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Delaunay triangulations

Finite set of points P ∈ Rd

σ ∈ DT(P) ⇔ ∃cσ : ‖cσ − p‖ ≤ ‖cσ − q‖ ∀p ∈ σ and ∀q ∈ P

It is embedded in Td if P is generic wrt spheres [Delaunay 1934]
no d + 2 points on a same hypersphere
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The curses of dimensionality

The combinatorial complexity depends exponentially on the
ambient dimension d

The algebraic complexity depends on d
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Our results

Low algebraic degree. We construct Del(P′) for P′ ≈ P using only
degree 2 predicates (squared distance comparisons)

Efficiency. The time complexity of the algorithm is O
(
|P|
µ̄d2

)
where

µ̄ is the sparsity ratio of P

Simplex quality. We provide a lower bound on the thickness of the
output simplices

No need for coordinates. We simply need to know the interpoint
(euclidean) distances
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Our strategy

Compute the witness complex, a weak form of DT that only needs
to compare distances

Identify conditions under which WC = DT

Randomly perturb P around its initial position to satisfy the
conditions above
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Witness Complex [de Silva]

L a finite set of points (landmarks) vertices of the complex

W a dense sample (witnesses) pseudo circumcenters
The Witness Complex
Wit(L, W )

�
w

Definition

� 2Wit(L, W )
()

8⌧  � 9w 2W with
d(w, p)  d(w, q)
8p 2 � 8q 2 L \ �

L : Landmarks (black dots); the vertices of the complex
W : Witnesses (blue dots)

R. Dyer (INRIA) Del(L, M) = Wit(L, W ) Assisi, EuroCG 2012 2 / 10

Let σ be a (abstract) simplex with vertices in L, and let w ∈ W. We say
that w is a witness of σ if

‖w− p‖ ≤ ‖w− q‖ ∀p ∈ σ and ∀q ∈ L \ σ

The witness complex Wit(L,W) is the complex consisting of all simplexes
σ such that for any simplex τ ⊆ σ, τ has a witness in W

Algorithmic Geometry Triangulations 4 Simplicial Complexes 6 / 33



Witness Complex [de Silva]

L a finite set of points (landmarks) vertices of the complex

W a dense sample (witnesses) pseudo circumcenters
The Witness Complex
Wit(L, W )

�
w

Definition

� 2Wit(L, W )
()

8⌧  � 9w 2W with
d(w, p)  d(w, q)
8p 2 � 8q 2 L \ �

L : Landmarks (black dots); the vertices of the complex
W : Witnesses (blue dots)

R. Dyer (INRIA) Del(L, M) = Wit(L, W ) Assisi, EuroCG 2012 2 / 10

Let σ be a (abstract) simplex with vertices in L, and let w ∈ W. We say
that w is a witness of σ if

‖w− p‖ ≤ ‖w− q‖ ∀p ∈ σ and ∀q ∈ L \ σ

The witness complex Wit(L,W) is the complex consisting of all simplexes
σ such that for any simplex τ ⊆ σ, τ has a witness in W

Algorithmic Geometry Triangulations 4 Simplicial Complexes 6 / 33



Witness Complex [de Silva]

L a finite set of points (landmarks) vertices of the complex

W a dense sample (witnesses) pseudo circumcenters
The Witness Complex
Wit(L, W )

�
w

Definition

� 2Wit(L, W )
()

8⌧  � 9w 2W with
d(w, p)  d(w, q)
8p 2 � 8q 2 L \ �

L : Landmarks (black dots); the vertices of the complex
W : Witnesses (blue dots)

R. Dyer (INRIA) Del(L, M) = Wit(L, W ) Assisi, EuroCG 2012 2 / 10

Let σ be a (abstract) simplex with vertices in L, and let w ∈ W. We say
that w is a witness of σ if

‖w− p‖ ≤ ‖w− q‖ ∀p ∈ σ and ∀q ∈ L \ σ

The witness complex Wit(L,W) is the complex consisting of all simplexes
σ such that for any simplex τ ⊆ σ, τ has a witness in W

Algorithmic Geometry Triangulations 4 Simplicial Complexes 6 / 33



Construction of witness complexes

Time-complexity : O
(
(|WC|+ |W|) d2 log |L|

)
[B., Maria]

Algebraic complexity : comparisons of (squared) distances : degree 2

Implementation and experimental results : see the Gudhi library !
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Easy consequences of the definition

The witness complex can be defined for any metric space and, in
particular, for discrete metric spaces

If W ′ ⊆ W, then Wit(L,W ′) ⊆Wit(L,W)

Del(L) ⊆Wit(L,Td)
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First identity theorem [de Silva 2008]

Theorem : Wit(L,W) ⊆Wit(L,Td) = Del(L)

Remarks

I Faces of all dimensions have to be witnessed

I Wit(L,W) is embedded in Td if L is in general position wrt spheres
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Proof of de Silva’s theorem

τ = [p0, ..., pk] is a k-simplex of Wit(L) witnessed by a ball Bτ (i.e. Bτ ∩ L = τ )

We prove that τ ∈ Del(L) by a double induction on

k

l = |∂Bτ ∩ τ |

Clearly true for k = 0 and |∂Bτ ∩ τ | = 1

Bσ

c

w

Bτ

τ

σ

Hyp. : true for k′ ≤ k − 1 and l ≤ k

σ = ∂Bτ ∩ τ
σ ∈ Del(L) by the hyp.

S centered on [cw], σ ⊂ S, |S ∩ τ | = l + 1

S witnesses τ

proceed by induction until l = k + 1,

⇒ τ ∈ Del(L)
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Case of sampled domains : Wit(L,W) 6= Del(L)

W a finite set of points ⊂ Td

Wit(L,W) 6= Del(L), even if W is a dense sample of Td

a
b

Vor(a, b)

[ab] ∈Wit(L,W) ⇔ ∃p ∈ W, Vor2(a, b) ∩W 6= ∅
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Protection

δ

cσ

δ-protection We say that a Delaunay simplex σ ⊂ L is δ-protected if

‖cσ − q‖ > ‖cσ − p‖+ δ ∀p ∈ σ and ∀q ∈ L \ σ.
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Simplex quality

Altitudes
D(q, σ)

σq

q If σq, the face opposite q in σ is
protected, The altitude of q in σ is

D(q, σ) = d(q, aff(σq)),

where σq is the face opposite q.

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex σ with diameter ∆(σ) is

Θ(σ) =

{
1 if j = 0
minp∈σ

D(p,σ)
j∆(σ) otherwise.
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Protection implies thickness

Let L be a (λ, µ̄)-net, i.e.

∀x ∈ Td, d(x,L) ≤ λ

∀p, q ∈ P, ‖p− q‖ ≥ µ̄ λ

if any d-simplex σ ∈ star2(p,Del(L)) is δ-protected, then we have for any
simplex τ ∈ star(p,Del(L)) (of any dimension)

Θ(σ) > Θ0 = µ̄ δ
4d
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Protection implies Wit(L,W) = Del(L)

Lemma If a d-simplex σ of Del(L) is δ-protected with δ ≥ 2ε,
then σ ∈Wit(L,W) (ε = sampling radius of W)

If true for all d-simplices of Del(L), then Wit(L,W) = Del(L).

Proof

1 ‖cσ − pi‖ = ‖cσ − pj‖ = r ∀pi, pj ∈ σ
2 ‖cσ − pl‖ > r + δ ∀pl ∈ L \ σ
3 ∀x ∈ B(cσ, δ/2),

∀pi ∈ σ, |x− pi| ≤ |cσ − pi|+ |cσ − x| ≤ r + δ
2

∀pl ∈ L \ σ |x− pl| ≥ |cσ − pl| − |x− cσ| > r + δ − δ
2 = r + δ

2

Hence, x is a witness of σ. If ε ≤ δ/2, there must be a point w ∈ W in B(c, δ/2)

which witnesses σ.
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Good links

A simplicial complex K is a k-pseudomanifold complex if

1 K is a pure k-complex

2 every (k − 1)-simplex is the face of exactly two k-simplices

We say that a complex K ⊂ Td with vertex set L has good links if

∀p ∈ L, link (p,K) is a (d − 1)-pseudomanifold
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Good links implies Wit(L,W) = Del(L)

Lemma

If K is a triangulation of Td and K′ ⊆ K a simplicial complex with
the same vertex set

then K′ = K ⇔ K′ has good links

Corollary

If all vertices of Wit(L,W) have good links, Wit(L,W) = Del(L)
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Turning witness complexes into Delaunay complexes

Input: L, W, ρ (perturbation radius)

Init : L′ := L; compute Wit(L′,W)

while a vertex p′ of Wit(L′,W) has a bad link do

perturb p′ and the points of I(p′)

update Wit(L′,W)

Output: Wit(L′,W) = Del(L′)
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The Lovász Local Lemma
Motivation

Given: A set of (bad) events A1, ...,AN ,
each happens with proba(Ai) ≤ $ < 1

Question : what is the probability that none of the events occur?

The case of independent events

proba(¬A1 ∧ ... ∧ ¬AN) ≥ (1−$)N > 0

What if we allow a limited amount of dependency among the
events?
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LLL : symmetric version [Lovász & Erdös 1975]

Under the assumptions

1 proba(Ai) ≤ $
2 Ai depends of ≤ Γ other events Aj

3 $ ≤ 1
e (Γ+1) e = 2.718...

then
proba(¬A1 ∧ ... ∧ ¬AN) > 0
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables

A a finite set of events that are determined by the values of S ⊆ P
Two events are independent iff they share no variable

Algorithm

for all P ∈ P do
vP ← a random evaluation of P;

while ∃A ∈ A : A occurs do

pick an arbitrary occuring event A ∈ A;

for all P ∈ variables(A) do
vP ← a new random evaluation of P;

return {vP,P ∈ P};
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Moser and Tardos’ theorem

if

1 proba(Ai) ≤ $
2 Ai depends of ≤ Γ other events Aj

3 $ ≤ 1
e (Γ+1) e = 2.718...

then ∃ an assignment of values to the variables P such that no event
in A happens

The randomized algorithm resamples an event A ∈ A at most 1
Γ

expected times before it finds such an evaluation

The expected total number of resampling steps is at most N
Γ
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Protecting Delaunay simplices via perturbation

Notations : L is a (λ, µ̄)-net, W is a (ε, η̄)-net

Picking regions : pick p′ in B(p, ρ) Hyp. ρ ≤ η
4 (≤ 1

2)

Sampling parameters of a perturbed point set

If L is a (λ, µ̄)-net, L′ is a (λ′, µ̄′)-net, where

λ′ = λ(1 + ρ̄) and µ̄′ =
µ̄− 2ρ̄
1 + ρ̄

≥ µ̄

3
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The LLL framework

Random variables : L′ a set of random points {p′, p′ ∈ B(p, ρ), p ∈ L}

Event: an event happens at p′ if Link(p′) is not good

I(p′) := the points of L′ that

– can be in star2(p′)
– can violate the δ-protection zone Zδ(σ′) of a d-simplex σ′ ∈ star2(p′)

Algorithm
Input: L, ρ, δ

while a vertex p′ of Wit(L′W) has a bad link L(p′) do

perturb p′ and the points in I(p′)

update Wit(L′W)

Output: Wit(L′,W) = Del(P′)
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Analysis

Bounding |I(p′)| and Γ : An event is independent of all but at most
Γ other bad events where Γ depends on µ̄ and d

(L′ = (λ′, µ̄′)-net + a packing argument)

Bounding proba(link (p′) is bad)

p

B(p, ρ)

2β

S(c, R)

S1

θ R

ρ

c

proba(link(p′) is bad ) ≤ proba(p ∈ Zδ(σ))
σ ∈ star2(p′)

proba(p ∈ Z(σ)) =
vold(Zδ∩Bρ)

vold(Bρ)

= O( δ
ρ )

proba(p′ ∈ Zδ(σ′)) ≤ $ =
Ud−1

Ud

2
π
δ
ρ <

2d−1 δ
π ρ
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Main result

Under the condition

µ

4
≥ ρ ≥ 24dε

µ̄J
where J−1 =

(
2
µ̄

)O(d2)

the algorithm terminates.

The expected complexity is linear in |L|
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Sublinear algorithm

The time to construct Wit(L,W) depends linearly on |W|

Witnesses are (in general) redundant

Challenge : Choose witnesses close to the CC of the simplices
(without computing CCs)
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Relaxed Delaunay complex

α-center for σ
‖x− p‖ ≤ ‖x− q‖+ α ∀p, q ∈ σ

α-Delaunay center
‖x− p‖ ≤ ‖x− q‖+ α ∀p ∈ σ and ∀q ∈ L

Relaxed Delaunay complex Delα(L′,W)
The set of simplices that have an α-Delaunay centre in W
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Full cells

Closeness to bisectors Let σ be a d-simplex and Hpq be the
bisecting hyperplane of p and q. A point x that satisfies
d(x,Hpq) ≤ α, for any p, q ∈ σ is a 2α-center of σ.

Clustered α-Delaunay centers
If L is a (λ, µ̄)-net and x is an α-Delaunay center for σ, then

‖cσ − x‖ < 2α
Θσµ̄

Full cells in a grid ε : cells that are intersected by all bisectors of σ

The number of full cells is O( 1
(Θσµ̄′)d log λ

ε )
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Del2ε0 (L′,W) = {σ ∈ Del2ε(L′,W) s.t. Θσ ≥ Θ0}

If
– the d-simplices in Del(L′) are δ-protected

– Θ0 = δ̄µ̄′

8d

then Del(L′) ⊆ Del2ε0 (L′,W)

if, in addition, every d-simplex of Del2ε0 (L′,W) is protected

then Del2ε0 (L′,W) = Del(L′)
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Turning relaxed-Delaunay to Delaunay complexes

Protected Delaunay triangulation from Del2ε0 (L′,W)

input: L, W, ρ, ε, λ, µ
L′ ← L
compute: Del2ε0 (L′,W)
while a vertex p′ of Del2ε0 (L′,W) has a bad link or
check(p′) = FALSE do

perturb p′ and the points in I(p′)
update Del2ε0 (L′,W)

output: Del2ε0 (L′,W) = Del(L′)

procedure check(p′)
if all d-simplices σ ∈ star(p′; Del2ε0 (L′,W)) satisfy
1. The diameter of the full leaves is at most 16

√
dε

Θ0µ̄′
.

2. There is a (δ − 2ε)-protected full-leaf-point then
check(p′) = TRUE

else
check(p′) = FALSE
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Extensions

Weighted points and power distance

Delaunay triangulation of non-flat manifolds

Other geometric constructions
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