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Laguerre geometry

Power distance of two balls or of two weighted points.

ball by (p1,71), center p; radius 71 <— weigthed point (p;,7?) € RY
ball by(pa,72), center po radius ro +— weigthed point (p2,r3) € RY

m(b1,b2) = (p1 — p2)*> — 1% — 13
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Laguerre geometry

Power distance of two balls or of two weighted points.

ball by (p1,71), center p; radius 71 <— weigthed point (p;,7?) € RY
ball by(pa,72), center po radius ro +— weigthed point (p2,r3) € RY

m(b1,b2) = (p1 — p2)*> — 1% — 13

Orthogonal balls
b1, by closer <= m(by,by) <0 <= (p1 — p2)? < 7%+ 13

b1, be orthogonal <« 7r(b1, b2) =0<= (; *pg)z = Tf + rg
b1, bo further ) >0 <= (p1 —p2)? < 7% 413
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Power distance of a point wrt a ball

If by is reduced to a point p : 7(p,ba) = (p — p2)? — 13

Normalized equation of bounding sphere :

p € Oby <> m(p,b2) =0 ! m
p €intby <= 7(p,b) <0 "
p € 0by <— 7w(p,b)=0 » -

p&by < m(pb) >0

Tangents and secants through p
m(p,b) = pt* = pim - pm/ = pi - pr/
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Radical Hyperplane

The locus of point € R? with same power distance

to balls by (p1,71) and by(pa,72) is a hyperplane of R?
m(x,b1) =7w(x, b)) <= (xr— p1)2 - r% =(z— p2)2 - rg
<~ —2p1z +p% frf = —2pox er% 77’5

— 2p2—pz+ @ —ri)—P5—13)=0

OCP (©
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Radical Hyperplane

The locus of point € R? with same power distance

to balls by (p1,71) and by(pa,72) is a hyperplane of R?
m(x,b1) =7w(x, b)) <= (xr— p1)2 - r% =(z— p2)2 - rg
<~ —2p1z +p% frf = —2pox er% 77’5

— 2p2—pz+ @ —ri)—P5—13)=0

OCP (©

A point in hyo is the center of a ball orthogonal to b; and b,
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Power Diagrams

also named Laguerre diagrams or weighted Voronoi diagrams

Sites : n balls B = {b;(p;,ri),i=1,...n}

Power distance: 7(x,b;) = (z — p;)? —r?

Power Diagram: Vor(B)
One cell V(b;) for each site
V(b,) = {$ : W(l’,bi) < 7T($7bj)Vj 75 Z}

@ Each cell is a polytope

@ V(b;) may be empty
@ p; may not belong to V(1)
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Weighted Delaunay triangulations

B = {bi(pi,ri)} a set of balls
Del(B) = nerve of Vor(B):

B, = {bi(pi,ri),i =0,... ]{7}} CcB
B; € Del(B) <=y, V(bi) # 0

To be proved (next slides):

under a general position condition on B,
B; — 7 =conv({p;,i =0...k})

embeds Del(B) as a triangulation in R,

called the weighted Delaunay triangulation
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Characteristic property of weighted Delaunay complexes

TeDel(B) <« () V() #0
b;eB,
— JzecR?st. Vb,b;€B,, b€ B\B;
m(x, b)) = m(x,bj) < w(x,by)
< 3Jball b(z,w) s.t. Vb € B,, b€ B\ B;

0= 7T(b, bz) < 7T(b, bl)
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € RI*!
¢(b) = (p78 = P2
— polar hyperplane hy

—12)

= o(b)" e R+

P={2eRM* x4,y =22}
hy={2 € R .25,y =2p -2 — s}
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € RI*!
o(b) = (p,s = p*
— polar hyperplane hy

—2)

= o(b)" e R+

P={2eRM* x4,y =22}
hy={2 € R .25,y =2p -2 — s}

@ Balls will null radius are mapped onto P
hy is tangent to P at ¢(p).
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € RI*!
¢(b) = (p,s = p* —r?)
— polar hyperplane h, = ¢(b)* € RI+!

P={2eRM* x4,y =22}
hy={2 € R .25,y =2p -2 — s}

@ Balls will null radius are mapped onto P
hy is tangent to P at ¢(p).

@ The vertical projection of hy NP onto x411 = 0 is b
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € RI*!

o(b) = (p,s = p* —r?)
— o(b)" € RYH1
hy={2 € R 25,1 =2p -z — s}

— polar hyperplane hy

@ The vertical distance between & = (z,22) and h; is equal to

Algorithmic Geometry of Triangulations
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The space of spheres

b(p,r) ball of R?
— point ¢(b) € R+
H(b) = (p,5 = p* — 1)
— polar hyperplane hy, = ¢(b)* € Ri+!
hy={2 € R 25,1 =2p -z — s}

@ The vertical distance between & = (z,22) and h; is equal to

22 —2p-x+s=m(x,b)

@ The faces of the power diagram of B are the vertical projections onto
zq+1 = 0 of the faces of the polytope V(B) = (1, b, of R¢*!
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Power diagrams, weighted Delaunay triangulations and
polytopes

Delaunay —
tranguiation s
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Proof of the theorem

B, C B,|B;| =d+ 1, 7 = conv({ps, bi(pi, i) € B;}),
¢(T) = COhV({(ﬁ(bi), b; € BT})

I b(p,r) s.t. hy = ¢(b)* = aff({p(b;), b; € B;})

¢(1) € D(B) conv™ ({(bi)})

< Vb € B-,¢(b;) € hy Vb; & B, ¢(b;) € hjT
<~ Vb; € Bq—,ﬂ'(b,bi) =0 Vbj §_ZBT,7T(b,bj) >0
< pc ﬂ V(b;)

biEBT
<= 71 € Del(B)
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Delaunay’s theorem extended
B = {b1,by...b,} is said to be in general position wrt spheres if

A x € R* with equal power to d + 2 balls of B

P ={p1,...,pn}: set of centers of the balls of B
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Delaunay’s theorem extended

B = {b1,by...b,} is said to be in general position wrt spheres if

A x € R* with equal power to d + 2 balls of B

P ={p1,...,pn}: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the simplicial map
f i vert(Del(B)) — P
provides a realization of Del(B)

Del(B) is a triangulation of P’ C P called the Delaunay triangulation of B

v
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Power diagrams, Delaunay triangulations and polytopes

If B is a set of balls in general position wrt spheres :

V(B)=hin...nhf "B D(B) = conv ({$(b1), - .. d(ba)})
T \J
Voronoi Diagram of B % Delaunay Complex of B
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nt%o (Upper Bound Th.)
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nt%o (Upper Bound Th.)

Construction can be done in time © (n logn + nt%g (Convex hull)
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Complexity and algorithm for weighted VD and DT

Number of faces = © (nt%o (Upper Bound Th.)
Construction can be done in time © (n logn + nt%g (Convex hull)

Main predicate

1 e 1
power_test(by,...,bg+1) = sign Do e Dda1

2 2 2 2
bo—7o -+ Pg+1 —Td+1
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Power diagrams are maximization diagrams

Cell of b; in the power diagram Vor(B)
V(b)) = {zeR¥:7m(x,b;) < m(x,b;).V] # i}

{x e RY: 2pjz — 5, = max;e,. . {2p;% — 5;}}

Vor(B) is the maximization diagram of the set of affine functions

{fi(x) =2piw —s;,i=1,...,n}
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R?+1
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R?+1

@ Voronoi diagrams and power diagrams are affine diagrams.

@ Any affine diagram of R? is the power diagram of a set of balls.
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Affine diagrams (regular subdivisions)

Affine diagrams are defined as the
maximization diagrams of a finite set of
affine functions

They are equivalently defined as the vertical
projections of polyhedra intersection of a
finite number of upper half-spaces of R?+1

@ Voronoi diagrams and power diagrams are affine diagrams.

@ Any affine diagram of R? is the power diagram of a set of balls.

@ Delaunay and weighted Delaunay triangulations are regular triangulations

@ Any regular triangulation is a weighted Delaunay triangulation
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Examples of affine diagrams

@ The intersection of a power diagram with an affine subspace (Exercise)

© A Voronoi diagram defined with a quadratic distance function
lz—allg = (v = a)'Q(z — a) Q=q"

© £k order Voronoi diagrams
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k-order Voronoi Diagrams

Let P be a set of sites.
Each cell in the k-order Voronoi diagram Vory,(P) is the locus of points in R¢
that have the same subset of P as k-nearest neighbors.
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k-order Voronoi diagrams are power diagrams

Let S1, 59, ... denote the subsets of k points of P.
The k-order Voronoi diagram is the minimization diagram of §(z, S;) :

S50 = 3 S @-p?

pES;
— SL’Q—% Zp.x_i'_l ZpQ
k pES; k pES;
= W(bi,{L‘)

where b; is the ball

1
Q centered at ¢; = 1 o P
Q with s; = m(0,b;) =c? —r? = % Epesi p?

Ce2 2 1 2
© and radius 17 =¢; — 1 >0 5, D7 -
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Combinatorial complexity of k-order Voronoi diagrams

Theorem

If P be a set of n points in R, the number of vertices and faces in all the
Voronoi diagrams Vor;(P)

of orders j < k is:

0 (kf%T nL%J)
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Combinatorial complexity of k-order Voronoi diagrams

Theorem

If P be a set of n points in R, the number of vertices and faces in all the
Voronoi diagrams Vor;(P)

of orders j < k is:

10 (kf%T nL%J)

Proof

uses :

> bijection between k-sets and cells in k-order Voronoi diagrams
» the sampling theorem (from randomization theory)
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k-sets and k-order Voronoi diagrams

P a set of n points in R¢ °«

k-sets / °
A k-set of P is a subset P’ of P with size k that o o
L ]

can be separated from P\ P’ by a hyperplane
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k-sets and k-order Voronoi diagrams

°
P a set of n points in R? * o
k-sets ¢ /_../’ °
A k-set of P is a subset P’ of P with size k that ~ e o
can be separated from P\ P’ by a hyperplane ®

k-order Voronoi diagrams
k points of P have a cell in Vory(P) iff there exists
a ball that contains those points and only those

= each cell of Vory(P) corresponds to a k-set of
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k-sets and k-levels in arrangements of hyperplanes

@ For a set of points P € R, we consider the arrangement of the dual
hyperplanes A(P*)
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k-sets and k-levels in arrangements of hyperplanes

@ For a set of points P € R, we consider the arrangement of the dual
hyperplanes A(P*)

® h defines a k set P’ = h separates P’ (below h) from P\ P’ (above h)
= h* is below the k hyperplanes of P"* and above those of P*\ P’*
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k-sets and k-levels in arrangements of hyperplanes

@ For a set of points P € R, we consider the arrangement of the dual
hyperplanes A(P*)

® h defines a k set P’ = h separates P’ (below h) from P\ P’ (above h)
= h* is below the k hyperplanes of P"* and above those of P*\ P’*

@ Fk-sets of P are in 1-1 correspondance with the cells of A(P*) of level £, i.e.
with k hyperplanes of P* above it.
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Bounding the number of k-sets

¢k(P) : Number of k-sets of P = Number of cells of level k in A(P*)

c<k(P) = Zlgk a(P)
¢’ <k(P) : Number of vertices of A(P*) with level at most k
c<k(n) = max|p|—, c<x(P) ' <k(n) = max|pj—y, ' <x(P)

Hyp. in general position : each vertex € d hyperplanes incident to 2¢ cells
Vertices of level k are incident to cells with level € [k, k + d]
Cells of level k have incident vertices with level € [k — d, k]
c<k(n) = O ('<k(n))
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Regions, conflicts and the sampling theorem

O a set of n objects.
F(O) set of configurations defined by O
@ each configuration is defined by a subset of b objects
@ each configuration is in conflict with a subset of O
F;(O) set of configurations in conflict with j objects
|F<x(O)| number of configurations defined by O
in conflict with at most k& objects of O

fo(r) = Exp(|]Fo(R)|) expected number of configurations
defined and without conflict on a random r-sample of O.
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Regions, conflicts and the sampling theorem

O a set of n objects.
F(O) set of configurations defined by O
@ each configuration is defined by a subset of b objects
@ each configuration is in conflict with a subset of O
F;(O) set of configurations in conflict with j objects
|F<x(O)| number of configurations defined by O
in conflict with at most k& objects of O

fo(r) = Exp(|]Fo(R)|) expected number of configurations
defined and without conflict on a random r-sample of O.

The sampling theorem  [Clarkson & Shor 1992]
For 2 <k < 7%, | F<u(O)| <4 (b+1)° K fo([Z]) J
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Proof of the sampling theorem

) o U
Jfo(r) :Z|fj(0)|—n > |f§k(0)|—n
() ()

T

n—b—k
then,we prove that r—b < 1
forr =2 ( n) ~ 4(b+ 1)%kb
T

( ( >) R UL T

>

ENE

1
2 (b+1)bKP
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Proof of the sampling theorem

end

(n=7)! (mn—0b-—k)! ﬁnrk+j><nrk+1)k

(n—r—k)! (n->5)! jzln—b—k—i—j_ n—b—k+1
- (n—n/k—kz—i—l)k
- n—k
> (1—-1/k)" >1/4 pour (2 < k),
b—1 b
rl (n—>5)! r—1 r+1-—2>
= > _—
(r=0)! n! Hn—l_H n
1=0 =1
b
n/k—>
=l
= "
bk 1 n
> P1- =)0 > —— <—).
= /KA n) T kb +1)b IDOur(k—b+1)
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Bounding the number of k-sets

¢k(P) : Number of k-sets of P = Number of cells of level & in A(P*).

c<k(P) = Zlgk a(P)
¢’ <i(P) : Number of vertices of A(P*) with level at most k.

Objects O: n hyperplanes of R¢
Configurations : vertices in A(O), b=d

Conflict between v and h: v € h™ ——

Sampling th: /< (P) < 4(d+ 1)%k%fo (| %])

g ¢ <k(n) =0 (kl21nls]
Upper bound th: foqu):O(:M) = <i(n) O(k )

2
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Combinatorial complexities

@ Number of vertices of level < k in an arrangement of n hyperplanes in R¢
Number of cells of level < k in an arrangement of n hyperplanes in R?

Total number of j < k sets for a set of n points in R¢

(k(ﬂ nL%J)
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Combinatorial complexities

@ Number of vertices of level < k in an arrangement of n hyperplanes in R¢
Number of cells of level < k in an arrangement of n hyperplanes in R?

Total number of j < k sets for a set of n points in R¢

(k(ﬂ nL%J)

@ Total number of faces in the Voronoi diagrams of order j < k for a set of n

points in R¢
(kf%1 nL%J)
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Restriction of Delaunay triangulation

Let Q@ C R? and P € R? a finite set of points.

Vor(E) N is a cover of €. Its nerve is called the Delaunay triangulation
of E restricted to (2, noted Deljg(P)

If Vor(E) N2 is a good cover of 2, Deljo(P) is homotopy equivalent to
(Nerve theorem)
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Union of balls

@ What is the combinatorial complexity of the boundary of the union U
of n balls of R% ?

@ Compare with the complexity of the arrangement of the bounding
hyperspheres

@ How can we compute U 7

@ What is the image of U in the space of spheres ?
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Restriction of Del(B) to U = |5 b

o U=Uypbn V() and 0UNSb=V(b)n b

Algorithmic Geometry of Triangulations Union of Balls and «-Complexes J-D. Boissonnat 31/1



Restriction of Del(B) to U = J,.5 b

ool

o U=Uypbn V() and 0UNSb=V(b)n b

@ The nerve of C is the restriction of Del(B) to U, i.e. the subcomplex
Delj;;(B) of Del(B) whose faces have a circumcenter in U

Algorithmic Geometry of Triangulations Union of Balls and «-Complexes J-D. Boissonnat 31/1



Restriction of Del(B) to U = J,.5 b

ool

o U=Uypbn V() and 0UNSb=V(b)n b

@ The nerve of C is the restriction of Del(B) to U, i.e. the subcomplex
Delj;;(B) of Del(B) whose faces have a circumcenter in U

e Vb, bNV(b) is convex and thus contractible
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Restriction of Del(B) to U = J,.5 b

ool

o U=Uypbn V() and 0UNSb=V(b)n b

@ The nerve of C is the restriction of Del(B) to U, i.e. the subcomplex
Delj;;(B) of Del(B) whose faces have a circumcenter in U

e Vb, bNV(b) is convex and thus contractible
e C={bNV(b),be B} isa good cover of U
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Restriction of Del(B) to U = J,.5 b

ool

o U=Uypbn V() and 0UNSb=V(b)n b

@ The nerve of C is the restriction of Del(B) to U, i.e. the subcomplex
Delj;;(B) of Del(B) whose faces have a circumcenter in U

e Vb, bNV(b) is convex and thus contractible
e C={bNV(b),be B} isa good cover of U

@ The nerve of C is a deformation retract of U
homotopy equivalent (Nerve theorem)
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Cech complex versus Del;(B)

@ Both complexes are homotopy equivalent to U
@ The size of Cech(B) is ©(n?)

@ The size of Delj;;(B) is CICIED!
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Filtration of a simplicial complex

O A filtration of K is a sequence of subcomplexes of K
p=K°cK'c..-.CcK™"=K
such that: Kl = KU o', where o' is a simplex of K

@ Alternatively a filtration of K can be seen as an ordering o1, .. .0y, of
the simplices of K such that the set K* of the first ¢ simplices is a
subcomplex of K

The ordering should be consistent with the dimension of the simplices
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Filtration of a simplicial complex

O A filtration of K is a sequence of subcomplexes of K
p=K°cK'c..-.CcK™"=K
such that: Kl = KU o', where o' is a simplex of K

@ Alternatively a filtration of K can be seen as an ordering o1, .. .0y, of
the simplices of K such that the set K* of the first ¢ simplices is a
subcomplex of K

The ordering should be consistent with the dimension of the simplices

Filtration plays a central role in topological persistence
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a-filtration of Delaunay complexes

P a finite set of points of RY Ula) = Upep B, o)

a-complex = Deljy(q) (P)

The filtration {Del;;(4) (P), a € R*} is called the a-filtration of Del(P)
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Shape reconstruction using a-complexes (2d)
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Shape reconstruction using a-complexes (3d)
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Constructing the a-filtration of Del(P)

o € Del(P) is said to be Gabriel iff ¢ No™* # ()

A Gabriel edge A non Gabriel edge
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Constructing the a-filtration of Del(P)

o € Del(P) is said to be Gabriel iff ¢ No™* # ()

A Gabriel edge A non Gabriel edge

Algorithm
for each d-simplex 0 € Del(P) :  aunin(o) =7(0)
fork=d—-1,..,0,
for each k-face o € Del(P)
Amed(0) = Mingecotace(o) Xmin(0)
if o is Gabriel then @i (o) = 7(0)

else amin(0) = amea(o)
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a-filtration of weighted Delaunay complexes

B = {b; = (pi,7i) }i=1,...n W(a)=Ui-, B (pi’ \/m)

(2, breq) = (v — p)2 — 12

W(I, bbluc) = (CE - p)2 - TZ - a2

a-complex = Delyy(q) (B) Filtration :  {Dely (o) (B), a €R"}
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