sum_P m_P$.

Riemann-Roch space L(D): set of rational fractions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, *P* can be a pole of *h* with multiplicity $\leq m_P$.

Remember: zeros constrained by D_{-} and poles allowed by D_{+} .

Divisors and Riemann-Roch spaces

Smooth divisor *D*: finite formal sum $\sum_P m_P P$ of smooth points on *C*. Degree of a divisor: deg(*D*) = $\sum_P m_P$.

Riemann-Roch space L(D): set of rational fractions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, *P* can be a pole of *h* with multiplicity $\leq m_P$.

Remember: zeros constrained by D_{-} and poles allowed by D_{+} .

Our problem:

Given input ordinary curve C and smooth divisor D, Compute a basis of the vector space L(D).

Applications

- Diophantine equations (Coates, 1970)
- Symbolic integration (Davenport, 1981)
- Group operations in Jacobians of curves (cryptography in 1990's)
- Geometric codes (need to evaluate functions in L(D))

Geometric vs arithmetic methods

Geometric methods:

Based on Brill-Noether theory.

Arithmetic methods: Ideals in function fields.

Geometric vs arithmetic methods

Geometric methods:

Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess' algorithm (2001)

Geometric vs arithmetic methods

Geometric methods:

Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-Ierardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess' algorithm (2001)

Brief comparison

Advantage: faster (so far). Weakness: for particular curves. Complexity: exponent ω (lin. alg.). Very general. Unclear complexity bounds.

Plan for today

• Geometric methods (joint with A. Couvreur & G. Lecerf)

- Brill-Noether theory
- Representing and handling divisors
- Riemann-Roch spaces through interpolation
- Arithmetic Methods
 - Overview
 - Computing integral bases

What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.

Novelty: use K[X]-module structure instead (faster algorithms).

¹V. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.

Novelty: use K[X]-module structure instead (faster algorithms).

Main contributions:

- Replace linear algebra by structured linear algebra¹.
- Faster algorithms for divisor arithmetic.
- Existence of a nice suitable common denominator.

¹V. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.

Novelty: use K[X]-module structure instead (faster algorithms).

Main contributions:

- Replace linear algebra by structured linear algebra¹.
- Faster algorithms for divisor arithmetic.
- Existence of a nice suitable common denominator.

Main complexity bound

Las Vegas algorithm computing L(D) in $\tilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$ field operations (previous best exponent is ω).

¹V. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective. A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective.

Principal divisor: $(h) = \sum_{P \in C} \operatorname{ord}_P(h)P$ (zeros-poles with multiplicity)

A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective.

Principal divisor: $(h) = \sum_{P \in C} \operatorname{ord}_P(h)P$ (zeros-poles with multiplicity)

A description for L(D) (Haché, Le Brigand-Risler)

Non-zero elements of L(D) are of the form G/H where:

- The common denominator H satisfies $(H) \ge D$.
- H passes through singularities of C with given multiplicities.
- G is of degree deg H, not divisible by Q and $(G) \ge (H) D$.

Sketch of the algorithm

Step 1 Find a denominator H.

Step 2 Compute (*H*).

Step 3 Compute (H) - D.

Step 4 Compute numerators. (Very similar to step 1)

Sketch of the algorithm

- Step 1 Find a denominator H.
- **Step 2** Compute (*H*).
- **Step 3** Compute (H) D.
- **Step 4** Compute numerators. (Very similar to step 1)

Problem: how do we handle divisors ?

Representing effective divisors, expectation

Goal: transform divisor operations into polynomial operations.

First try: $D = \sum_{i} m_i P_i$ with P_i of coordinates (x_i, y_i) . Encode $u(X) = \prod_{i} (X - x_i)^{m_i}$ and compute v such that $y_i = v(x_i)$. Intuition: Project on line y = 0, u describes the projected points.

Problems: Solution: $S = \lambda X + \mu Y$

Representing effective divisors, reality

Let *D* be a smooth effective divisor, *i.e.* a multi-set of smooth points. This set is put in primitive representation $(\lambda, \mu, \chi, u, v)$ with

- (λ, μ) yields a primitive element $\lambda X + \mu Y$
- χ monic of degree deg D
- deg u and deg v are < deg D
- $Q(u(S), v(S)) = 0 \mod \chi(S)$
- $\lambda u(S) + \mu v(S) = S$
- $\mu \frac{\partial Q}{\partial X}(u(S), v(S)) \lambda \frac{\partial Q}{\partial Y}(u(S), v(S))$ is coprime to $\chi(S)$.

Representing effective divisors, reality

Let *D* be a smooth effective divisor, *i.e.* a multi-set of smooth points. This set is put in primitive representation $(\lambda, \mu, \chi, u, v)$ with

- (λ, μ) yields a primitive element $\lambda X + \mu Y$
- χ monic of degree deg D
- deg u and deg v are < deg D
- $Q(u(S), v(S)) = 0 \mod \chi(S)$
- $\lambda u(S) + \mu v(S) = S$
- $\mu \frac{\partial Q}{\partial X}(u(S), v(S)) \lambda \frac{\partial Q}{\partial Y}(u(S), v(S))$ is coprime to $\chi(S)$.

Remarks: Such representation may not exist if base field too small. This is not unique, but it becomes unique once (λ, μ) is chosen.

Interface for divisors

- Change of primitive element
- Doubling a divisor
- Addition and subtraction:
 Find common primitive element (step above).
 For disjoint supports, product and CRT.
 For intersection, use doubling step.
- Computing representation of a principal divisor (H)

Conclusion: primitive representation has the routines we want.

Sketch of the algorithm

Step 1 Find a denominator H.

Step 2 Compute (*H*).

Step 3 Compute (H) - D.

Step 4 Compute numerators. (Very similar to step 1)

Problem: how about the interpolation step ?

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$. In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$. Passing through singularities: similar equations.

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$.

In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$. Passing through singularities: similar equations.

Set $d = \deg H$ and write $H = \sum_{i=1}^{d} h_i(X)Y^i$. Above conditions on H: the h_i 's are in a K[X]-module of rank d + 1.

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$.

In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$. Passing through singularities: similar equations.

Set $d = \deg H$ and write $H = \sum_{i=1}^{d} h_i(X)Y^i$. Above conditions on H: the h_i 's are in a K[X]-module of rank d + 1.

Computing a solution basis (Neiger, 2016)

A basis of this K[X]-module costs $\widetilde{O}(d^{\omega-1} \operatorname{deg} \chi_+)$ field ops. (Linear algebra on $d \times d$ polynomial matrices of degree $\leq \operatorname{deg} \chi_+$.)

How big is d? We prove that
$$d = \left\lceil \frac{(\deg C - 1)(\deg C - 2) + \deg \chi_+}{\deg C} \right\rceil$$
 is enough.

Finding numerators of a basis

A similar condition on numerators

We have $G/H \in L(D)$ iff G = 0 or $(G) \ge (H) - D$. By construction, smooth part of (H) is $D_+ + R$ with R effective. Conditions on G: passing through singularities and $(G) \ge R + D_-$.

Finding numerators of a basis

A similar condition on numerators

We have $G/H \in L(D)$ iff G = 0 or $(G) \ge (H) - D$. By construction, smooth part of (H) is $D_+ + R$ with R effective. Conditions on G: passing through singularities and $(G) \ge R + D_-$.

Previous problem with $R + D_{-}$ **instead of** D_{+} , **same** d. Only difference: now need basis and not single element in module. But a solution basis is exactly what Neiger's algorithm computes.

Value of $d \rightsquigarrow \text{both steps in } \widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$ field ops.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$.

Step 2 Compute principal divisor (*H*): Resultant and characteristic polynomial in $\widetilde{O}((\deg C)^3 + \deg C \deg D_+)$.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$.

Step 2 Compute principal divisor (*H*): Resultant and characteristic polynomial in $\widetilde{O}((\deg C)^3 + \deg C \deg D_+)$.

Step 3 Compute $[(H) - D]_+$: Arithmetic on divisors in $\widetilde{O}((\deg C)^{\omega/2+1} + (\deg D_+)^{(\omega+2)/3}).$

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$.

Step 2 Compute principal divisor (*H*): Resultant and characteristic polynomial in $\widetilde{O}((\deg C)^3 + \deg C \deg D_+)$.

Step 3 Compute $[(H) - D]_+$: Arithmetic on divisors in $\widetilde{O}((\deg C)^{\omega/2+1} + (\deg D_+)^{(\omega+2)/3}).$

Step 4 Computing numerators of the basis: same as Step 1.

Overall complexity: $\tilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$ field operations.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$.

Step 2 Compute principal divisor (*H*): Resultant and characteristic polynomial in $\widetilde{O}((\deg C)^3 + \deg C \deg D_+)$.

Step 3 Compute $[(H) - D]_+$: Arithmetic on divisors in $\widetilde{O}((\deg C)^{\omega/2+1} + (\deg D_+)^{(\omega+2)/3}).$

Step 4 Computing numerators of the basis: same as Step 1.

Overall complexity: $\tilde{O}\left(\left((\deg C)^2 + \deg D_+\right)^{\frac{\omega+1}{2}}\right)$ field operations.

Assumptions : ordinary curve, smooth divisor, base field large enough.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Main obstacles:

- Conditions on *H* are more complicated to rephrase.
- Too many equations to use Neiger's algorithm.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Main obstacles:

- Conditions on *H* are more complicated to rephrase.
- Too many equations to use Neiger's algorithm.

Options:

- Approach based on linear algebra.
- Generalization of Neiger's work in overdetermined case.
- Find a suitable way to rephrase conditions on *H*.
- Use arithmetic methods (Hess).

Part 2, Arithmetic methods

Main ingredients

- Correspondance divisors on $\mathcal{C} \leftrightarrow$ ideals of $\mathcal{K}(\mathcal{C})$.
- Computing Riemann-Roch spaces \rightsquigarrow ideal arithmetic.
- Integral bases: ideal arithmetic ~→ polynomial matrices.

Questions: complexity bounds for this approach? Today: cost of precomputing integral bases.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve C over perfect field K of equation f(x, y) = 0. View $f \in K[x][y]$, monic of degree n, irreducible. Function field $K(C) = \operatorname{Frac} (K[x, y]/\langle f(x, y) \rangle)$. Field of rational fractions modulo $\frac{f_1}{g_1} \sim \frac{f_2}{g_2}$ iff $f_1g_2 - f_2g_1 = 0 \mod f$.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve C over perfect field K of equation f(x, y) = 0. View $f \in K[x][y]$, monic of degree n, irreducible. Function field $K(C) = \operatorname{Frac} (K[x, y]/\langle f(x, y) \rangle)$. Field of rational fractions modulo $\frac{f_1}{g_1} \sim \frac{f_2}{g_2}$ iff $f_1g_2 - f_2g_1 = 0 \mod f$.

Integral elements

A function $g \in K(\mathcal{C})$ is integral (over K[x]) if there is a monic polynomial $\mu \in K[x][y]$ such that $\mu(g(x, y)) = 0$.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve C over perfect field K of equation f(x, y) = 0. View $f \in K[x][y]$, monic of degree n, irreducible. Function field $K(C) = \operatorname{Frac} (K[x, y]/\langle f(x, y) \rangle)$. Field of rational fractions modulo $\frac{f_1}{g_1} \sim \frac{f_2}{g_2}$ iff $f_1g_2 - f_2g_1 = 0 \mod f$.

Integral elements

A function $g \in K(C)$ is integral (over K[x]) if there is a monic polynomial $\mu \in K[x][y]$ such that $\mu(g(x, y)) = 0$.

Example: $1, y, \ldots, y^{n-1}$ are integral elements. Integral elements form a K[x]-module of rank n. A K[x]-basis of this module is an **integral basis**.

Incremental algorithms for integral bases

General principle

Start with $B = (1, y, \dots, y^{n-1})$, it generates an integral module.

Compute a matrix $A \in K(x)^{n \times n}$ such that AB remains integral and generates a greater module.

Replace B by AB and repeat until a criterion is met.

Incremental algorithms for integral bases

General principle

Start with $B = (1, y, \dots, y^{n-1})$, it generates an integral module. Compute a matrix $A \in K(x)^{n \times n}$ such that AB remains integral and generates a greater module.

Replace B by AB and repeat until a criterion is met.

- Trager's algorithm (1984), criterion from commutative algebra. Finding A: Popov form in $K[x]^{n^2 \times n}$, Gaussian red. in $K(x)^{n^2 \times n}$.
- Van Hoeij's algorithm (1995) using Puiseux series as criterion. Finding A: solving $n^2 \times n$ linear systems.

Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015): Factor f(x, y) in K[[x]][y] (branch-wise approach).

Key idea: if f is irreducible, explicit formulas are known.

Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015): Factor f(x, y) in K[[x]][y] (branch-wise approach).

Key idea: if f is irreducible, explicit formulas are known.

- Factor f over K [[x]] [y] (Poteaux-Weimann).
- At each branch, deduce integral basis using Puiseux series.
- Glue each branch and perform CRT to deduce an integral basis.

Contributions

- Update well-known algorithms with state-of-the-art routines.
 - Puiseux series (characteristic > n), factorization in K [[x]] [y]. (Poteaux, Rybowicz, Weimann)
 - Polynomial matrices.
 - (Labahn, Neiger, Storjohann, Zhou and many more)
- Complexity bounds for these tailored versions.

Contributions

- Update well-known algorithms with state-of-the-art routines.
 - Puiseux series (characteristic > n), factorization in K [[x]] [y]. (Poteaux, Rybowicz, Weimann)
 - Polynomial matrices.
 - (Labahn, Neiger, Storjohann, Zhou and many more)
- Complexity bounds for these tailored versions.

Algorithm	# Field Operations	Univariate factorization
Trager	$\widetilde{O}(n^5\delta)$	$Disc_y(f)$
Van Hoeij	$\widetilde{O}\left(n^{\omega+2}\delta ight)$	$Disc_y(f)$
Böhm et al.	$\widetilde{O}(n^2\delta)$	$Disc_y(f)$

Notation: $n = \deg_y(f)$, $\delta = \deg(\text{Disc}_y(f))$, $\omega \leq 3$ exponent	t for lin. alg.
--	-----------------

Contributions (simplified)

Set $D = \max(\deg_y(f), \deg_x(f))$, $\delta \leq D^2$, ignore factorization.

÷.

Algorithm	# Field Operations
Trager	$\widetilde{O}(D^7)$
Van Hoeij	$\widetilde{O}\left(D^{\omega+4} ight)$
Böhm et al.	$\widetilde{O}(D^4)$

Input size: $f \in K[x, y]$ has $\leq D^2$ monomials. **Output size:** integral basis has $O(D^4)$ field elements.

Future work

• Investigate Hess' algorithm.

(Complexity bounds, exploit progress on polynomial matrices)

• Better representation for integral bases ? (Quasi-optimal is not good enough)

Future work

• Investigate Hess' algorithm.

(Complexity bounds, exploit progress on polynomial matrices)

 Better representation for integral bases ? (Quasi-optimal is not good enough)

Thank you for your attention !