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The State of Post-Quantum Cryptography

Six families still in Round 3 NIST post-quantum competition (Finalists +
Alternate Candidates):

Lattices 4 encryption 2 signature
Codes 3 encryption
Multivariate 2 signature
Isogenies 1 encryption

compact keys

Hash-based 1 signature
MPC 1 signature

Many more isogeny-based protocols since then....

Signatures maybe?
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Isogeny-based Signatures

Generic Isogeny feature: compact keys (unless specific tradeoffs).

• [JS14] Undeniable Signatures: Based on SIDH,
One round ⇒ compact sig and efficent, Interactive.

• [Yoo+17] Digital Signature: Based on SIDH,
Multiple rounds ⇒ long sig, slow.

• [GPS17] GPS signature: Based on quaternions ⇒ weaker
assumption,
Multiple rounds ⇒ long sig, no implem.

• [DG19] SeaSign: Based on CSIDH,
Multiple rounds ⇒ slow, size tradeoffs.

• [BKV19] CSI-FiSh: Based on CSIDH + precomp. ⇒ bad scaling,
similar to SeaSign with improved efficiency and sizes.

Jao and Soukharev “Isogeny-based quantum-resistant undeniable signatures”
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SQISign: Short Quaternion Isogeny Signature

Signature from one round, high soundness identification protocol based
on proof of knowledge of endomorphism ring.

Most compact PQ signature scheme: PK + Signature combined 5×
smaller than Falcon (most compact NIST Round 3 candidate).

Secret Key (bytes) Public Key (bytes) Signature (bytes) Security
16 64 204 NIST-1

Efficient verification and reasonably efficient signature.

Keygen Sign Verify
ms 575 2,279 42

New security assumption.
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Isogeny-based Cryptography



Elliptic curve and Isogeny notations

Elliptic Curve over Fq:

y2 = x3 + ax + b

E (Fq) is a group with addition ⊕. Scalar multiplication [n]E is n
consecutive additions. E [n] = {P ∈ E , [n]EP = 0E}.

Separable isogeny:
ϕ : E → F

The degree is deg(ϕ) = #ker(ϕ).

The dual isogeny ϕ̂ : F → E

ϕ̂ ◦ ϕ = [deg(ϕ)]E
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Endomorphism ring

An isogeny ϕ : E → E is an endomorphism. End(E ) is a ring with
addition and composition.

Examples: [n]E for n ∈ Z, Frobenius over Fp i.e π : (x , y)→ (xp, yp)

E (Fq):

• Ordinary when End(E ) is an order of a quadratic imaginary field.

• Supersingular when End(E ) is a maximal order of a quaternion
algebra.

All supersingular curves have a model over Fp2 .
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Supersingular Isogeny Diffie Hellman

Key exchange betw. Alice and Bob.

Deg. NA, NB with NA ∧ NB = 1.

E0

EA

EAB

EB

EBA

ϕA

ϕB

[ϕA]∗ϕB

[ϕB ]∗ϕA

'

Push-forward kernel ker([ϕ]∗ψ) = ϕ(kerψ).

Efficient when NA,NB are smooth.

Jao and De Feo “Towards Quantum-Resistant Cryptosystems from Supersingular
Elliptic Curve Isogenies”
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Supersingular Isogeny Problem

The underlying security problem:

Supersingular `-Isogeny Problem: Given a prime p and two
supersingular curves E1 and E2 over Fp2 , compute an `e-isogeny

ϕ : E1 → E2 for e ∈ N?.

SIDH assumption is stronger : additional information required to compute
the push-forward maps.
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The Deuring Correspondence



Quaternion Algebra, Orders and Ideals

The Quaternion algebra H(a, b) is

H(a, b) = Q+ iQ+ jQ+ kQ with i2 = a, j2 = b

Fractional ideals are Z-lattices of rank 4 inside H(a, b)

I = α1Z+ α2Z+ α3Z+ α4Z

The Reduced norm n(I ) = {gcd(n(α)), α ∈ I}

An order O is an ideal which is also a ring, it is maximal when not
contained in another order.

The (maximal) left order1 OL(I ) of an ideal is

OL(I ) = {α ∈ H(a, b), αI ⊂ I}

1similary for the right order OR(I )

9
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The Deuring Correspondence

Supersingular elliptic curves over Fp2 Maximal Orders in Ap

E O ∼= End(E )
Isogeny with ϕ : E → E1 Ideal Iϕ left O-ideal

and right O1-ideal
Degree deg(ϕ) Norm n(Iϕ)

Example : p ≡ 3 mod 4, Ap = H(−1,−p).

E0 : y2 = x3 + x

End(E0) = 〈1, ι,
ι+ π

2
,
1+ ιπ

2
〉 ∼= 〈1, i ,

i + j

2
,
1+ k

2
〉

π : (x , y) 7→ (xp, yp) is the Frobenius

ι : (x , y) 7→ (−x ,
√
−1y) is the twisting automorphism of E0.
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A new security problem?

Supersingular `-Isogeny Problem: Given a prime p and two
supersingular curves E1 and E2 over Fp2 , compute an `e-isogeny

ϕ : E1 → E2 for e ∈ N?.

m

Quaternion `-Isogeny Path Problem: Given a prime number p, two
maximal orders O1,O2 of Ap, find an ideal J of norm `e for e ∈ N? with

OL(J) ∼= O1, OR(J) ∼= O2.

[Koh+14]: heuristic polynomial time algorithm KLPT for quaternion path
problem.

Kohel et al. “On the quaternion `-isogeny path problem”
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Algorithmic summary of effective Deuring Correspondence

Problems with 7 are hard, 3 are easy. All 3 are obtained using KLPT.

E → O 7 O → E 3

ϕ→ Iϕ 7 Iϕ → ϕ 3

E1,E2 → ϕ 7 O1,O2 → I 3

[Eis+18]: use KLPT to prove heuristic polynomial time reduction from
supersingular `-isogeny problem to :

Endomorphism Ring Problem: Given a supersingular elliptic curve E

over Fp2 , compute its endomorphism ring.

Eisenträger et al. “Supersingular Isogeny Graphs and Endomorphism Rings:
Reductions and Solutions”
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Proof of Knowledge of
Endomorphism Ring



Quaternions for Proofs?

The knowledge of the endomorphism ring of a curve E allows to perform
powerful operations otherwise impossible.

Can we use KLPT to prove the knowledge of the endomorphism ring
through isogeny computation?

Yes!

First attempt: GPS Signature in 2017.

Galbraith, Petit, and Silva “Identification Protocols and Signature Schemes Based
on Supersingular Isogeny Problems”
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GPS Identification Scheme

[GPS17]: A 2-special sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0

b ∈ {0, 1}

E

EA

τ

σ0

σ1 (KLPT)

commitment isogeny (prover)

• challenge bit (verifier)

response isogeny (prover)

secret key isogeny

Repeat this λ times to reach 2λ-bits of soundness.
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SQISign Identification Scheme

SQISign: A 2λ-sound identification protocol.

Prover wants to demonstrate knowledge of End(EA) for public key EA.
E0 is a public special curve.

E0

E1

E2

EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Probability to cheat without knowledge of End(EA): O( 1
degϕ ).
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Proving the Soundness

Soundness: Given two valid transcripts for two different challenges for
the same commitment, some knowledge is revealed on the secret key.

E0

E1

E2

EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Smooth Endomorphism Problem: Given a supersingular elliptic curve
E over Fp2 , compute a non-trivial endomorphism θ ∈ End(E ) of smooth

norm.

[Eis+18]: prove heuristic polynomial reduction to the Endomorphism
Ring Problem.
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The KLPT algorithm and the Zero-knowledge

Zero-Knowledge: It is possible to generate a transcript indistinguishable
from a valid one with the sole knowledge of the public key.

E0

E1

E2

EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Show that σ is a random isogeny ⇒ depends on the alg. to compute σ.

Solution from [Koh+14]: σ reveal a path to E0.

We propose a new SigningKLPT algorithm.
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A New Security Assumption

Lemma: Fix D as σ’s degree. There exists Pdeg(τ) a set of isogenies of
degree D such that:

SigningKLPT outputs an uniform element in
{ρ, ρ = [τ ]∗ι, ι ∈ Pdeg(τ)}.

E0 E1

E2EA

τ

ι

σ = [τ ]∗ι

ZK reduces to the distinguishing problem between:

1. σ is uniformly random isogeny of degree D;

2. σ is uniformly random in [τ ]∗ Pdeg(τ).

Pdeg(τ) can be computed from deg(τ) only and has exponential size.
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SQISign in Practice



Effective Deuring Correspondence: from Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D � p2 and the kernel cannot be represented in Fp2 . Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = `f and split σ in smaller isogenies of degree `e and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...

19



Effective Deuring Correspondence: from Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D � p2 and the kernel cannot be represented in Fp2 . Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = `f and split σ in smaller isogenies of degree `e and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...

19



Effective Deuring Correspondence: from Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D � p2 and the kernel cannot be represented in Fp2 .

Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = `f and split σ in smaller isogenies of degree `e and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...

19



Effective Deuring Correspondence: from Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D � p2 and the kernel cannot be represented in Fp2 . Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = `f and split σ in smaller isogenies of degree `e and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...

19



Effective Deuring Correspondence: from Ideals to Isogenies

SigningKLPT computes an ideal. Translate into the isogeny σ.

[GPS17]: IdealToIsogeny : J 7→ σ polynomial alg. for degree D,
domain E with E [D] and action of End(E ) on this set. No
implementation!

We have D � p2 and the kernel cannot be represented in Fp2 . Two
solutions:

• Take D powersmooth → E [D] in ∼ small extension ([GPS17]).

• Take D = `f and split σ in smaller isogenies of degree `e and apply
IdealToIsogeny for each (SQISign).

New Pb: for generic E of known End(E ), hard to evaluate End(E )...

19



Choice of Parameters

In summary, for efficient translation: accessible `eT -torsion for e as big
as possible and smooth T ∧ ` = 1 with T 2 ∼ p3 (constraint from KLPT).

Accessible torsion over Fp2 for superingular curves divides p2 − 1.

We found a 256 bits prime p with e = 33 and 213-smooth integer of 395
bits:

T = 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983
353 · 43 · 103 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859
883 · 1019 · 2713 · 4283

Fast verification because deg σ = 21000.

Bottleneck of the signature: T -isogeny computations O(1000/33).
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What now?



Future implementation improvements

The complex setting of SQISign leaves room for a lot of improvements:

• Better parameters.

• Optimize various Isogeny computations (concrete bottleneck).

• New tricks to improve IdealToIsogeny.

• Various tradeoffs to explore.

• The size of KLPT solutions: huge impact on almost every aspect of
the scheme. Current best is O(p3), going to O(p5/2) could allow to
cut in two the signing time (the best possible is O(p))
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Conclusion and Important Problems

We introduced the most compact post-quantum signatures but efficiency
is still order of magnitudes below the competitors. The underlying sigma
protocol has zero-knowledge property relying on a new assumption.

Main future theoretical directions:

• Improving the KLPT algorithm: either for efficiency or security.

• Better understanding of the current ZK assumption.

• Find new algorithms for effective Deuring Correspondence.
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Questions?
https://eprint.iacr.org/2020/1240
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