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BLOCK CODES AND G-CODES

BLOCK CODES

K finite field of cardinality g.

BASIC DEFINITIONS
@ A g-ary linear code C of length n is a subspace of K".

o If c =(c1,...,cn) € C (codeword), the (Hamming) weight of c is
wt(c) =#{ie{l,...,n} | ¢ # 0}.

o Ct={veK"|{v,c)=0, forall ceC} (dual of C).

PARAMETERS
Parameters: [n, k, d]q.

e d=d(C) = min wt(c) (minimum distance).

,c#0

e R = k/n (information rate).
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BLOCK CODES AND G-CODES

G-CODES

G # {l¢} finite group.

DEFINITION

A G-code (or a group code) over K is a right ideal in the group algebra

KG—{a—Eagg ageK}.

getG
o G = G, (cyclic group of order m) = cyclic code.

DEFINITION

e G = Dy, (dihedral group of order 2m) = dihedral code.

o G = C, x C, (metacylic group of order rm) = metacyclic code.
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REMARK

If #G = n, fix an ordering G = {g1,..., &}, then
0: KG = K"

n
Zaigi = (317"'7an)'
i=1

The isomorphism is not canonical!
Different orderings yield permutation equivalent codes.

Via ¢:

G-codes -~ Linear codes.
Hamming metric in KG «~ Hamming metric in K".
Inner product in KG <~ Inner product in K".
Action of G~~~ Permutation automorphism (regular) subgroup.
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BLOCK CODES AND G-CODES

EXAMPLES AND COUNTEREXAMPLES

The self-dual [24,12, 8] Golay code is a S;-code (Bernhardt, Landrock and
Manz - 1990) and a Dy4-code (McLoughlin and Hurley - 2008).

The self-dual [48,24,12] extended quadratic residue code is a Dig-code.

The self-dual [72 36, 16] code (if it exists!) is not a group code, since
#PAut(C) <5 (B., Willems and many others).

The [12,6,6]3 Golay code G is not a group code, even if #PAut(G) = 660.
The Reed-Muller codes RM ,(r, m) = J™P=Y=" (p prime), with J

Jacobson radical (intersection of maximal ideals) of KG, where G is
elementary abelian of rank m (Berman - 1967 and Charpin - 1988).
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BLOCK CODES AND G-CODES

PRINCIPAL AND CHECKABLE CODES

DEFINITION (JITMAN, LiNG, Liu, XIE - 2010)

A G-code C is checkable if 3c € KG s.t. C = {ve KG | cv = 0} = Ann,(c).

THEOREM (B., DE LA CRUZ, WILLEMS - 2019)

For any G-code C,

C is checkable < C* is a principal right ideal.

EXAMPLES
e Cyclic codes are principal (equivalently checkable).
o If (m,q) =1, all Dy,,-codes over K are principal (equivalently checkable).

o If I, q are prime, all C; x C4-codes over K are principal (equivalently
checkable).
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ASYMPTOTIC PERFORMANCE OF G-CODES

ASYMPTOTIC PERFORMANCE OF G-CODES

DEFINITION

A family of codes F is called asymptotically good if it exists an infinite set
{Cn}nez < F of [n, kn, dn]q codes such that

R = liminf k,/n > 0 (asymptotic rate),
n—0o0

0 =liminfd,/n> 0 (asymptotic relative minimum distance).
n—o0

OPEN PROBLEM (AsSsMUS, MATTSON, TURYN - 1966)

Is the family of cyclic codes asymptotically good? J

MARTINO BORELLO (PARIs 8-LAGA)

24/11/2020 7 /23



ASYMPTOTIC PERFORMANCE OF G-CODES

THEOREM (LIN, WELDON - 1967)
Long BCH codes are bad.

THEOREM (BERMAN - 1967)

Cyclic codes are bad if only finitely many primes are involved in the lengths of the

codes.

THEOREM (BABAI, SHPILKA, STEFANKOVIC - 2005)

@ There are no good cyclic LDPC (low density parity check) codes.
@ There are no good cyclic locally testable codes.

OPEN PROBLEM (ASSMUS, MATTSON, TURYN - 1966)

Is the family of cyclic codes asymptotically good? Maybe not!
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ASYMPTOTIC PERFORMANCE OF G-CODES

THEOREM (BAzz1, MITTER - 2006)

Binary dihedral codes are asymptotically good.

THEOREM (B., WILLEMs - 2020)

Cp x C4-codes over K are asymptotically good.

COROLLARY

Principal (equivalently checkable) codes are asymptotically good.

THEOREM (B., MOREE, SOLE - 2020)

Assuming Artin’s conjecture for primitive roots in arithmetic progression (true
under GRH), metacyclic codes are aymptotically good.

OPEN PROBLEM (AsSsMUS, MATTSON, TURYN - 1966)

Is the family of cyclic codes asymptotically good? Maybe yes!
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UNCERTAINTY PRINCIPLE

THE UNCERTAINTY PRINCIPLE

G finite abelian group and f : G — C.

DEFINITION
The dual group of G is

lle
()

G = {homomorphisms y : G — S'}

where St = {ze C | |z| = 1}.

DEFINITION

The Fourier transform of f is f : G — C defined by

) = —= S Flex(e)
4G

geG
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UNCERTAINTY PRINCIPLE

supp(f) = {g € G | f(g) # 0}.
THEOREM (DONOHO, STARK - 1989)

Every f : G — C, f # 0, satisfies

A

#supp(f) - #supp(f) = #G.

(Uncertainty Principle)

Stronger version for G = C,, observed first by Meshulam.

THEOREM (GOLDSTEIN, GURALNICK, IsaACc / TAao - 2005)
Every f : C, — C, f # 0, satisfies

#supp(f) + #supp(f) > p + 1.

(Uncertainty Principle for simple cyclic group)
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UNCERTAINTY PRINCIPLE

0 f:G->Ce— 3} f(g)geCt
e CC, =C[x]/(xP —1) and

f = ag +aix+... +ap,1x"_1

o Cp=pp(C) = {CeC (P =1} by x> x(1) and

>

©) = %(ao tar( 2, (TP
o Let Zy = () in C[x]/(xP — 1), with f|xP — 1. Then

dimZ¢ = p — deg(f) = p — #zeros(f) = #supp(f).

THEOREM (Uncertainty Principle reformulated)
Every f € C[x]/(xP — 1), f # 0, satisfies

wt(f) + dimZs > p + 1.
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UNCERTAINTY PRINCIPLE

CoroLLARY (EvrRA, KowaLsKIl, LUBOTZKY - 2017)

Cyclic codes over C are asymptotically good.

PRrROOF
Let ¢, is a primitive p-th root of unity and

f=]]x-¢)
i=1
Then dimZy = p — deg(f) = %1 and for he Z¢, h # 0,
wt(h) = p+1—dimZ, > p+1—dimZs =

So Zr is a [p, pTH, p—;l]c cyclic code.

p+1

2

Special cases of Reed-Solomon codes over C.
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UNCERTAINTY PRINCIPLE

UNCERTAINTY PRINCIPLE OVER FINITE FIELDS

What about finite fields?

DEFINITION

w(K,n) = min{d(Zs) + dimZ¢ | f € K[x]/(x" — 1)}. J

e u(C,p) = p+1 for all prime p.
e u(K,n) < n+1 (Singleton bound).
o u(K,p) =p+1if gis primitive modulo p, i.e. ord,(q) = p — 1.

DEFINITION (EVRA, KOWALSKI, LUBOTZKY - 2017)

K satisfies the (strong) Uncertainty Principle if for all prime p

WK, p)=p+1.
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UNCERTAINTY PRINCIPLE

THEOREM (B., SOLE - 2020)
Assume MDS conjecture. If g is not primitive modulo p and p > g + 2, then

WK, p) <p+1.

PRroor

@ g is not primitive modulo p = it exists f|xP — 1 such that
l1<deg(f)<p—1,ie 1<dimZs <p—1.
@ By contradiction,
d(Zf) +dimZs = p(K,p) = p+ 1

= Zr is MDS of length p, non-trivial.

@ MDS conjecture = p < g + 2.

Something similar is true without MDS conjecture (e.g. nontrivial MDS codes
have length at most 2g — 2). So, the (strong) UP is not true for any K.
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UNCERTAINTY PRINCIPLE

DEFINITION (Weak Uncertainty Principle)

Let 0 < e < A < 1. K satisfies the (¢, A)-Uncertainty Principle if there exists an
infinite set of primes P such that for all p € P,

° u(K,p) > Ap
e ord,(q) < ep.

THEOREM (EVRA, KOWALSKI, LUBOTZKY - 2017)

If K satisfies the (e, A)-Uncertainty Principle, then cyclic codes over K are
asymptotically good.

Idea:
e u(K,p) > Ap = we can find ideals with large distance.
e ord,(q) < ep = we can find ideals with large dimension.
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UNCERTAINTY PRINCIPLE

ProprosITION (B., SOLE - 2020)

If K satisfies the (e, \)-Uncertainty Principle, then A < ‘7%1.

PRroOOF

@ There exists a sequence of cyclic codes of length p € P, asymptotic rate R
and asymptotic relative distance 9.

e pd+ pR = u(K,p) > Ap.

o A < min{d + ag(d)}, where aq(d) is the largest possible rate of a code of
relative distance §.

o Asymptotic Plotkin bound = min{d + a4(d)} = q%l.

Does it exist any K satisfying the Weak Uncertainty Principle for some
g, A?
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UNCERTAINTY PRINCIPLE

NAIVE UNCERTAINTY PRINCIPLE

Analogue of Fourier transform for finite fields:

DEFINITION

Let ¢, be a primitive n-th root of unity in K. For
f:C—Ke—feK[x]/(x"—-1)
the Mattson-Solomon polynomial is

F=(F(Ga) F(GR), -, FCD) < F e KIX]/(x" = 1).

Generalization of Donoho-Stark :

ProposITION (B., SOLE - 2020)
For f # 0,

~

wt(f) - wt(f) = n.

(Naive Uncertainty Principle)
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UNCERTAINTY PRINCIPLE

REMINDER: BCH BOUND

If among the zeros of f there exists m consecutive powers of (,, then

d(Zf) = m+ 1.

PROOF (OF NAIVE UNCERTAINTY PRINCIPLE)
o Let wt(f) = w.
e By BCH bound, f cannot have w consecutive zeros.

o If w divides n, in each interval
[1,...,w],...;[n=w+1,...,n]

there is a nonzero of . So wt(f) = n/w.

e Similarly otherwise.

24/11/2020
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UNCERTAINTY PRINCIPLE

THEOREM (B., SOLE - 2020)

For every real number 0 < o < 1/2, there are sequences of cyclic codes of
asymptotic rate R with minimum distance Q(n®).

Proor
@ n=qgP — 1, with p prime.
o x"—1=[],.o(x—a)[];_; fi, with f; irreducible of degree p.
o g =1, fi, with #/ = [s(1 — R)].
e 7, = (gi) has asymptotic rate R.
o Calculate A, > #{codes containing a codewords of weight at most n®}
(using naive UP).
@ Prove that asymptotically A, - #By(n®) < #{possible g;}.
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UNCERTAINTY PRINCIPLE

RAMSEY THEORY

DEFINITION

Let b # 0. An arithmetic progression of length m in Z/nZ is

{a+kb|ke{0,...,m—1}}.

DEFINITION

The Szemeredi function r,(n) is the largest size of a subset of Z/nZ not
containing an arithmetic progression of length m.

By BCH bound, if wt(f) = m, then
wt(f) = n— #zeros(f) = n — ry(n)
(proved by Quader, Russell, Sundaram - 2019, without BCH bound). So

w(K,n) = min{m+n—ry(n) |0 < m< n}.
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CONCLUSION AND OUTLOOK

CONCLUSION AND OUTLOOK

CONCLUSION

o We presented arguments for and against the existence of asymptotically
good families of cyclic codes.

o We presented different versions of the Uncertainty Principle over finite
fields and the relation with the problem above.

@ One of these is sufficient to prove the existence of infinite families of “almost
good” cyclic codes of any asymptotic rate.

OUTLOOK

@ Develop the approach with arithmetic progressions in order to prove the
Weak Uncertainty Principle for some finite field.

o Generalize all these results to abelian codes or to G-codes.

MARTINO BORELLO (PARIs 8-LAGA) 24/11/2020 22 /23



REFERENCES

REFERENCES

ﬁ M. Borello, P. Solé. The uncertainty principle over finite fields, arXiv:
2007.04159, 2020.

ﬁ D.L. Donoho, P.B. Stark. Uncertainty principles, and signal recovery. SIAM J.
Appl. Math. 49, 906-931, 1989.

ﬁ S. Evra, E. Kowalski, A. Lubotzky. Good cyclic codes and the uncertainty
principle. L'Enseignement Mathématique, 63, 305-332 2017.

ﬁ D. Goldstein, R.M. Guralnick, .M. Isaacs. Inequalities for finite group
permutation modules. Transactions of the American Mathematical Society
357, 4017-4042 2005.

ﬁ T. Tao. An uncertainty principle for cyclic groups of prime order.
Mathematical Research Letters 12, 121-127 2005.

MARTINO BoRELLO (PARIS 8-LAGA) 24/11/2020 23W 823!



REFERENCES

[@ M. Borello, P. Sole. The uncertainty principle over finite fields, arXiv:
2007.04159, 2020.

[3 D.L. Donoho, P.B. Stark. Uncertainty principles, and signal recovery. SIAM J.
Appl. Math. 49, 906-931, 1989.

[3 S. Evra, E. Kowalski, A. Lubotzky. Good cyclic codes and the uncertainty
principle. L'Enseignement Mathématique, 63, 305-332 2017.

@ D. Goldstein, R.M. Guralnick, .M. Isaacs. Inequalities for finite group
permutation modules. Transactions of the American Mathematical Society
357, 4017-4042 2005.

@ T. Tao. An uncertainty principle for cyclic groups of prime order.
Mathematical Research Letters 12, 121-127 2005.

Thank you very much for the attention!
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