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First assumption: ordinary curves

Input curves
An absolutely irreducible ordinary plane projective curve.
Given by an equation C : Q(X ,Y ,Z ) = 0.
Ordinary: multiple points with distinct tangents at each branch.

Nodal curve Ordinary curve Non-ordinary curve

Results given for characteristic 0, see papers for other perfect fields.
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Riemann-Roch problem

P1

P2

P3

P4

Z

Goal: find all functions G(X ,Y )
H(X ,Y )

such that:
Z has to be a zero of G .
The Pi ’s may be zeros H .
G/H has no other pole
(including at infinity).
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A toy example

Set C = P1, P = [0 : 1], Z = [1 : 1] and D = P − Z .
Previous slide : X−1

X is a solution (one pole in P and one zero in Z ).
Riemann-Roch theorem: X−1

X generates the solution space.

P Z

H(X ,Y ) = 0

P1

Our strategy
Denominator H passes through P.
This means H(X ,Y ) mod X = 0.

Numerators G pass through Z .
It means G(X ,Y ) = 0 mod (X − 1).
We recover the solution X−1

X .
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Divisors and Riemann-Roch spaces

Smooth divisor D: finite formal sum ∑
P mPP of smooth points on C.

Degree of a divisor: deg(D) = ∑
P mP .

Riemann-Roch space L(D): set of rational fractions h such that
If mP < 0, P has to be a zero of h with multiplicity ≥ −mP .
If mP > 0, P can be a pole of h with multiplicity ≤ mP .

Remember: zeros constrained by D− and poles allowed by D+.

Our problem:
Given input ordinary curve C and smooth divisor D,
Compute a basis of the vector space L(D).
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Applications

Diophantine equations (Coates, 1970)
Symbolic integration (Davenport, 1981)
Group operations in Jacobians of curves (cryptography in 1990’s)
Geometric codes (need to evaluate functions in L(D))
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Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

Goppa, Le Brigand-Risler (80’s)
Huang-Ierardi, Volcheck (90’s)
Khuri-Makdisi (2007)
Le Gluher-Spaenlehauer (2018)

Arithmetic methods:
Ideals in function fields.

Coates (1970)
Davenport (1981)
Hess’ algorithm (2001)

Brief comparison
Advantage: faster (so far).
Weakness: for particular curves.
Complexity: exponent ω (lin. alg.).

Very general.
Unclear complexity bounds.
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Plan for today

Geometric methods (joint with A. Couvreur & G. Lecerf)
I Brill-Noether theory
I Representing and handling divisors
I Riemann-Roch spaces through interpolation

Arithmetic Methods
I Overview
I Computing integral bases
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What’s new?
Brill-Noether theory: conditions to belong to a Riemann-Roch space.
State of the art: conditions  linear algebra.
Novelty: use K [X ]-module structure instead (faster algorithms).

Main contributions:
Replace linear algebra by structured linear algebra1.
Faster algorithms for divisor arithmetic.
Existence of a nice suitable common denominator.

Main complexity bound
Las Vegas algorithm computing L(D) in Õ

(
((deg C)2 + deg D+)ω+1

2
)

field operations (previous best exponent is ω).

1V. Neiger, Fast computation of shifted Popov forms of polynomial matrices
via systems of modular polynomial equations, ISSAC 2016.
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A basis of L(D) through Brill-Noether theory

Effective divisors
D = ∑miPi is positive or effective if for any i , mi ≥ 0 .
Can split D = D+ − D− as a difference of two effective divisors.
Denote D ≥ D′ whenever D − D′ is effective.

Principal divisor: (h) = ∑
P∈C ordP(h)P (zeros−poles with multiplicity)

A description for L(D) (Haché, Le Brigand-Risler)

Non-zero elements of L(D) are of the form G/H where:
The common denominator H satisfies (H) ≥ D.
H passes through singularities of C with given multiplicities.
G is of degree deg H , not divisible by Q and (G) ≥ (H)− D.
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Sketch of the algorithm

Step 1 Find a denominator H .

Step 2 Compute (H).

Step 3 Compute (H)− D.

Step 4 Compute numerators.
(Very similar to step 1)

P1

Q1 P2

P3
Q2

P4

Problem: how do we handle divisors ?
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Representing effective divisors, expectation
Goal: transform divisor operations into polynomial operations.
First try: D = ∑

i miPi with Pi of coordinates (xi , yi).
Encode u(X ) = ∏

i(X − xi)mi and compute v such that yi = v(xi).
Intuition: Project on line y = 0, u describes the projected points.

Problems:

•

•

•

Solution: S = λX + µY

•
•

•
•

•

•
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Representing effective divisors, reality

Let D be a smooth effective divisor, i.e. a multi-set of smooth points.
This set is put in primitive representation (λ, µ, χ, u, v) with

(λ, µ) yields a primitive element λX + µY
χ monic of degree deg D
deg u and deg v are < deg D
Q(u(S), v(S)) = 0 mod χ(S)
λu(S) + µv(S) = S
µ∂Q
∂X (u(S), v(S))− λ ∂Q

∂Y (u(S), v(S)) is coprime to χ(S).

Remarks: Such representation may not exist if base field too small.
This is not unique, but it becomes unique once (λ, µ) is chosen.
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Interface for divisors

Change of primitive element
Doubling a divisor
Addition and subtraction:
Find common primitive element (step above).
For disjoint supports, product and CRT.
For intersection, use doubling step.
Computing representation of a principal divisor (H)

Conclusion: primitive representation has the routines we want.
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Sketch of the algorithm

Step 1 Find a denominator H .

Step 2 Compute (H).

Step 3 Compute (H)− D.

Step 4 Compute numerators.
(Very similar to step 1)

P1

Q1 P2

P3
Q2

P4

Problem: how about the interpolation step ?
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Finding a denominator in practice

Conditions on H: passing through singularities and (H) ≥ D+.
In primitive form, (H) ≥ D+ ⇔ H(X , v+(X )) = 0 mod χ+(X ).
Passing through singularities: similar equations.

Set d = deg H and write H = ∑d
i=1 hi(X )Y i .

Above conditions on H : the hi ’s are in a K [X ]-module of rank d + 1.

Computing a solution basis (Neiger, 2016)
A basis of this K [X ]-module costs Õ(dω−1 degχ+) field ops.
(Linear algebra on d × d polynomial matrices of degree ≤ degχ+.)

How big is d? We prove that d =
⌈

(deg C−1)(deg C−2)+degχ+
deg C

⌉
is enough.
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Finding numerators of a basis

A similar condition on numerators
We have G/H ∈ L(D) iff G = 0 or (G) ≥ (H)− D.
By construction, smooth part of (H) is D+ + R with R effective.
Conditions on G : passing through singularities and (G) ≥ R + D−.

Previous problem with R + D− instead of D+, same d .
Only difference: now need basis and not single element in module.
But a solution basis is exactly what Neiger’s algorithm computes.
Value of d  both steps in Õ

(
((deg C)2 + deg D+)ω+1

2
)
field ops.
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Overall complexity

Step 1 First guess for the common denominator:
Structured linear algebra in Õ

(
((deg C)2 + deg D+) ω+1

2
)
.

Step 2 Compute principal divisor (H):
Resultant and characteristic polynomial in Õ((deg C)3 + deg C deg D+).

Step 3 Compute [(H)− D]+:
Arithmetic on divisors in Õ

(
(deg C)ω/2+1 + (deg D+)(ω+2)/3

)
.

Step 4 Computing numerators of the basis: same as Step 1.

Overall complexity: Õ
(
((deg C)2 + deg D+)ω+1

2
)
field operations.

Assumptions : ordinary curve, smooth divisor, base field large enough.
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Prospective

Implementation including fast structured linear algebra.
Extend to non-ordinary curve.

Main obstacles:
Conditions on H are more complicated to rephrase.
Too many equations to use Neiger’s algorithm.

Options:
Approach based on linear algebra.
Generalization of Neiger’s work in overdetermined case.
Find a suitable way to rephrase conditions on H .
Use arithmetic methods (Hess).
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Part 2, Arithmetic methods

Main ingredients
Correspondance divisors on C ↔ ideals of K (C).
Computing Riemann-Roch spaces  ideal arithmetic.
Integral bases: ideal arithmetic  polynomial matrices.

Questions: complexity bounds for this approach?
Today: cost of precomputing integral bases.
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Algebraic function fields, integral bases

Algebraic function fields
Consider a plane curve C over perfect field K of equation f (x , y) = 0.
View f ∈ K [x ][y ], monic of degree n, irreducible.
Function field K (C) = Frac (K [x , y ]/〈f (x , y)〉).
Field of rational fractions modulo f1

g1
∼ f2

g2
iff f1g2 − f2g1 = 0 mod f .

Integral elements
A function g ∈ K (C) is integral (over K [x ]) if there is a monic
polynomial µ ∈ K [x ][y ] such that µ(g(x , y)) = 0.

Example: 1, y , . . . , yn−1 are integral elements.
Integral elements form a K [x ]-module of rank n.
A K [x ]-basis of this module is an integral basis.
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Incremental algorithms for integral bases

General principle
Start with B = (1, y , · · · , yn−1), it generates an integral module.
Compute a matrix A ∈ K (x)n×n such that AB remains integral and
generates a greater module.
Replace B by AB and repeat until a criterion is met.

Trager’s algorithm (1984), criterion from commutative algebra.
Finding A: Popov form in K [x ]n2×n, Gaussian red. in K (x)n2×n.
Van Hoeij’s algorithm (1995) using Puiseux series as criterion.
Finding A: solving n2 × n linear systems.

Simon Abelard Riemann-Roch spaces October 13, 2020 22 / 26



Incremental algorithms for integral bases

General principle
Start with B = (1, y , · · · , yn−1), it generates an integral module.
Compute a matrix A ∈ K (x)n×n such that AB remains integral and
generates a greater module.
Replace B by AB and repeat until a criterion is met.

Trager’s algorithm (1984), criterion from commutative algebra.
Finding A: Popov form in K [x ]n2×n, Gaussian red. in K (x)n2×n.
Van Hoeij’s algorithm (1995) using Puiseux series as criterion.
Finding A: solving n2 × n linear systems.

Simon Abelard Riemann-Roch spaces October 13, 2020 22 / 26



Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015):
Factor f (x , y) in K [[x ]] [y ] (branch-wise approach).
Key idea: if f is irreducible, explicit formulas are known.

Factor f over K [[x ]] [y ] (Poteaux-Weimann).
At each branch, deduce integral basis using Puiseux series.
Glue each branch and perform CRT to deduce an integral basis.

Simon Abelard Riemann-Roch spaces October 13, 2020 23 / 26



Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015):
Factor f (x , y) in K [[x ]] [y ] (branch-wise approach).
Key idea: if f is irreducible, explicit formulas are known.

Factor f over K [[x ]] [y ] (Poteaux-Weimann).
At each branch, deduce integral basis using Puiseux series.
Glue each branch and perform CRT to deduce an integral basis.

Simon Abelard Riemann-Roch spaces October 13, 2020 23 / 26



Contributions
Update well-known algorithms with state-of-the-art routines.

I Puiseux series (characteristic > n), factorization in K [[x ]] [y ].
(Poteaux, Rybowicz, Weimann)

I Polynomial matrices.
(Labahn, Neiger, Storjohann, Zhou and many more)

Complexity bounds for these tailored versions.

Notation: n = degy (f ), δ = deg(Discy (f )), ω ≤ 3 exponent for lin. alg.

Algorithm # Field Operations Univariate factorization
Trager Õ (n5δ) Discy(f )

Van Hoeij Õ (nω+2δ) Discy(f )
Böhm et al. Õ (n2δ) Discy(f )
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Contributions (simplified)

Set D = max(degy(f ), degx(f )), δ ≤ D2, ignore factorization.

Algorithm # Field Operations
Trager Õ (D7)

Van Hoeij Õ (Dω+4)
Böhm et al. Õ (D4)

Input size: f ∈ K [x , y ] has ≤ D2 monomials.
Output size: integral basis has O(D4) field elements.
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Future work

Investigate Hess’ algorithm.
(Complexity bounds, exploit progress on polynomial matrices)
Better representation for integral bases ?
(Quasi-optimal is not good enough)

Thank you for your attention !
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