Cryptanalysis of the Faure-Loidreau PKE, a rank-metric code-based cryptosystem with short keys

Maxime Bombar , Alain COUVREUR

GT Grace

November 3, 2020

Outline

1 Introduction

2 Gabidulin codes and the Faure-Loidreau PKE

3 Contribution 1: Alternative attack on the Faure-Loidreau PKE

4 Contribution 2: Attack on the repaired version

- *McEliece* : Based on decoding an error of **small** Hamming weight in a (look-alike) **random** code. → Usually **huge keys**.
- Reducing key size ?

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?
 - (1) Large automorphism group ightarrow Quasi-cyclic, quasi-dyadic \ldots

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?
 - (1) Large automorphism group.
 - (2) Rank metric \rightarrow e.g. *GPT* (Eurocrypt 1991) broken by Overbeck in 2005.

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?
 - (1) Large automorphism group.
 - (2) Rank metric.
 - (3) Another setting \rightarrow Augot-Finiasz.
 - D. Augot, M. Finiasz, A Public-Key Encryption Scheme based on the Polynomial Reconstruction Problem, Eurocrypt, 2003

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?
 - (1) Large automorphism group.
 - (2) Rank metric.
 - (3) Using another setting $\rightarrow Augot Finiasz$ Message recovery attack.
 - J.S. Coron, Cryptanalysis of a Public-Key Encryption Scheme Based on the Polynomial Reconstruction Problem, PKC, 2004

- *McEliece* : Based on decoding an error of small Hamming weight in a (look-alike) random code. → Usually huge keys.
- Reducing key size ?
 - (1) Large automorphism group.
 - (2) Rank metric.
 - (3) Using another setting \rightarrow Faure-Loidreau.

C. Faure, P. Loidreau, A new public-key cryptosystem based on the problem of reconstructing q-polynomials, WCC 2005

Error correcting codes

General linear code

- Linear subspace $\mathscr{C} \subset \mathbb{F}_q^n$, dimension k, \mathbb{F}_q finite field.
- (\mathbb{F}_q^n, d) metric space.

Bounding distance decoding problem (BDD)

Given a word $\mathbf{y} \in \mathbb{F}_q^n$, and a bound t, find (if exists) a codeword \mathbf{c} , and $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{y} = \mathbf{c} + \mathbf{e}$ and $d(\mathbf{y}, \mathbf{c}) \leq t$.

Unique decoding radius

•
$$\delta := d_{\min}(\mathscr{C}) := \min_{x \neq y \in \mathscr{C}} d(x, y)$$

• $t \leq \lfloor \frac{\delta-1}{2} \rfloor \Rightarrow$ the BDD problem has at most **one solution**.

Rank metric error correcting codes

Want to see a vector $\mathbf{x} \in (\mathbb{F}_{q^m})^n$ as a matrix \mathbf{X} over \mathbb{F}_q .

\mathbb{F}_{q^m} -linear rank metric codes

- $\mathscr{C} \subset \mathbb{F}_{a^m}^n$ linear code of dimension k.
- Rank distance: $d(\mathbf{x}, \mathbf{y}) := \mathbf{Rank}(\mathbf{X} \mathbf{Y})$.

$$\mathcal{B} = (b_1, \dots, b_m)$$
 basis of $\mathbb{F}_{q^m}/\mathbb{F}_q$, $x_i = \sum_{j=1}^m x_{i,j}b_j$

Extension map

$$\mathbf{ext}_{\mathcal{B}}: \left\{ \begin{array}{ccc} \mathbb{F}_{q^m}^n & \to & \mathbb{F}_{q}^{m \times n} \\ \mathbf{x} := (x_1, \dots, x_n) & \mapsto & \mathbf{X} := \begin{bmatrix} x_{1,1} & \dots & x_{n,1} \\ \vdots & \ddots & \vdots \\ x_{1,m} & \dots & x_{n,m} \end{bmatrix} \right.$$

Remark. The rank distance doesn't depend on the chosen basis.

Outline

2 Gabidulin codes and the Faure-Loidreau PKE

3 Contribution 1: Alternative attack on the Faure-Loidreau PKE

4 Contribution 2: Attack on the repaired version

Non commutative ring of *q*-polynomials

 $\mathbb{F}_{q^m}/\mathbb{F}_q$ algebraic extension of degree m.

- $P = p_0 X + p_1 X^q + \cdots + p_t X^{q^t}$, $p_i \in \mathbb{F}_{q^m}$, $p_t \neq 0$.
- $\deg_q(P) := t$.
- Addition of classical polynomials.
- Multiplication \rightarrow Composition of *q*-polynomials.

Notations.

 $\mathcal{L}\mathbb{F}_{q^m}[X]$ set of *q*-polynomials.

 $\mathcal{L}\mathbb{F}_{q^m}[X]_{\leq t}$ set of q-polynomials of q-degree bounded by t.

Non commutative ring of *q*-polynomials

Theorem : $(\mathcal{L}\mathbb{F}_{q^m}[X], +, \circ)$ is a **non commutative ring**. **Example.** $aX \cdot X^q = aX^q$ while $X^q \cdot aX = a^qX^q$.

A left and right euclidean ring

Let A, B be two q-polynomials.

- $\exists !(Q,R), \quad A = B \circ Q + R \text{ and } \deg_q(R) < \deg_q(B).$
- $\exists ! (S, T), \quad A = S \circ B + T \text{ and } \deg_q(S) < \deg_q(B).$

Roots and interpolation of *q*-polynomials

A *q*-polynomial induces an \mathbb{F}_q -linear map of \mathbb{F}_{q^m} .

Roots of a *q*-polynomial

- Ker(P) is linear subspace of dimension at most $\deg_q(P)$.
- For any linear subspace of dimension t there exists a (unique) monic q-polynomial V of q-degree t such that E = Ker(V).

Lagrange interpolation

Let $\mathbf{g} = (g_1, \dots, g_n) \in \mathbb{F}_{q^m}^n$ be linearly independent. Let $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_{q^m}^n$. There exists a **unique** q-polynomial P of q-degree < n such that:

$$\forall 1 \leq i \leq n, \quad P(g_i) = y_i.$$

Gabidulin codes

Definition

Let $\mathbf{g} = (g_1, \dots, g_n) \in \mathbb{F}_{q^m}^n$ whose coordinates are linearly independent. The **Gabidulin code** of dimension k and evaluation vector \mathbf{g} is

$$Gab_k(\mathbf{g}) = \{ (P(g_1), \ldots, P(g_n)) \mid \deg_q(P) < k \}.$$

 $Gab_k(\mathbf{g})$ has minimum distance n - k + 1.

Decoding error of rank t in $Gab_k(\mathbf{g})$:

Faure-Loidreau PKE

A PKE based on the hardness of decoding a Gabidulin code above half the minimum distance.

Public parameters

 $n, k, u \in \mathbb{N}^*$; **G** a generator matrix of $Gab_k(\mathbf{g}) \subset (\mathbb{F}_{q^n})^n$, $\lfloor \frac{n-k}{2} \rfloor < w < n-k$.

$$\begin{array}{ll} \mathbb{F}_{q^{nu}} & Tr(x) := x + x^{q^n} + \dots + x^{q^{n(u-1)}} \in \mathbb{F}_{q^n} \text{ is the trace of } \mathbb{F}_{q^{nu}}/\mathbb{F}_{q^n}, \\ | u & \text{with notation } Tr(x_1, \dots, x_l) := (Tr(x_1), \dots, Tr(x_l)). \\ \mathbb{F}_{q^n} & \\ | n & \\ \mathbb{F}_q & \text{Rank distance is over } \mathbb{F}_q. \end{array}$$

Faure-Loidreau PKE

Keys:
$$\mathbf{x} \in (\mathbb{F}_{q^{nu}})^k, \mathbf{z} \in (\mathbb{F}_{q^{nu}})^n$$
 and $\lfloor \frac{n-k}{2} \rfloor < \text{Rank}(\mathbf{z}) := w < n-k$.
with (x_{k-u+1}, \dots, x_u) a basis of $\mathbb{F}_{q^{nu}}/\mathbb{F}_{q^n}$.
$$\mathbf{k}_{pub} = \mathbf{x}\mathbf{G} + \mathbf{z} \in (\mathbb{F}_{q^{nu}})^n$$
public private

Originality: Short public key, linear in security level.

Encrypt: Plaintext is some $\mathbf{m} = (m_1, \dots, m_{k-u}, 0, \dots, 0) \in (\mathbb{F}_{q^n})^k$.

• Pick $\alpha \in \mathbb{F}_{q^{nu}}$ at random and $\mathbf{e} \in \mathbb{F}_{q^n}^n$ of rank $t := \lfloor \frac{n-k-w}{2} \rfloor$.

• Ciphertext is
$$\mathbf{c} := \mathbf{mG} + Tr(\alpha \mathbf{k}_{pub}) + \mathbf{e}$$
.

Faure-Loidreau PKE

Decrypt:

- "Projection" to remove ${\boldsymbol z}$ dependencies and decode $\to {\boldsymbol m}'$
- Knowledge of $\mathbf{x} \to \text{Recover } \alpha$ with linear algebra $\to \mathbf{m}$.

Attack and repair

P. Gaborit, A. Otmani, H. Talé-Kalachi (2016)

 (\mathbf{x}, \mathbf{z}) can be efficiently recovered from \mathbf{k}_{pub} provided that $w \leq \frac{u}{u+1}(n-k)$.

P. Gaborit, A. Otmani, H. Talé Kalachi Polynomial-time key recovery attack on the Faure-Loidreau scheme base on Gabidulin codes, Designs, Codes and Cryptography 2016.

A. Wachter-Zeh, S. Puchinger, J. Renner (2018)

Let $\zeta := \operatorname{Rank}_{\mathbb{F}_{q^n}}(z)$.

- Attack fails if $\zeta < \frac{w}{n-k-w}$.
- Repair: Choose $\zeta = 1$.

Attack and repair

P. Gaborit, A. Otmani, H. Talé-Kalachi (2016)

 (\mathbf{x}, \mathbf{z}) can be efficiently recovered from \mathbf{k}_{pub} provided that $w \leq \frac{u}{u+1}(n-k)$.

A. Wachter-Zeh, S. Puchinger, J. Renner (2018)

Let $\zeta := \operatorname{\mathsf{Rank}}_{\mathbb{F}_{q^n}}(z)$.

- Attack fails if $\zeta < \frac{w}{n-k-w}$.
- Repair: Choose $\zeta = 1$.

A. Wachter-Zeh, S. Puchinger, J. Renner, *Repairing the Faure–Loidreau Public-Key Cryptosystem*, ISIT 2018.

Outline

2 Gabidulin codes and the Faure-Loidreau PKE

3 Contribution 1: Alternative attack on the Faure-Loidreau PKE

Contribution 2: Attack on the repaired version

Attack on Faure-Loidreau PKE

Let $\gamma = (\gamma_1, \dots, \gamma_u)$ be a basis of $\mathbb{F}_{q^{nu}}/\mathbb{F}_{q^n}$, and γ^* be its dual basis : $Tr(\gamma_i \gamma_j^*) = \delta_{i,j}$.

Interleaving

$$\mathbf{K}_{pub} := \begin{pmatrix} Tr(\gamma_1 \mathbf{k}_{pub}) \\ \vdots \\ Tr(\gamma_u \mathbf{k}_{pub}) \end{pmatrix}, \ \mathbf{C} := \begin{pmatrix} Tr(\gamma_1 \mathbf{x}) \mathbf{G} \\ \vdots \\ Tr(\gamma_u \mathbf{x}) \mathbf{G} \end{pmatrix}, \ \mathbf{Z} := \begin{pmatrix} Tr(\gamma_1 \mathbf{z}) \\ \vdots \\ Tr(\gamma_u \mathbf{z}) \end{pmatrix} \rightarrow \mathbf{K}_{pub} = \mathbf{C} + \mathbf{Z}.$$

Same row support

Claim 1. There exists $\mathscr{E} \subset (\mathbb{F}_q)^n$ of dimension w such that

RowSpace($Tr(\gamma_i \mathbf{z})$) $\subseteq \mathscr{E}$

for all $1 \leq i \leq u$.

⇒ Want to work on the right side.

Attack on Faure-Loidreau PKE

Let $\gamma = (\gamma_1, \dots, \gamma_u)$ be a basis of $\mathbb{F}_{q^{nu}}/\mathbb{F}_{q^n}$, and γ^* be its dual basis : $Tr(\gamma_i \gamma_j^*) = \delta_{i,j}$.

Interleaving

$$\mathbf{K}_{pub} := \begin{pmatrix} Tr(\gamma_1 \mathbf{k}_{pub}) \\ \vdots \\ Tr(\gamma_u \mathbf{k}_{pub}) \end{pmatrix}, \ \mathbf{C} := \begin{pmatrix} Tr(\gamma_1 \mathbf{x}) \mathbf{G} \\ \vdots \\ Tr(\gamma_u \mathbf{x}) \mathbf{G} \end{pmatrix}, \ \mathbf{Z} := \begin{pmatrix} Tr(\gamma_1 \mathbf{z}) \\ \vdots \\ Tr(\gamma_u \mathbf{z}) \end{pmatrix} \rightarrow \mathbf{K}_{pub} = \mathbf{C} + \mathbf{Z}.$$

Same row support

Claim 1. There exists $\mathscr{E} \subset (\mathbb{F}_q)^n$ of dimension w such that

RowSpace($Tr(\gamma_i \mathbf{z})$) $\subseteq \mathscr{E}$

for all $1 \leq i \leq u$.

 \Rightarrow Want to work on the right side.

Right Berlekamp-Welch decoding algorithm

 $\mathscr{G} = Gab_k(\mathbf{g})$, with $\mathbf{g} \in \mathbb{F}_{q^n}^n$ (here m = n).

Claim 2. There exists a *q*-polynomial V with $\deg_q(V) \leq t$ such that $E \circ V = 0$.

Systems of equations over \mathbb{F}_{q^n} .

$$\begin{cases} Y \circ V = \mathbf{C} \circ V \\ \deg_q V \leq t \\ \deg_q \mathbf{C} \leq k - 1. \end{cases} \qquad \xrightarrow{\text{Linearization}}_{N := \mathbf{C} \circ V} \qquad \begin{cases} Y \circ V = N \\ \deg_q V \leq t \\ \deg_q N \leq k + t - 1. \end{cases}$$

n equations, k + t + 1 unknowns Non linear *n* equations, k + 2t + 1 unknowns $\in \mathbb{F}_{q^n}$ Linear over \mathbb{F}_q

Right Berlekamp-Welch decoding algorithm

Claim 3. If $\text{Rank}(\mathbf{E}) \leq \lfloor \frac{n-k}{2} \rfloor$, and if (V, N) is a (non-zero) solution of the linearized system, then $N = \mathbf{C} \circ V$ where $\mathbf{C} = \mathbf{Y} - \mathbf{E}$.

 \implies Solve the system and recover **C** by right euclidean division.

In fact, the system is semi-linear \longrightarrow Adjoint (\sim transpose) of a *q*-polynomial for bilinear form associated to $Tr_{\mathbb{F}_{q^n}/\mathbb{F}_q}$.

Claim 4. Let $d \le n$, and $P := \sum_{i=0}^{d} a_i X^{q^i}$. Then $P^* = \sum_{i=0}^{d} a_i^{q^{n-i}} X^{q^{n-i}}$. (Almost) Same coefficients !

$$Y \circ \mathbf{V} = \mathbf{N} \xrightarrow{\text{Adjoint}} \mathbf{V}^* \circ Y^* = \mathbf{N}^* \xrightarrow{\text{Evaluation}} \mathbf{V}^*(y_i^*) = \mathbf{N}^*(g_i) \text{ for } 1 \leq i \leq n .$$

Implementation with SageMath.

Back to the attack on Faure-Loidreau PKE

$$\mathbf{k}_{pub} = \mathbf{x}\mathbf{G} + \mathbf{z} \xrightarrow{Trace} K_i = C_i + Z_i.$$

Claim 5. Z_i have a **common** annulator of *q*-degree *w*.

$$\left\{ \begin{array}{l} V^*(y_j^*) = \mathsf{N}_i^*(g_j) \text{ for } 1 \leq i \leq u \text{ and } 1 \leq j \leq n \\ \deg_q V \leq t \\ \deg_q \mathsf{N}_i \leq k+t-1. \end{array} \right.$$

- \mathbb{F}_{q^n} -Linear system
- $n \times u$ equations \longrightarrow correct up to $\lfloor \frac{u}{u+1}(n-k) \rfloor$ errors.
- t + 1 + u(k + t) unknowns

	Unique decoding	Interleaving	Hard	
-				÷
0		$\lfloor \frac{n-k}{2} \rfloor$ W $\lfloor \frac{u}{u+1}(n-k) \rfloor$		

Limits of the attack

- If all error patterns are the same → As if decoding only one codeword beyond unique decoding radius → Supposed to be hard.
- Need to count independent rows in $\mathbf{Z} \to \zeta := \mathbf{Rank}_{\mathbb{F}_{q^n}}(\mathbf{z})$.

•
$$\Rightarrow$$
 Attack fails if $w > \lfloor \frac{\zeta}{\zeta+1}(n-k) \rfloor$.

··· which is exactly the setting used in the 2018 repair of Renner, Puchinger and Wachter-Zeh.

Limits of the attack

- If all error patterns are the same → As if decoding only one codeword beyond unique decoding radius → Supposed to be hard.
- Need to count independent rows in $\mathbf{Z} \to \zeta := \mathbf{Rank}_{\mathbb{F}_{q^n}}(\mathbf{z})$.

•
$$\Rightarrow$$
 Attack fails if $w > \lfloor \frac{\zeta}{\zeta+1}(n-k) \rfloor$.

 \cdots which is exactly the setting used in the 2018 repair of Renner, Puchinger and Wachter-Zeh.

Outline

1 Introduction

2 Gabidulin codes and the Faure-Loidreau PKE

3 Contribution 1: Alternative attack on the Faure-Loidreau PKE

4 Contribution 2: Attack on the repaired version

Our attack

- Remainder: $\mathbf{c} = (\mathbf{m} + Tr(\alpha \mathbf{x}))\mathbf{G} + Tr(\alpha \mathbf{z}) + \mathbf{e}$ with small error \mathbf{e} .
- $\mathsf{Rank}_{\mathbb{F}_{q^n}}(\mathsf{z}) = 1 \Rightarrow \mathsf{z} = \xi \mathsf{z}_0, \ \xi \in \mathbb{F}_{q^{nu}} \ \mathsf{and} \ \mathsf{z}_0 \in \mathbb{F}_{q^n}^n.$

Outline of the attack

- Step 1 : Decode c in some computable code and get rid of e.
- Step 2 : Find a linear system with m as the only solution.
- Step 3 : Recover m.

Practical experiments

- Implementation with SageMath.
- Intel[®] Core[™] i7-5600U 2.60GHz CPU.

q	n	k	и	W	Claimed security level	Time to recover m
2	61	31	3	16	90	\sim 4 min
2	62	31	3	17	128	\sim 4 min
2	83	48	24	4	256	\sim 8 min

 $\mathbf{c} = \mathbf{m'G} + Tr(\alpha\xi)\mathbf{z_0} + \mathbf{e}$ is a noisy codeword of $\mathscr{G} + \langle \mathbf{z_0} \rangle =: \mathscr{C}$

Claim.

If
$$Tr(\xi) \neq 0$$
 then $\mathscr{C} = \mathscr{G} \oplus \langle Tr(\mathbf{k}_{pub}) \rangle$.

Remark.

$$\mathbb{P}(Tr(\xi)=0)=\tfrac{1}{q^n}.$$

- $\mathscr{C} := \mathscr{G} \oplus \langle \mathit{Tr}(\mathbf{k}_{\mathit{pub}}) \rangle.$
- $\mathbf{y} := c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e}$ noisy codeword of \mathscr{C} with \mathbf{e} of small rank t.

A Berlekamp-Welch like decoding algorithm

• Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with deg_{*a*}(\mathbf{C}) < *k*.

 $\mathscr{C} := \mathscr{G} \oplus \langle \mathit{Tr}(\mathbf{k}_{pub}) \rangle.$

 $\mathbf{y} := c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e}$ noisy codeword of \mathscr{C} with \mathbf{e} of small rank t.

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_q(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_{a}(\mathbf{V}) = t$.

 $\mathscr{C} := \mathscr{G} \oplus \langle \mathit{Tr}(\mathsf{k}_{\mathit{pub}}) \rangle.$

 $\mathbf{y} := c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e}$ noisy codeword of \mathscr{C} with \mathbf{e} of small rank t.

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_q(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_q(\mathbf{V}) = t$.
- Linearization : $\mathbf{V} \circ \mathbf{Y} = \mathbf{N}$ with $\mathbf{N} \in \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t+k-1} + \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t} \cdot \mathbf{T}$

 $\mathscr{C} := \mathscr{G} \oplus \langle \mathit{Tr}(\mathbf{k}_{pub}) \rangle.$

 $\mathbf{y} := c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e}$ noisy codeword of \mathscr{C} with \mathbf{e} of small rank t.

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_{a}(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_q(\mathbf{V}) = t$.
- Linearization : $\mathbf{V} \circ \mathbf{Y} = \mathbf{N}$ with $\mathbf{N} \in \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t+k-1} + \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t} \cdot \mathbf{T}$
- 3t + k + 2 < n equations \rightarrow recover (\mathbf{V}, \mathbf{N}) .

 $\mathscr{C} := \mathscr{G} \oplus \langle \mathit{Tr}(\mathbf{k}_{\mathit{pub}}) \rangle.$

 $\mathbf{y} := c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e}$ noisy codeword of \mathscr{C} with \mathbf{e} of small rank t.

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_q(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_q(\mathbf{V}) = t$.
- Linearization : $\mathbf{V} \circ \mathbf{Y} = \mathbf{N}$ with $\mathbf{N} \in \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t+k-1} + \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t} \cdot \mathbf{T}$
- 3t + k + 2 < n equations \rightarrow recover (**V**, **N**).

What did we get ?

 $\begin{aligned} \mathscr{C} &:= \mathscr{G} \oplus \langle Tr(\mathbf{k}_{pub}) \rangle. \\ \mathbf{y} &:= c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e} \text{ noisy codeword of } \mathscr{C} \text{ with } \mathbf{e} \text{ of small rank } t. \end{aligned}$

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_{\sigma}(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_q(\mathbf{V}) = t$.
- Linearization : $\mathbf{V} \circ \mathbf{Y} = \mathbf{N}$ with $\mathbf{N} \in \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t+k-1} + \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t} \cdot \mathbf{T}$
- 3t + k + 2 < n equations \rightarrow recover (\mathbf{V}, \mathbf{N}) .

What did we get ?

• We have $V \mid N$ but left division won't give much information about $C \ldots$

 $\begin{aligned} \mathscr{C} &:= \mathscr{G} \oplus \langle Tr(\mathbf{k}_{pub}) \rangle. \\ \mathbf{y} &:= c_{\mathscr{G}} + \lambda Tr(\mathbf{k}_{pub}) + \mathbf{e} \text{ noisy codeword of } \mathscr{C} \text{ with } \mathbf{e} \text{ of small rank } t. \end{aligned}$

A Berlekamp-Welch like decoding algorithm

- Interpolation : $\mathbf{Y} = \mathbf{C} + \lambda \mathbf{T} + \mathbf{E}$ with $\deg_{a}(\mathbf{C}) < k$.
- Vanishing polynomial : $\mathbf{V} \circ \mathbf{Y} = \mathbf{V} \circ \mathbf{C} + \mathbf{V} \circ (\lambda \mathbf{T})$ and $\deg_{a}(\mathbf{V}) = t$.
- Linearization : $\mathbf{V} \circ \mathbf{Y} = \mathbf{N}$ with $\mathbf{N} \in \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t+k-1} + \mathcal{L}\mathbb{F}_{q^n}[X]_{\leq t} \cdot \mathbf{T}$
- 3t + k + 2 < n equations \rightarrow recover (\mathbf{V}, \mathbf{N}) .

What did we get ?

- We have $\boldsymbol{V}\mid \boldsymbol{N}$ but left division won't give much information about \boldsymbol{C} . . .
- ... However V vanishes on $Supp(e) ! \Rightarrow$ Enables to recover e efficiently.

Step 2: Recover the plaintext m

$$\mathbf{c} = \mathbf{mG} + Tr(\alpha \mathbf{k}_{pub}) + \mathbf{e}$$

Step 2: Recover the plaintext m

$$\mathbf{c} = \underbrace{\mathbf{mG} + Tr(\alpha \mathbf{k}_{pub})}_{\mathbf{c}' = (\mathbf{m} + Tr(\alpha \mathbf{x}))\mathbf{G} + Tr(\alpha \xi)\mathbf{z}_{\mathbf{0}}} + \mathbf{\xi} \quad \mathbf{Step 1}.$$

$$\mathbf{c}' := \mathbf{m}\mathbf{G} + Tr(\alpha \mathbf{k}_{pub}) = (\mathbf{m} + Tr(\alpha \mathbf{x}))\mathbf{G} + Tr(\alpha \xi)\mathbf{z_0}.$$

 $\mathbf{m}=(m_1,\ldots,m_{k-u},0,\ldots,0)$ and (x_{k-u+1},\ldots,x_k) is a basis of $\mathbb{F}_{q^{nu}}/\mathbb{F}_{q^n}$.

•
$$\{\beta \in \mathbb{F}_{q^{nu}} \mid \mathbf{c}' - Tr(\beta \mathbf{k}_{pub}) \in \mathscr{G}\} = \alpha + \langle \xi \rangle^{\perp} \xrightarrow{unencode} \mathbf{m} + \{Tr(\gamma \mathbf{x}) \mid \gamma \in \langle \xi \rangle^{\perp}\}$$

• The last *u* components of $\mathbf{m} + Tr(\gamma \mathbf{x})$ are 0 iff $\gamma = 0$.

Step 2: Recover the plaintext m

$$\mathbf{c}' = (\mathbf{m} + Tr(\alpha \mathbf{x}))\mathbf{G} + Tr(\alpha \xi)\mathbf{z_0}.$$

(i) Take a random element $\mathbf{s} = \mathbf{m} + Tr(\gamma \mathbf{x}), \gamma \in \langle \xi \rangle^{\perp}$. (ii) Find a generating set $(\mathbf{e}_1, \dots, \mathbf{e}_{\mathbf{u}-1})$ of $\{Tr(\gamma \mathbf{x}) \mid \gamma \in \langle \xi \rangle^{\perp}\}$.

m is the **only solution** of

$$\begin{cases} \mathbf{m} + \sum_{i=1}^{u-1} \lambda_i \mathbf{e}_i = \mathbf{s} \\ m_{k-u+1} = \cdots = m_k = 0 \end{cases}$$

k + u equations and k + u - 1 unknowns \Rightarrow recover **m**.

• Can we increase ζ ?

- Can we increase ζ ? No !
 - \rightarrow The attack can be generalized while $n+1 \ge k+t+(\zeta+1)(t+1)$.
 - → Increasing ζ ⇒ increasing w to resist key-recovery attack ⇒ decreasing $t := \lfloor \frac{n-k-w}{2} \rfloor$... which must be ≥ 1.

- Can we increase ζ ? No !
 - \rightarrow The attack can be generalized while $n+1 \ge k+t+(\zeta+1)(t+1)$.
 - $\begin{array}{l} \rightarrow \mbox{ Increasing } \zeta \Rightarrow \mbox{ increasing } w \mbox{ to resist key-recovery attack} \Rightarrow \mbox{ decreasing } \\ t := \lfloor \frac{n-k-w}{2} \rfloor ... \mbox{ which must be } \geq 1. \end{array}$
- LIGA cryptosystem (J. Renner, S. Puchinger, A. Wachter-Zeh) on arxiv ... seems still vulnerable to our attack.

- Can we increase ζ ? No !
 - \rightarrow The attack can be generalized while $n+1 \ge k+t+(\zeta+1)(t+1)$.
 - → Increasing ζ ⇒ increasing w to resist key-recovery attack ⇒ decreasing $t := \lfloor \frac{n-k-w}{2} \rfloor$... which must be ≥ 1.
- LIGA cryptosystem (J. Renner, S. Puchinger, A. Wachter-Zeh) on arxiv ... seems still vulnerable to our attack.
- RAMESSES cryptosystem (J. Lavauzelle, P. Loidreau, B.-D. Pham) on arxiv another encryption scheme with short keys can be attacked by a similar method (need right hand side decoding).

Conclusion and perspectives

Contributions.

- Alternative decoding algorithm for (interleaved) Gabidulin codes.
- Alternative attack on the original Faure-Loidreau PKE.
- A new message recovery attack on the repair.

Open question.

• Build a provably secure PKE based on decoding Gabidulin codes above unique decoding radius ?

The End.

Thanks for your attention !