Recent progress on computing Riemann-Roch spaces

Simon Abelard
Laboratoire d'informatique de l'École Polytechnique Institut Polytechnique de Paris, CNRS, Inria
Part of a project funded by the Agence de l'Innovation de Défense.

October 13, 2020

First assumption: ordinary curves

Input curves

An absolutely irreducible ordinary plane projective curve.
Given by an equation $\mathcal{C}: Q(X, Y, Z)=0$.
Ordinary: multiple points with distinct tangents at each branch.

Nodal curve

Ordinary curve

Non-ordinary curve

Results given for characteristic 0 , see papers for other perfect fields.

Riemann-Roch problem

Goal: find all functions $\frac{G(X, Y)}{H(X, Y)}$ such that:

- Z has to be a zero of G.
- The P_{i} 's may be zeros H.
- G / H has no other pole (including at infinity).

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide : $\frac{x-1}{x}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide : $\frac{x-1}{X}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide : $\frac{x-1}{X}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide : $\frac{x-1}{X}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

Our strategy

Denominator H passes through P. This means $H(X, Y) \bmod X=0$.
Numerators G pass through Z. It means $G(X, Y)=0 \bmod (X-1)$.
We recover the solution $\frac{X-1}{X}$.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}. Degree of a divisor: $\operatorname{deg}(D)=\sum_{P} m_{P}$.

Riemann-Roch space $L(D)$: set of rational fractions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}. Degree of a divisor: $\operatorname{deg}(D)=\sum_{P} m_{P}$.

Riemann-Roch space $L(D)$: set of rational fractions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Remember: zeros constrained by D_{-}and poles allowed by D_{+}.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}.
Degree of a divisor: $\operatorname{deg}(D)=\sum_{p} m_{P}$.
Riemann-Roch space $L(D)$: set of rational fractions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Remember: zeros constrained by D_{-}and poles allowed by D_{+}.

Our problem:

Given input ordinary curve \mathcal{C} and smooth divisor D, Compute a basis of the vector space $L(D)$.

Applications

- Diophantine equations (Coates, 1970)
- Symbolic integration (Davenport, 1981)
- Group operations in Jacobians of curves (cryptography in 1990's)
- Geometric codes (need to evaluate functions in $L(D)$)

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

Arithmetic methods:
Ideals in function fields.

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess' algorithm (2001)

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods: Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess' algorithm (2001)

Brief comparison

Advantage: faster (so far).
Weakness: for particular curves.
Complexity: exponent ω (lin. alg.).

Very general.
Unclear complexity bounds.

Plan for today

- Geometric methods (joint with A. Couvreur \& G. Lecerf)
- Brill-Noether theory
- Representing and handling divisors
- Riemann-Roch spaces through interpolation
- Arithmetic Methods
- Overview
- Computing integral bases

What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.
Novelty: use $K[X]$-module structure instead (faster algorithms).
${ }^{1} \mathrm{~V}$. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.
Novelty: use $K[X]$-module structure instead (faster algorithms).

Main contributions:

- Replace linear algebra by structured linear algebra ${ }^{1}$.
- Faster algorithms for divisor arithmetic.
- Existence of a nice suitable common denominator.

[^0]
What's new?

Brill-Noether theory: conditions to belong to a Riemann-Roch space. State of the art: conditions \rightsquigarrow linear algebra.
Novelty: use $K[X]$-module structure instead (faster algorithms).

Main contributions:

- Replace linear algebra by structured linear algebra ${ }^{1}$.
- Faster algorithms for divisor arithmetic.
- Existence of a nice suitable common denominator.

Main complexity bound

Las Vegas algorithm computing $L(D)$ in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$ field operations (previous best exponent is ω).

[^1]
A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors. Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.

A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors. Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.

Principal divisor: $(h)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(h) P$ (zeros-poles with multiplicity)

A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors.
Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.
Principal divisor: $(h)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(h) P$ (zeros-poles with multiplicity)
A description for $L(D)$ (Haché, Le Brigand-Risler)
Non-zero elements of $L(D)$ are of the form G / H where:

- The common denominator H satisfies $(H) \geq D$.
- H passes through singularities of \mathcal{C} with given multiplicities.
- G is of degree $\operatorname{deg} H$, not divisible by Q and $(G) \geq(H)-D$.

Sketch of the algorithm

Step 1 Find a denominator H.
Step 2 Compute (H).
Step 3 Compute $(H)-D$.
Step 4 Compute numerators.
(Very similar to step 1)

Sketch of the algorithm

Step 1 Find a denominator H.
Step 2 Compute (H).
Step 3 Compute $(H)-D$.
Step 4 Compute numerators.
(Very similar to step 1)

Problem: how do we handle divisors ?

Representing effective divisors, expectation

Goal: transform divisor operations into polynomial operations.
First try: $D=\sum_{i} m_{i} P_{i}$ with P_{i} of coordinates $\left(x_{i}, y_{i}\right)$.
Encode $u(X)=\prod_{i}\left(X-x_{i}\right)^{m_{i}}$ and compute v such that $y_{i}=v\left(x_{i}\right)$.
Intuition: Project on line $y=0, u$ describes the projected points.

Problems:

$$
\text { Solution: } S=\lambda X+\mu Y
$$

Representing effective divisors, reality

Let D be a smooth effective divisor, i.e. a multi-set of smooth points. This set is put in primitive representation $(\lambda, \mu, \chi, u, v)$ with

- (λ, μ) yields a primitive element $\lambda X+\mu Y$
- χ monic of degree $\operatorname{deg} D$
- $\operatorname{deg} u$ and $\operatorname{deg} v$ are $<\operatorname{deg} D$
- $Q(u(S), v(S))=0 \bmod \chi(S)$
- $\lambda u(S)+\mu v(S)=S$
- $\mu \frac{\partial Q}{\partial X}(u(S), v(S))-\lambda \frac{\partial Q}{\partial Y}(u(S), v(S))$ is coprime to $\chi(S)$.

Representing effective divisors, reality

Let D be a smooth effective divisor, i.e. a multi-set of smooth points. This set is put in primitive representation $(\lambda, \mu, \chi, u, v)$ with

- (λ, μ) yields a primitive element $\lambda X+\mu Y$
- χ monic of degree $\operatorname{deg} D$
- $\operatorname{deg} u$ and $\operatorname{deg} v$ are $<\operatorname{deg} D$
- $Q(u(S), v(S))=0 \bmod \chi(S)$
- $\lambda u(S)+\mu v(S)=S$
- $\mu \frac{\partial Q}{\partial X}(u(S), v(S))-\lambda \frac{\partial Q}{\partial Y}(u(S), v(S))$ is coprime to $\chi(S)$.

Remarks: Such representation may not exist if base field too small. This is not unique, but it becomes unique once (λ, μ) is chosen.

Interface for divisors

- Change of primitive element
- Doubling a divisor
- Addition and subtraction:

Find common primitive element (step above).
For disjoint supports, product and CRT.
For intersection, use doubling step.

- Computing representation of a principal divisor (H)

Conclusion: primitive representation has the routines we want.

Sketch of the algorithm

Step 1 Find a denominator H.
Step 2 Compute (H).
Step 3 Compute $(H)-D$.
Step 4 Compute numerators.
(Very similar to step 1)

Problem: how about the interpolation step ?

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$. In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$. Passing through singularities: similar equations.

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$.
In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$.
Passing through singularities: similar equations.
Set $d=\operatorname{deg} H$ and write $H=\sum_{i=1}^{d} h_{i}(X) Y^{i}$.
Above conditions on H : the h_{i} 's are in a $K[X]$-module of rank $d+1$.

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$. In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$. Passing through singularities: similar equations. Set $d=\operatorname{deg} H$ and write $H=\sum_{i=1}^{d} h_{i}(X) Y^{i}$.
Above conditions on H : the h_{i} 's are in a $K[X]$-module of rank $d+1$.
Computing a solution basis (Neiger, 2016)
A basis of this $K[X]$-module costs $\widetilde{O}\left(d^{\omega-1} \operatorname{deg} \chi_{+}\right)$field ops. (Linear algebra on $d \times d$ polynomial matrices of degree $\leq \operatorname{deg} \chi_{+}$.)

How big is d ? We prove that $d=\left\lceil\frac{(\operatorname{deg} \mathcal{C}-1)(\operatorname{deg} \mathcal{C}-2)+\operatorname{deg} \chi_{+}}{\operatorname{deg} \mathcal{C}}\right\rceil$ is enough.

Finding numerators of a basis

A similar condition on numerators
We have $G / H \in L(D)$ iff $G=0$ or $(G) \geq(H)-D$. By construction, smooth part of (H) is $D_{+}+R$ with R effective. Conditions on G : passing through singularities and $(G) \geq R+D_{-}$.

Finding numerators of a basis

A similar condition on numerators
We have $G / H \in L(D)$ iff $G=0$ or $(G) \geq(H)-D$. By construction, smooth part of (H) is $D_{+}+R$ with R effective. Conditions on G : passing through singularities and $(G) \geq R+D_{-}$.

Previous problem with $R+D_{-}$instead of D_{+}, same d. Only difference: now need basis and not single element in module. But a solution basis is exactly what Neiger's algorithm computes. Value of $d \rightsquigarrow$ both steps in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$ field ops.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$.

Overall complexity

Step 1 First guess for the common denominator:
Structured linear algebra in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$.
Step 2 Compute principal divisor (H):
Resultant and characteristic polynomial in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{3}+\operatorname{deg} \mathcal{C} \operatorname{deg} D_{+}\right)$.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$.
Step 2 Compute principal divisor (H):
Resultant and characteristic polynomial in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{3}+\operatorname{deg} \mathcal{C} \operatorname{deg} D_{+}\right)$.
Step 3 Compute $[(H)-D]_{+}$:
Arithmetic on divisors in $\tilde{O}\left((\operatorname{deg} \mathcal{C})^{\omega / 2+1}+\left(\operatorname{deg} D_{+}\right)^{(\omega+2) / 3}\right)$.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$.
Step 2 Compute principal divisor (H) :
Resultant and characteristic polynomial in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{3}+\operatorname{deg} \mathcal{C} \operatorname{deg} D_{+}\right)$.
Step 3 Compute $[(H)-D]_{+}$:
Arithmetic on divisors in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{\omega / 2+1}+\left(\operatorname{deg} D_{+}\right)^{(\omega+2) / 3}\right)$.
Step 4 Computing numerators of the basis: same as Step 1.
Overall complexity: $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$ field operations.

Overall complexity

Step 1 First guess for the common denominator: Structured linear algebra in $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$.
Step 2 Compute principal divisor (H) :
Resultant and characteristic polynomial in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{3}+\operatorname{deg} \mathcal{C} \operatorname{deg} D_{+}\right)$.
Step 3 Compute $[(H)-D]_{+}$:
Arithmetic on divisors in $\widetilde{O}\left((\operatorname{deg} \mathcal{C})^{\omega / 2+1}+\left(\operatorname{deg} D_{+}\right)^{(\omega+2) / 3}\right)$.
Step 4 Computing numerators of the basis: same as Step 1.
Overall complexity: $\widetilde{O}\left(\left((\operatorname{deg} \mathcal{C})^{2}+\operatorname{deg} D_{+}\right)^{\frac{\omega+1}{2}}\right)$ field operations.
Assumptions: ordinary curve, smooth divisor, base field large enough.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Main obstacles:

- Conditions on H are more complicated to rephrase.
- Too many equations to use Neiger's algorithm.

Prospective

- Implementation including fast structured linear algebra.
- Extend to non-ordinary curve.

Main obstacles:

- Conditions on H are more complicated to rephrase.
- Too many equations to use Neiger's algorithm.

Options:

- Approach based on linear algebra.
- Generalization of Neiger's work in overdetermined case.
- Find a suitable way to rephrase conditions on H.
- Use arithmetic methods (Hess).

Part 2, Arithmetic methods

Main ingredients

- Correspondance divisors on $\mathcal{C} \leftrightarrow$ ideals of $K(\mathcal{C})$.
- Computing Riemann-Roch spaces \rightsquigarrow ideal arithmetic.
- Integral bases: ideal arithmetic \rightsquigarrow polynomial matrices.

Questions: complexity bounds for this approach?
Today: cost of precomputing integral bases.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve \mathcal{C} over perfect field K of equation $f(x, y)=0$. View $f \in K[x][y]$, monic of degree n, irreducible.
Function field $K(\mathcal{C})=\operatorname{Frac}(K[x, y] /\langle f(x, y)\rangle)$.
Field of rational fractions modulo $\frac{f_{1}}{g_{1}} \sim \frac{f_{2}}{g_{2}}$ iff $f_{1} g_{2}-f_{2} g_{1}=0 \bmod f$.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve \mathcal{C} over perfect field K of equation $f(x, y)=0$. View $f \in K[x][y]$, monic of degree n, irreducible.
Function field $K(\mathcal{C})=\operatorname{Frac}(K[x, y] /\langle f(x, y)\rangle)$.
Field of rational fractions modulo $\frac{f_{1}}{g_{1}} \sim \frac{f_{2}}{g_{2}}$ iff $f_{1} g_{2}-f_{2} g_{1}=0 \bmod f$.

Integral elements

A function $g \in K(\mathcal{C})$ is integral (over $K[x])$ if there is a monic polynomial $\mu \in K[x][y]$ such that $\mu(g(x, y))=0$.

Algebraic function fields, integral bases

Algebraic function fields

Consider a plane curve \mathcal{C} over perfect field K of equation $f(x, y)=0$. View $f \in K[x][y]$, monic of degree n, irreducible.
Function field $K(\mathcal{C})=\operatorname{Frac}(K[x, y] /\langle f(x, y)\rangle)$.
Field of rational fractions modulo $\frac{f_{1}}{g_{1}} \sim \frac{f_{2}}{g_{2}}$ iff $f_{1} g_{2}-f_{2} g_{1}=0 \bmod f$.

Integral elements

A function $g \in K(\mathcal{C})$ is integral (over $K[x])$ if there is a monic polynomial $\mu \in K[x][y]$ such that $\mu(g(x, y))=0$.

Example: $1, y, \ldots, y^{n-1}$ are integral elements. Integral elements form a $K[x]$-module of rank n. A $K[x]$-basis of this module is an integral basis.

Incremental algorithms for integral bases

General principle

Start with $B=\left(1, y, \cdots, y^{n-1}\right)$, it generates an integral module.
Compute a matrix $A \in K(x)^{n \times n}$ such that $A B$ remains integral and generates a greater module.
Replace B by $A B$ and repeat until a criterion is met.

Incremental algorithms for integral bases

General principle

Start with $B=\left(1, y, \cdots, y^{n-1}\right)$, it generates an integral module.
Compute a matrix $A \in K(x)^{n \times n}$ such that $A B$ remains integral and generates a greater module.
Replace B by $A B$ and repeat until a criterion is met.

- Trager's algorithm (1984), criterion from commutative algebra. Finding A : Popov form in $K[x]^{n^{2} \times n}$, Gaussian red. in $K(x)^{n^{2} \times n}$.
- Van Hoeij's algorithm (1995) using Puiseux series as criterion. Finding A : solving $n^{2} \times n$ linear systems.

Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015): Factor $f(x, y)$ in $K[[x]][y]$ (branch-wise approach).
Key idea: if f is irreducible, explicit formulas are known.

Integral bases through factorization

Algorithm of Böhm, Decker, Laplagne, Pfister (2015): Factor $f(x, y)$ in $K[[x]][y]$ (branch-wise approach).
Key idea: if f is irreducible, explicit formulas are known.

- Factor f over $K[[x]][y]$ (Poteaux-Weimann).
- At each branch, deduce integral basis using Puiseux series.
- Glue each branch and perform CRT to deduce an integral basis.

Contributions

- Update well-known algorithms with state-of-the-art routines.
- Puiseux series (characteristic $>n$), factorization in $K[[x]][y]$. (Poteaux, Rybowicz, Weimann)
- Polynomial matrices.
(Labahn, Neiger, Storjohann, Zhou and many more)
- Complexity bounds for these tailored versions.

Contributions

- Update well-known algorithms with state-of-the-art routines.
- Puiseux series (characteristic $>n$), factorization in $K[[x]][y]$. (Poteaux, Rybowicz, Weimann)
- Polynomial matrices.
(Labahn, Neiger, Storjohann, Zhou and many more)
- Complexity bounds for these tailored versions.

Notation: $n=\operatorname{deg}_{y}(f), \delta=\operatorname{deg}\left(\operatorname{Disc}_{y}(f)\right), \omega \leq 3$ exponent for lin. alg.

Algorithm	\# Field Operations	Univariate factorization
Trager	$\widetilde{O}\left(n^{5} \delta\right)$	$\operatorname{Disc}_{y}(f)$
Van Hoeij	$\widetilde{O}\left(n^{\omega+2} \delta\right)$	$\operatorname{Disc}_{y}(f)$
Böhm et al.	$\widetilde{O}\left(n^{2} \delta\right)$	$\operatorname{Disc}_{y}(f)$

Contributions (simplified)

Set $D=\max \left(\operatorname{deg}_{y}(f), \operatorname{deg}_{x}(f)\right), \delta \leq D^{2}$, ignore factorization.

Algorithm	\# Field Operations
Trager	$\widetilde{O}\left(D^{7}\right)$
Van Hoeij	$\tilde{O}\left(D^{\omega+4}\right)$
Böhm et al.	$\tilde{O}\left(D^{4}\right)$

Input size: $f \in K[x, y]$ has $\leq D^{2}$ monomials.
Output size: integral basis has $O\left(D^{4}\right)$ field elements.

Future work

- Investigate Hess' algorithm.
(Complexity bounds, exploit progress on polynomial matrices)
- Better representation for integral bases ? (Quasi-optimal is not good enough)

Future work

- Investigate Hess' algorithm.
(Complexity bounds, exploit progress on polynomial matrices)
- Better representation for integral bases ? (Quasi-optimal is not good enough)

Thank you for your attention!

[^0]: ${ }^{1} \mathrm{~V}$. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

[^1]: ${ }^{1} \mathrm{~V}$. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial equations, ISSAC 2016.

