Witness Complexes

Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica

Delaunay triangulations

Finite set of points $P \in \mathbb{R}^d$

- $\sigma \in DT(P) \quad \Leftrightarrow \quad \exists c_{\sigma} : \quad \|c_{\sigma} p\| \le \|c_{\sigma} q\| \quad \forall p \in \sigma \text{ and } \forall q \in P$
- It is embedded in \mathbb{T}^d if *P* is generic wrt spheres [Delaunay 1934] no d + 2 points on a same hypersphere

The curses of dimensionality

- The combinatorial complexity depends exponentially on the ambient dimension *d*
- The algebraic complexity depends on d

The curses of dimensionality

- The combinatorial complexity depends exponentially on the ambient dimension *d*
- The algebraic complexity depends on d

- Low algebraic degree. We construct Del(P') for P' ≈ P using only degree 2 predicates (squared distance comparisons)
- Efficiency. The time complexity of the algorithm is $O\left(\frac{|P|}{\bar{\mu}^{d^2}}\right)$ where $\bar{\mu}$ is the sparsity ratio of *P*
- Simplex quality. We provide a lower bound on the thickness of the output simplices
- No need for coordinates. We simply need to know the interpoint (euclidean) distances

- Compute the witness complex, a weak form of DT that only needs to compare distances
- Identify conditions under which WC = DT
- Randomly perturb *P* around its initial position to satisfy the conditions above

Witness Complex

[de Silva]

L a finite set of points (landmarks)

W a dense sample (witnesses)

vertices of the complex

pseudo circumcenters

Let σ be a (abstract) simplex with vertices in *L*, and let $w \in W$. We say that *w* is a witness of σ if

 $||w - p|| \le ||w - q|| \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma$

The witness complex Wit(L, W) is the complex consisting of all simplexes σ such that for any simplex $\tau \subseteq \sigma$, τ has a witness in W

Algorithmic Geometry

Witness Complex

[de Silva]

L a finite set of points (landmarks)

W a dense sample (witnesses)

vertices of the complex

pseudo circumcenters

Let σ be a (abstract) simplex with vertices in *L*, and let $w \in W$. We say that *w* is a witness of σ if

 $||w - p|| \le ||w - q|| \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma$

The witness complex Wit(L, W) is the complex consisting of all simplexes σ such that for any simplex $\tau \subseteq \sigma$, τ has a witness in W

Algorithmic Geometry

Witness Complex

[de Silva]

L a finite set of points (landmarks)

W a dense sample (witnesses)

vertices of the complex

pseudo circumcenters

Let σ be a (abstract) simplex with vertices in *L*, and let $w \in W$. We say that *w* is a witness of σ if

$$\|w - p\| \le \|w - q\| \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma$$

The witness complex Wit(L, W) is the complex consisting of all simplexes σ such that for any simplex $\tau \subseteq \sigma$, τ has a witness in W

Algorithmic Geometry

Time-complexity : $O\left(\left(|WC| + |W|\right)d^2 \log |L|\right)$ [B., Maria]

Algebraic complexity : comparisons of (squared) distances : degree 2

Implementation and experimental results : see the Gudhi library !

- The witness complex can be defined for any metric space and, in particular, for discrete metric spaces
- If $W' \subseteq W$, then $Wit(L, W') \subseteq Wit(L, W)$
- $\operatorname{Del}(L) \subseteq \operatorname{Wit}(L, \mathbb{T}^d)$

- The witness complex can be defined for any metric space and, in particular, for discrete metric spaces
- If $W' \subseteq W$, then $Wit(L, W') \subseteq Wit(L, W)$

• $\operatorname{Del}(L) \subseteq \operatorname{Wit}(L, \mathbb{T}^d)$

- The witness complex can be defined for any metric space and, in particular, for discrete metric spaces
- If $W' \subseteq W$, then $Wit(L, W') \subseteq Wit(L, W)$
- $\operatorname{Del}(L) \subseteq \operatorname{Wit}(L, \mathbb{T}^d)$

[de Silva 2008]

Theorem : Wit $(L, W) \subseteq$ Wit $(L, \mathbb{T}^d) =$ Del(L)

Remarks

Faces of all dimensions have to be witnessed

• Wit(L, W) is embedded in \mathbb{T}^d if L is in general position wrt spheres

Algorithmic Geometry

[de Silva 2008]

Theorem : Wit
$$(L, W) \subseteq$$
 Wit $(L, \mathbb{T}^d) =$ Del (L)

Remarks

Faces of all dimensions have to be witnessed

• Wit(L, W) is embedded in \mathbb{T}^d if L is in general position wrt spheres

Algorithmic Geometry

Triangulations 4

Simplicial Complexes 9 / 33

[de Silva 2008]

Theorem : Wit $(L, W) \subseteq$ Wit $(L, \mathbb{T}^d) =$ Del(L)

Remarks

Faces of all dimensions have to be witnessed

• Wit(L, W) is embedded in \mathbb{T}^d if L is in general position wrt spheres

Algorithmic Geometry

Proof of de Silva's theorem

 $au = [p_0, ..., p_k]$ is a *k*-simplex of Wit(*L*) witnessed by a ball $B_{ au}$ (i.e. $B_{ au} \cap L = au$)

We prove that $\tau \in \text{Del}(L)$ by a double induction on

● k

• $l = |\partial B_{\tau} \cap \tau|$

Clearly true for k = 0 and $|\partial B_{\tau} \cap \tau| = 1$

Hyp. : true for $k' \le k - 1$ and $l \le k$ $\sigma = \partial B_{\tau} \cap \tau$ $\sigma \in \text{Del}(L)$ by the hyp. *S* centered on $[cw], \sigma \subset S, |S \cap \tau| = l + S$ witnesses τ proceed by induction until l = k + 1,

 $\Rightarrow \tau \in \mathrm{Del}(L)$

Proof of de Silva's theorem

 $au = [p_0, ..., p_k]$ is a *k*-simplex of Wit(*L*) witnessed by a ball $B_{ au}$ (i.e. $B_{ au} \cap L = au$)

We prove that $\tau \in \mathrm{Del}(L)$ by a double induction on

🔍 k

• $l = |\partial B_{\tau} \cap \tau|$

Clearly true for k = 0 and $|\partial B_{\tau} \cap \tau| = 1$

Hyp. : true for $k' \le k - 1$ and $l \le k$ $\sigma = \partial B_{\tau} \cap \tau$ $\sigma \in \text{Del}(L)$ by the hyp. *S* centered on $[cw], \sigma \subset S, |S \cap \tau| = l + 1$ *S* witnesses τ proceed by induction until l = k + 1,

 $\Rightarrow \tau \in \text{Del}(L)$

Case of sampled domains : $Wit(L, W) \neq Del(L)$

W a finite set of points $\subset \mathbb{T}^d$

Wit(L, W) \neq Del(L), even if W is a dense sample of \mathbb{T}^d

 $[ab] \in Wit(L, W) \iff \exists p \in W, Vor_2(a, b) \cap W \neq \emptyset$

Algorithmic Geometry

Protection

 δ -protection We say that a Delaunay simplex $\sigma \subset L$ is δ -protected if

$$||c_{\sigma} - q|| > ||c_{\sigma} - p|| + \delta \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma.$$

Algorithmic Geometry

Simplex quality

Altitudes

) If σ_q , the face opposite q in σ is protected, The *altitude* of q in σ is

$$D(q,\sigma) = d(q, \operatorname{aff}(\sigma_q)),$$

where σ_q is the face opposite q.

Definition (Thickness

[Cairns, Whitney, Whitehead et al.]

The *thickness* of a *j*-simplex σ with diameter $\Delta(\sigma)$ is

$$\Theta(\sigma) = \begin{cases} 1 & \text{if } j = 0\\ \min_{p \in \sigma} \frac{D(p, \sigma)}{j \Delta(\sigma)} & \text{otherwise.} \end{cases}$$

Simplex quality

Altitudes

 $\begin{array}{l} D(q,\sigma) & \text{If } \sigma_q, \text{ the face opposite } q \text{ in } \sigma \text{ is} \\ \swarrow & \text{protected, The altitude of } q \text{ in } \sigma \text{ is} \end{array}$

$$D(q,\sigma) = d(q, \operatorname{aff}(\sigma_q)),$$

where σ_q is the face opposite q.

Definition (Thickness

[Cairns, Whitney, Whitehead et al.])

The *thickness* of a *j*-simplex σ with diameter $\Delta(\sigma)$ is

$$\Theta(\sigma) = \begin{cases} 1 & \text{if } j = 0 \\ \min_{p \in \sigma} \frac{D(p,\sigma)}{j\Delta(\sigma)} & \text{otherwise.} \end{cases}$$

Protection implies thickness

Let L be a $(\lambda, \bar{\mu})$ -net, i.e.

• $\forall x \in \mathbb{T}^d$, $d(x,L) \leq \lambda$

•
$$\forall p,q \in P$$
, $\|p-q\| \ge \overline{\mu} \lambda$

if any *d*-simplex $\sigma \in \text{star}^2(p, \text{Del}(L))$ is δ -protected, then we have for any simplex $\tau \in \text{star}(p, \text{Del}(L))$ (of any dimension)

$$\Theta(\sigma) > \Theta_0 = \frac{\bar{\mu}\,\delta}{4d}$$

Protection implies Wit(L, W) = Del(L)

Lemma If a *d*-simplex σ of Del(L) is δ -protected with $\delta \ge 2\varepsilon$, then $\sigma \in Wit(L, W)$ (ε = sampling radius of W)

If true for all *d*-simplices of Del(L), then Wit(L, W) = Del(L).

Proof

$$\begin{aligned} \|c_{\sigma} - p_{i}\| &= \|c_{\sigma} - p_{j}\| = r \quad \forall p_{i}, p_{j} \in \sigma \\ \\ \|c_{\sigma} - p_{l}\| &> r + \delta \quad \forall p_{l} \in L \setminus \sigma \\ \\ \\ & \exists \quad \forall x \in B(c_{\sigma}, \delta/2), \\ & \forall p_{i} \in \sigma, \quad |x - p_{i}| \leq |c_{\sigma} - p_{i}| + |c_{\sigma} - x| \leq r + \frac{\delta}{2} \\ & \forall p_{l} \in L \setminus \sigma \quad |x - p_{l}| \geq |c_{\sigma} - p_{l}| - |x - c_{\sigma}| > r + \delta - \frac{\delta}{2} = r + \frac{\delta}{2} \end{aligned}$$

Hence, x is a witness of σ . If $\varepsilon \leq \delta/2$, there must be a point $w \in W$ in $B(c, \delta/2)$ which witnesses σ .

Protection implies Wit(L, W) = Del(L)

Lemma If a *d*-simplex σ of Del(L) is δ -protected with $\delta \ge 2\varepsilon$, then $\sigma \in Wit(L, W)$ (ε = sampling radius of W)

If true for all *d*-simplices of Del(L), then Wit(L, W) = Del(L).

Proof

$$\begin{aligned} \bullet & \|c_{\sigma} - p_{i}\| = \|c_{\sigma} - p_{j}\| = r \quad \forall p_{i}, p_{j} \in \sigma \\ \bullet & \|c_{\sigma} - p_{l}\| > r + \delta \quad \forall p_{l} \in L \setminus \sigma \\ \bullet & \forall x \in B(c_{\sigma}, \delta/2), \\ & \forall p_{i} \in \sigma, \quad |x - p_{i}| \leq |c_{\sigma} - p_{i}| + |c_{\sigma} - x| \leq r + \frac{\delta}{2} \\ & \forall p_{l} \in L \setminus \sigma \quad |x - p_{l}| \geq |c_{\sigma} - p_{l}| - |x - c_{\sigma}| > r + \delta - \frac{\delta}{2} = r + \frac{\delta}{2} \end{aligned}$$

Hence, *x* is a witness of σ . If $\varepsilon \leq \delta/2$, there must be a point $w \in W$ in $B(c, \delta/2)$ which witnesses σ .

Good links

A simplicial complex K is a k-pseudomanifold complex if

- $\bigcirc K \text{ is a pure } k \text{-complex}$
- **2** every (k-1)-simplex is the face of exactly two *k*-simplices

We say that a complex $K \subset \mathbb{T}^d$ with vertex set *L* has good links if

 $\forall p \in L$, link (p, K) is a (d - 1)-pseudomanifold

Algorithmic Geometry

Good links

A simplicial complex K is a k-pseudomanifold complex if

- K is a pure k-complex
- 2 every (k-1)-simplex is the face of exactly two k-simplices

We say that a complex $K \subset \mathbb{T}^d$ with vertex set *L* has good links if

 $\forall p \in L$, link (p, K) is a (d - 1)-pseudomanifold

Good links implies Wit(L, W) = Del(L)

Lemma

If *K* is a triangulation of \mathbb{T}^d and $K' \subseteq K$ a simplicial complex with the same vertex set

then $K' = K \Leftrightarrow K'$ has good links

Corollary

If all vertices of Wit(L, W) have good links, Wit(L, W) = Del(L)

Good links implies Wit(L, W) = Del(L)

Lemma

If *K* is a triangulation of \mathbb{T}^d and $K' \subseteq K$ a simplicial complex with the same vertex set

then $K' = K \Leftrightarrow K'$ has good links

Corollary

If all vertices of Wit(L, W) have good links, Wit(L, W) = Del(L)

Good links implies Wit(L, W) = Del(L)

Lemma

If *K* is a triangulation of \mathbb{T}^d and $K' \subseteq K$ a simplicial complex with the same vertex set

then $K' = K \Leftrightarrow K'$ has good links

Corollary

If all vertices of Wit(L, W) have good links, Wit(L, W) = Del(L)

Turning witness complexes into Delaunay complexes

- **Input:** *L*, *W*, ρ (perturbation radius)
- **Init :** L' := L; compute Wit(L', W)
- while a vertex p' of Wit(L', W) has a bad link **do**
 - perturb p' and the points of I(p')
 - update Wit(L', W)
- **Output:** Wit(L', W) = Del(L')

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le \varpi < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1 - \varpi)^N > 0$$

What if we allow a limited amount of dependency among the events?

Algorithmic Geometry

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le \varpi < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1 - \varpi)^N > 0$$

What if we allow a limited amount of dependency among the events?

Algorithmic Geometry

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le \varpi < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1 - \varpi)^N > 0$$

What if we allow a limited amount of dependency among the events?

Algorithmic Geometry

Under the assumptions

1 proba(A_i) ≤ ∞ **2** A_i depends of ≤ Γ other events A_j **3** ∞ ≤ 1/e(Γ+1) e = 2.718...

then

 $\operatorname{proba}(\neg A_1 \land \ldots \land \neg A_N) > 0$

Moser and Tardos' constructive proof of the LLL [2010]

 \mathcal{P} a finite set of mutually independent random variables \mathcal{A} a finite set of events that are determined by the values of $S \subseteq \mathcal{P}$ Two events are independent iff they share no variable

Algorithm

for all $P \in \mathcal{P}$ do $v_P \leftarrow$ a random evaluation of P; while $\exists A \in \mathcal{A} : A$ occurs do pick an arbitrary occuring event $A \in \mathcal{A}$ for all $P \in \text{variables}(A)$ do $v_P \leftarrow$ a new random evaluation of A

return $\{v_P, P \in \mathcal{P}\};$

Moser and Tardos' constructive proof of the LLL [2010]

 ${\mathcal P}$ a finite set of mutually independent random variables

 ${\mathcal A}$ a finite set of events that are determined by the values of ${\it S}\subseteq {\mathcal P}$

Two events are independent iff they share no variable

Algorithm

for all $P \in \mathcal{P}$ do

 $v_P \leftarrow$ a random evaluation of P;

while $\exists A \in \mathcal{A} : A$ occurs do

pick an arbitrary occuring event $A \in A$;

for all $P \in \text{variables}(A)$ do $v_P \leftarrow$ a new random evaluation of P;

return { $v_P, P \in \mathcal{P}$ };

Moser and Tardos' theorem

if

proba(A_i) ≤ ∞
 A_i depends of ≤ Γ other events A_j
 ∞ ≤ 1/e(Γ+1) e = 2.718...

then \exists an assignment of values to the variables \mathcal{P} such that no event in \mathcal{A} happens

The randomized algorithm resamples an event $A \in A$ at most expected times before it finds such an evaluation

The expected total number of resampling steps is at most

 $\frac{N}{\Gamma}$

Protecting Delaunay simplices via perturbation

Notations : *L* is a $(\lambda, \bar{\mu})$ -net, *W* is a $(\varepsilon, \bar{\eta})$ -net

Picking regions : pick p' in $B(p, \rho)$ Hyp. $\rho \leq \frac{\eta}{4} \ (\leq \frac{1}{2})$

Sampling parameters of a perturbed point set If *L* is a $(\lambda, \bar{\mu})$ -net, *L'* is a $(\lambda', \bar{\mu}')$ -net, where

$$\lambda' = \lambda(1+\bar{\rho})$$
 and $\bar{\mu}' = \frac{\bar{\mu}-2\bar{\rho}}{1+\bar{\rho}} \ge \frac{\bar{\mu}}{3}$

Protecting Delaunay simplices via perturbation

Notations : *L* is a $(\lambda, \bar{\mu})$ -net, *W* is a $(\varepsilon, \bar{\eta})$ -net

Picking regions : pick p' in $B(p, \rho)$ Hyp. $\rho \leq \frac{\eta}{4} \ (\leq \frac{1}{2})$

Sampling parameters of a perturbed point set

If *L* is a $(\lambda, \bar{\mu})$ -net, *L'* is a $(\lambda', \bar{\mu}')$ -net, where

$$\lambda' = \lambda(1+\bar{
ho})$$
 and $\bar{\mu}' = rac{\bar{\mu}-2\bar{
ho}}{1+\bar{
ho}} \ge rac{\bar{\mu}}{3}$

The LLL framework

Random variables : L' a set of random points $\{p', p' \in B(p, \rho), p \in L\}$

Event: an event happens at p' if Link(p') is not good

I(p') := the points of L' that

- can be in $star^2(p')$
- can violate the δ -protection zone $Z_{\delta}(\sigma')$ of a *d*-simplex $\sigma' \in \operatorname{star}^2(p')$

Algorithm

Input: L, ρ, δ

while a vertex p' of Wit(L'W) has a bad link L(p') do

perturb p' and the points in I(p')

update Wit(L'W)

Algorithmic Geometry

The LLL framework

Random variables : L' a set of random points $\{p', p' \in B(p, \rho), p \in L\}$

Event: an event happens at p' if Link(p') is not good

I(p') := the points of L' that

- can be in $star^2(p')$
- can violate the δ -protection zone $Z_{\delta}(\sigma')$ of a *d*-simplex $\sigma' \in \operatorname{star}^2(p')$

Algorithm

Input: L, ρ, δ

while a vertex p' of Wit(L'W) has a bad link L(p') do

```
perturb p' and the points in I(p')
```

```
update Wit(L'W)
```

Analysis

Bounding |I(p')| and Γ : An event is independent of all but at most Γ other bad events where Γ depends on $\overline{\mu}$ and d

 $(L' = (\lambda', \bar{\mu}')$ -net + a packing argument)

Bounding proba(link (p') is bad)

$$ext{proba}(ext{link}(extsf{p}') ext{ is bad }) \leq ext{proba}(extsf{p} \in Z_{\delta}(\sigma))$$

 $\sigma \in ext{star}^2(extsf{p}')$

$$ext{proba}(p \in Z(\sigma)) = rac{\mathsf{Vol}_d(Z_\delta \cap B_
ho)}{\mathsf{Vol}_d(B_
ho)}$$
 $= O(rac{\delta}{
ho})$

Analysis

Bounding |I(p')| and Γ : An event is independent of all but at most Γ other bad events where Γ depends on $\overline{\mu}$ and d

 $(L' = (\lambda', \bar{\mu}')$ -net + a packing argument)

Bounding proba(link (p') is bad)

$$ext{proba}(ext{link}(extbf{p}') ext{ is bad }) \leq ext{proba}(extbf{p} \in Z_{\delta}(\sigma)) \\ \sigma \in ext{star}^{2}(extbf{p}')$$

$$ext{proba}(p \in Z(\sigma)) = rac{\mathsf{Vol}_d(Z_\delta \cap B_
ho)}{\mathsf{Vol}_d(B_
ho)}$$
 $= O(rac{\delta}{
ho})$

Simplicial Complexes 25 / 33

Under the condition

$$\frac{\mu}{4} \ge \rho \ge \frac{24d\varepsilon}{\bar{\mu}J}$$
 where $J^{-1} = \left(\frac{2}{\bar{\mu}}\right)^{O(d^2)}$

the algorithm terminates.

The expected complexity is linear in |L|

Under the condition

$$\frac{\mu}{4} \ge \rho \ge \frac{24d\varepsilon}{\bar{\mu}J}$$
 where $J^{-1} = \left(\frac{2}{\bar{\mu}}\right)^{O(d^2)}$

the algorithm terminates.

The expected complexity is linear in |L|

- The time to construct Wit(L, W) depends linearly on |W|
- Witnesses are (in general) redundant
- Challenge : Choose witnesses close to the CC of the simplices (without computing CCs)

 $\begin{array}{l} \alpha \text{-center for } \sigma \\ \|x-p\| \leq \|x-q\| + \alpha \; \forall p,q \in \sigma \end{array}$

 $\begin{array}{l} \alpha \text{-Delaunay center} \\ \|x-p\| \leq \|x-q\| + \alpha \; \forall p \in \sigma \; \text{and} \; \forall q \in L \end{array}$

Relaxed Delaunay complex $Del^{\alpha}(L', W)$

The set of simplices that have an α -Delaunay centre in W

Closeness to bisectors Let σ be a *d*-simplex and H_{pq} be the bisecting hyperplane of *p* and *q*. A point *x* that satisfies $d(x, H_{pq}) \leq \alpha$, for any $p, q \in \sigma$ is a 2α -center of σ .

Clustered α -Delaunay centers

If L is a $(\lambda, \bar{\mu})$ -net and x is an α -Delaunay center for σ , then

$$\|c_{\sigma} - x\| < \frac{2\alpha}{\Theta_{\sigma}\bar{\mu}}$$

Full cells in a grid ε : cells that are intersected by all bisectors of σ

The number of full cells is $O(\frac{1}{(\Theta_{\sigma}\bar{\mu}')^d}\log\frac{\lambda}{\varepsilon})$

Algorithmic Geometry

Closeness to bisectors Let σ be a *d*-simplex and H_{pq} be the bisecting hyperplane of *p* and *q*. A point *x* that satisfies $d(x, H_{pq}) \leq \alpha$, for any $p, q \in \sigma$ is a 2α -center of σ .

Clustered α -Delaunay centers

If *L* is a $(\lambda, \bar{\mu})$ -net and *x* is an α -Delaunay center for σ , then

$$\|c_{\sigma} - x\| < \frac{2\alpha}{\Theta_{\sigma}\bar{\mu}}$$

Full cells in a grid ε : cells that are intersected by all bisectors of σ

The number of full cells is $O(\frac{1}{(\Theta_{\sigma}\bar{\mu}')^d}\log\frac{\lambda}{\varepsilon})$

Algorithmic Geometry

Closeness to bisectors Let σ be a *d*-simplex and H_{pq} be the bisecting hyperplane of *p* and *q*. A point *x* that satisfies $d(x, H_{pq}) \leq \alpha$, for any $p, q \in \sigma$ is a 2α -center of σ .

Clustered α -Delaunay centers

If *L* is a $(\lambda, \bar{\mu})$ -net and *x* is an α -Delaunay center for σ , then

$$\|c_{\sigma} - x\| < \frac{2\alpha}{\Theta_{\sigma}\bar{\mu}}$$

Full cells in a grid ε : cells that are intersected by all bisectors of σ

The number of full cells is $O(\frac{1}{(\Theta_{\sigma}\bar{\mu}')^d}\log \frac{\lambda}{\varepsilon})$

Algorithmic Geometry

Closeness to bisectors Let σ be a *d*-simplex and H_{pq} be the bisecting hyperplane of *p* and *q*. A point *x* that satisfies $d(x, H_{pq}) \leq \alpha$, for any $p, q \in \sigma$ is a 2α -center of σ .

Clustered α -Delaunay centers

If *L* is a $(\lambda, \bar{\mu})$ -net and *x* is an α -Delaunay center for σ , then

$$\|c_{\sigma} - x\| < \frac{2\alpha}{\Theta_{\sigma}\bar{\mu}}$$

Full cells in a grid ε : cells that are intersected by all bisectors of σ

The number of full cells is $O(\frac{1}{(\Theta_{\sigma}\bar{\mu}')^d}\log\frac{\lambda}{\varepsilon})$

Algorithmic Geometry

 $\mathrm{Del}_0^{2\varepsilon}(L',W) = \{ \sigma \in \mathrm{Del}^{2\varepsilon}(L',W) \quad \mathrm{s.t.} \quad \Theta_{\sigma} \ge \Theta_0 \}$

If

- the *d*-simplices in Del(L') are δ -protected

 $- \Theta_0 = \frac{\bar{\delta}\bar{\mu}'}{8d}$

then $\operatorname{Del}(L') \subseteq \operatorname{Del}_0^{2\varepsilon}(L', W)$

• if, in addition, every *d*-simplex of $\mathrm{Del}_0^{2\varepsilon}(L',W)$ is protected

then $\operatorname{Del}_0^{2\varepsilon}(L', W) = \operatorname{Del}(L')$

Turning relaxed-Delaunay to Delaunay complexes

Protected Delaunay triangulation from $Del_0^{2\varepsilon}(L', W)$

input: L, W,
$$\rho$$
, ε , λ , μ
 $L' \leftarrow L$
compute: $\text{Del}_0^{2\varepsilon}(L', W)$
while a vertex p' of $\text{Del}_0^{2\varepsilon}(L', W)$ has a bad link or
 $\text{check}(p') = \text{FALSE do}$
perturb p' and the points in $I(p')$
update $\text{Del}_0^{2\varepsilon}(L', W)$
output: $\text{Del}_0^{2\varepsilon}(L', W) = \text{Del}(L')$

procedure check(p')

if all *d*-simplices $\sigma \in \operatorname{star}(p'; \operatorname{Del}_0^{2\varepsilon}(L', W))$ satisfy

- 1. The diameter of the full leaves is at most $\frac{16\sqrt{d\varepsilon}}{\Theta_0\bar{\mu}'}$.
- 2. There is a $(\delta 2\varepsilon)$ -protected full-leaf-point then **check**(p') = TRUE

Algorithmic Geometry

- Weighted points and power distance
- Delaunay triangulation of non-flat manifolds
- Other geometric constructions