Union of Balls and α-Complexes

Jean-Daniel Boissonnat
Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Laguerre geometry

Power distance of two balls or of two weighted points. ball $b_{1}\left(p_{1}, r_{1}\right)$, center p_{1} radius $r_{1} \longleftrightarrow$ weigthed point $\left(p_{1}, r_{1}^{2}\right) \in \mathbb{R}^{d}$ ball $b_{2}\left(p_{2}, r_{2}\right)$, center p_{2} radius $r_{2} \longleftrightarrow$ weigthed point $\left(p_{2}, r_{2}^{2}\right) \in \mathbb{R}^{d}$

$$
\pi\left(b_{1}, b_{2}\right)=\left(p_{1}-p_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}
$$

Laguerre geometry

Power distance of two balls or of two weighted points. ball $b_{1}\left(p_{1}, r_{1}\right)$, center p_{1} radius $r_{1} \longleftrightarrow$ weigthed point $\left(p_{1}, r_{1}^{2}\right) \in \mathbb{R}^{d}$ ball $b_{2}\left(p_{2}, r_{2}\right)$, center p_{2} radius $r_{2} \longleftrightarrow$ weigthed point $\left(p_{2}, r_{2}^{2}\right) \in \mathbb{R}^{d}$

$$
\pi\left(b_{1}, b_{2}\right)=\left(p_{1}-p_{2}\right)^{2}-r_{1}^{2}-r_{2}^{2}
$$

Orthogonal balls

b_{1}, b_{2} closer $\Longleftrightarrow \pi\left(b_{1}, b_{2}\right)<0 \Longleftrightarrow\left(p_{1}-p_{2}\right)^{2} \leq r_{1}^{2}+r_{2}^{2}$

$$
\begin{aligned}
b_{1}, b_{2} \text { orthogonal } & \Longleftrightarrow \pi\left(b_{1}, b_{2}\right)=0 \Longleftrightarrow\left(p_{1}-p_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2} \\
b_{1}, b_{2} \text { further } & \Longleftrightarrow \pi\left(b_{1}, b_{2}\right)>0 \Longleftrightarrow\left(p_{1}-p_{2}\right)^{2} \leq r_{1}^{2}+r_{2}^{2}
\end{aligned}
$$

Power distance of a point wrt a ball

If b_{1} is reduced to a point $p: \pi\left(p, b_{2}\right)=\left(p-p_{2}\right)^{2}-r_{2}^{2}$
Normalized equation of bounding sphere :
$p \in \partial b_{2} \Longleftrightarrow \pi\left(p, b_{2}\right)=0$

$$
\begin{aligned}
p \in \operatorname{int} b_{2} & \Longleftrightarrow \pi(p, b)<0 \\
p \in \partial b_{2} & \Longleftrightarrow \pi(p, b)=0 \\
p \notin b_{2} & \Longleftrightarrow \pi(p, b)>0
\end{aligned}
$$

Tangents and secants through p
 $\pi(p, b)=p t^{2}=\overline{p m} \cdot \overline{p m^{\prime}}=\overline{p n} \cdot \overline{p n^{\prime}}$

Radical Hyperplane

The locus of point $\in \mathbb{R}^{d}$ with same power distance to balls $b_{1}\left(p_{1}, r_{1}\right)$ and $b_{2}\left(p_{2}, r_{2}\right)$ is a hyperplane of \mathbb{R}^{d}

$$
\begin{aligned}
\pi\left(x, b_{1}\right)=\pi\left(x, b_{2}\right) & \Longleftrightarrow\left(x-p_{1}\right)^{2}-r_{1}^{2}=\left(x-p_{2}\right)^{2}-r_{2}^{2} \\
& \Longleftrightarrow-2 p_{1} x+p_{1}^{2}-r_{1}^{2}=-2 p_{2} x+p_{2}^{2}-r_{2}^{2} \\
& \Longleftrightarrow 2\left(p_{2}-p_{1}\right) x+\left(p_{1}^{2}-r_{1}^{2}\right)-\left(p_{2}^{2}-r_{2}^{2}\right)=0
\end{aligned}
$$

A point in h_{12} is the center of a ball orthogonal to b_{1} and b_{2}

Radical Hyperplane

The locus of point $\in \mathbb{R}^{d}$ with same power distance to balls $b_{1}\left(p_{1}, r_{1}\right)$ and $b_{2}\left(p_{2}, r_{2}\right)$ is a hyperplane of \mathbb{R}^{d}

$$
\begin{aligned}
\pi\left(x, b_{1}\right)=\pi\left(x, b_{2}\right) & \Longleftrightarrow\left(x-p_{1}\right)^{2}-r_{1}^{2}=\left(x-p_{2}\right)^{2}-r_{2}^{2} \\
& \Longleftrightarrow-2 p_{1} x+p_{1}^{2}-r_{1}^{2}=-2 p_{2} x+p_{2}^{2}-r_{2}^{2} \\
& \Longleftrightarrow 2\left(p_{2}-p_{1}\right) x+\left(p_{1}^{2}-r_{1}^{2}\right)-\left(p_{2}^{2}-r_{2}^{2}\right)=0
\end{aligned}
$$

A point in h_{12} is the center of a ball orthogonal to b_{1} and b_{2}

Power Diagrams

also named Laguerre diagrams or weighted Voronoi diagrams

Sites: n balls $B=\left\{b_{i}\left(p_{i}, r_{i}\right), i=1, \ldots n\right\}$

Power distance: $\pi\left(x, b_{i}\right)=\left(x-p_{i}\right)^{2}-r_{i}^{2}$
Power Diagram: $\operatorname{Vor}(B)$
One cell $V\left(b_{i}\right)$ for each site
$V\left(b_{i}\right)=\left\{x: \pi\left(x, b_{i}\right) \leq \pi\left(x, b_{j}\right) . \forall j \neq i\right\}$

- Each cell is a polytope
- $V\left(b_{i}\right)$ may be empty
- p_{i} may not belong to $V\left(b_{i}\right)$

Weighted Delaunay triangulations

$B=\left\{b_{i}\left(p_{i}, r_{i}\right)\right\}$ a set of balls
$\operatorname{Del}(B)=$ nerve of $\operatorname{Vor}(B)$:
$\left.B_{\tau}=\left\{b_{i}\left(p_{i}, r_{i}\right), i=0, \ldots k\right\}\right\} \subset B$
$B_{\tau} \in \operatorname{Del}(B) \Longleftrightarrow \bigcap_{b_{i} \in B_{\tau}} V\left(b_{i}\right) \neq \emptyset$

To be proved (next slides):
under a general position condition on B, $B_{\tau} \longrightarrow \tau=\operatorname{conv}\left(\left\{p_{i}, i=0 \ldots k\right\}\right)$ embeds $\operatorname{Del}(B)$ as a triangulation in \mathbb{R}^{d}, called the weighted Delaunay triangulation

Characteristic property of weighted Delaunay complexes

$$
\begin{aligned}
& \tau \in \operatorname{Del}(B) \Longleftrightarrow \\
& \bigcap_{b_{i} \in B_{\tau}} V\left(b_{i}\right) \neq \emptyset \\
& \exists x \in \mathbb{R}^{d} \text { s.t. } \forall b_{i}, b_{j} \in B_{\tau}, b_{l} \in B \backslash B_{\tau} \\
& \pi\left(x, b_{i}\right)=\pi\left(x, b_{j}\right)<\pi\left(x, b_{l}\right) \\
& \Longleftrightarrow \quad \exists \text { ball } b(x, \omega) \text { s.t. } \forall b_{i} \in B_{\tau}, b_{l} \in B \backslash B_{\tau} \\
& 0=\pi\left(b, b_{i}\right)<\pi\left(b, b_{l}\right)
\end{aligned}
$$

The space of spheres

$b(p, r)$ ball of \mathbb{R}^{d}
\rightarrow point $\phi(b) \in \mathbb{R}^{d+1}$

$$
\phi(b)=\left(p, s=p^{2}-r^{2}\right)
$$

\rightarrow polar hyperplane $h_{b}=\phi(b)^{*} \in \mathbb{R}^{d+1}$
$\mathcal{P}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=x^{2}\right\}$
$h_{b}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=2 p \cdot x-s\right\}$

- Balls will null radius are mapped onto \mathcal{P} h_{n} is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_{b} \cap \mathcal{P}$ onto $x_{d+1}=0$ is ∂b

The space of spheres

$b(p, r)$ ball of \mathbb{R}^{d}
\rightarrow point $\phi(b) \in \mathbb{R}^{d+1}$

$$
\phi(b)=\left(p, s=p^{2}-r^{2}\right)
$$

\rightarrow polar hyperplane $h_{b}=\phi(b)^{*} \in \mathbb{R}^{d+1}$
$\mathcal{P}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=x^{2}\right\}$
$h_{b}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=2 p \cdot x-s\right\}$

- Balls will null radius are mapped onto \mathcal{P} h_{p} is tangent to \mathcal{P} at $\phi(p)$.

- The vertical projection of $h_{b} \cap \mathcal{P}$ onto $x_{d+1}=0$ is ∂b

The space of spheres

$b(p, r)$ ball of \mathbb{R}^{d}
\rightarrow point $\phi(b) \in \mathbb{R}^{d+1}$

$$
\phi(b)=\left(p, s=p^{2}-r^{2}\right)
$$

\rightarrow polar hyperplane $h_{b}=\phi(b)^{*} \in \mathbb{R}^{d+1}$
$\mathcal{P}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=x^{2}\right\}$
$h_{b}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=2 p \cdot x-s\right\}$

- Balls will null radius are mapped onto \mathcal{P} h_{p} is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_{b} \cap \mathcal{P}$ onto $x_{d+1}=0$ is ∂b

The space of spheres

$b(p, r)$ ball of \mathbb{R}^{d}

$$
\rightarrow \text { point } \phi(b) \in \mathbb{R}^{d+1}
$$

$$
\phi(b)=\left(p, s=p^{2}-r^{2}\right)
$$

\rightarrow polar hyperplane $h_{b}=\phi(b)^{*} \in \mathbb{R}^{d+1}$ $h_{b}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=2 p \cdot x-s\right\}$

- The vertical distance between $\hat{x}=\left(x, x^{2}\right)$ and h_{b} is equal to

$$
x^{2}-2 p \cdot x+s=\pi(x, b)
$$

- The faces of the power diagram of B are the vertical projections onto $x_{d+1}=0$ of the faces of the polytope $\mathcal{V}(B)=\bigcap_{i} h_{b}^{+}$of \mathbb{R}^{d+1}

The space of spheres

$b(p, r)$ ball of \mathbb{R}^{d}
\rightarrow point $\phi(b) \in \mathbb{R}^{d+1}$

$$
\phi(b)=\left(p, s=p^{2}-r^{2}\right)
$$

\rightarrow polar hyperplane $h_{b}=\phi(b)^{*} \in \mathbb{R}^{d+1}$ $h_{b}=\left\{\hat{x} \in \mathbb{R}^{d+1}: x_{d+1}=2 p \cdot x-s\right\}$

- The vertical distance between $\hat{x}=\left(x, x^{2}\right)$ and h_{b} is equal to

$$
x^{2}-2 p \cdot x+s=\pi(x, b)
$$

- The faces of the power diagram of B are the vertical projections onto $x_{d+1}=0$ of the faces of the polytope $\mathcal{V}(B)=\bigcap_{i} h_{b}^{+}$of \mathbb{R}^{d+1}

Power diagrams, weighted Delaunay triangulations and polytopes

$\mathcal{V}(B)=\cap_{i} \phi\left(b_{i}\right)^{*+}$

$$
\mathcal{D}(B)=\operatorname{conv}^{-}(\hat{P})
$$

Proof of the theorem

$$
\begin{array}{r}
B_{\tau} \subset B,\left|B_{\tau}\right|=d+1, \\
\tau=\operatorname{conv}\left(\left\{p_{i}, b_{i}\left(p_{i}, r_{i}\right) \in B_{\tau}\right\}\right), \\
\phi(\tau)=\operatorname{conv}\left(\left\{\phi\left(b_{i}\right), b_{i} \in B_{\tau}\right\}\right)
\end{array}
$$

$\exists b(p, r)$ s.t. $h_{b}=\phi(b)^{*}=\operatorname{aff}\left(\left\{\phi\left(b_{i}\right), b_{i} \in B_{\tau}\right\}\right)$

$$
\begin{aligned}
\phi(\tau) \in \mathcal{D}(B) & =\operatorname{conv}^{-}\left(\left\{\phi\left(b_{i}\right)\right\}\right) \\
& \Longleftrightarrow \forall b_{i} \in B_{\tau}, \phi\left(b_{i}\right) \in h_{b} \quad \forall b_{j} \notin B_{\tau}, \phi\left(b_{j}\right) \in h_{b}^{*+} \\
& \Longleftrightarrow \forall b_{i} \in B_{\tau}, \pi\left(b, b_{i}\right)=0 \quad \forall b_{j} \notin B_{\tau}, \pi\left(b, b_{j}\right)>0 \\
& \Longleftrightarrow p \in \bigcap_{b_{i} \in B_{\tau}} V\left(b_{i}\right) \\
& \Longleftrightarrow \tau \in \operatorname{Del}(B)
\end{aligned}
$$

Delaunay's theorem extended

$B=\left\{b_{1}, b_{2} \ldots b_{n}\right\}$ is said to be in general position wrt spheres if $\nexists x \in \mathbb{R}^{d}$ with equal power to $d+2$ balls of B
$P=\left\{p_{1}, \ldots, p_{n}\right\}:$ set of centers of the balls of B

Theorem
If B is in general position wrt spheres, the simplicial map
$f: \operatorname{vert}(\operatorname{Del}(B)) \rightarrow P$
provides a realization of $\operatorname{Del}(B)$
$\operatorname{Del}(B)$ is a triangulation of $P^{\prime} \subseteq P$ called the Delaunay triangulation of B

Delaunay's theorem extended

$B=\left\{b_{1}, b_{2} \ldots b_{n}\right\}$ is said to be in general position wrt spheres if $\nexists x \in \mathbb{R}^{d}$ with equal power to $d+2$ balls of B
$P=\left\{p_{1}, \ldots, p_{n}\right\}:$ set of centers of the balls of B

Theorem
If B is in general position wrt spheres, the simplicial map

$$
f: \operatorname{vert}(\operatorname{Del}(B)) \rightarrow P
$$

provides a realization of $\operatorname{Del}(B)$
$\operatorname{Del}(B)$ is a triangulation of $P^{\prime} \subseteq P$ called the Delaunay triangulation of B

Power diagrams, Delaunay triangulations and polytopes

If B is a set of balls in general position wrt spheres:

$$
\begin{array}{ccc}
\mathcal{V}(B)=h_{b_{1}}^{+} \cap \ldots \cap h_{b_{n}}^{+} & \xrightarrow{\text { duality }} & \mathcal{D}(B)=\operatorname{conv}^{-}\left(\left\{\phi\left(b_{1}\right), \ldots, \phi\left(b_{n}\right)\right\}\right) \\
\uparrow & & \\
\text { Voronoi Diagram of } B & \xrightarrow{\text { nerve }} & \text { Delaunay Complex of } B
\end{array}
$$

Complexity and algorithm for weighted VD and DT

Number of faces $=\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
(Upper Bound Th.)

Main predicate

power_test $\left(b_{0}, \ldots, b_{d+1}\right)=\operatorname{sign}$

Complexity and algorithm for weighted VD and DT

Number of faces $=\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
(Upper Bound Th.)

Construction can be done in time $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
(Convex hull)

Complexity and algorithm for weighted VD and DT

Number of faces $=\Theta\left(n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
(Upper Bound Th.)

Construction can be done in time $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$
(Convex hull)

Main predicate

$$
\text { power_test }\left(b_{0}, \ldots, b_{d+1}\right)=\operatorname{sign}\left|\begin{array}{ccc}
1 & \ldots & 1 \\
p_{0} & \cdots & p_{d+1} \\
p_{0}^{2}-r_{0}^{2} & \ldots & p_{d+1}^{2}-r_{d+1}^{2}
\end{array}\right|
$$

Power diagrams are maximization diagrams

Cell of b_{i} in the power diagram $\operatorname{Vor}(B)$

$$
\begin{aligned}
V\left(b_{i}\right) & =\left\{x \in \mathbb{R}^{d}: \pi\left(x, b_{i}\right) \leq \pi\left(x, b_{j}\right) \cdot \forall j \neq i\right\} \\
& =\left\{x \in \mathbb{R}^{d}: 2 p_{i} x-s_{i}=\max _{j \in[1, \ldots n]}\left\{2 p_{j} x-s_{j}\right\}\right\}
\end{aligned}
$$

$\operatorname{Vor}(B)$ is the maximization diagram of the set of affine functions

$$
\left\{f_{i}(x)=2 p_{i} x-s_{i}, i=1, \ldots, n\right\}
$$

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^{d} is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^{d} is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

- Voronoi diagrams and power diagrams are affine diagrams.
- Any affine diagram of \mathbb{R}^{d} is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Examples of affine diagrams

(1) The intersection of a power diagram with an affine subspace (Exercise)
(2) A Voronoi diagram defined with a quadratic distance function

$$
\|x-a\|_{Q}=(x-a)^{t} Q(x-a) \quad Q=Q^{t}
$$

(3) k order Voronoi diagrams

k-order Voronoi Diagrams

Let P be a set of sites.
Each cell in the k-order Voronoi diagram $\operatorname{Vor}_{k}(P)$ is the locus of points in \mathbb{R}^{d} that have the same subset of P as k-nearest neighbors.

k-order Voronoi diagrams are power diagrams

Let S_{1}, S_{2}, \ldots denote the subsets of k points of P. The k-order Voronoi diagram is the minimization diagram of $\delta\left(x, S_{i}\right)$:

$$
\begin{aligned}
\delta\left(x, S_{i}\right) & =\frac{1}{k} \sum_{p \in S_{i}}(x-p)^{2} \\
& =x^{2}-\frac{2}{k} \sum_{p \in S_{i}} p \cdot x+\frac{1}{k} \sum_{p \in S_{i}} p^{2} \\
& =\pi\left(b_{i}, x\right)
\end{aligned}
$$

where b_{i} is the ball
(1) centered at $c_{i}=\frac{1}{k} \sum_{p \in S_{i}} p$
(2) with $s_{i}=\pi\left(o, b_{i}\right)=c_{i}^{2}-r_{i}^{2}=\frac{1}{k} \sum_{p \in S_{i}} p^{2}$
(3) and radius $r_{i}^{2}=c_{i}^{2}-\frac{1}{k} \sum_{p \in \mathbb{S}_{i}} p^{2}$.

Combinatorial complexity of k-order Voronoi diagrams

Theorem
If P be a set of n points in \mathbb{R}^{d}, the number of vertices and faces in all the Voronoi diagrams $\operatorname{Vor}_{j}(P)$ of orders $j \leq k$ is:

$$
O\left(k^{\left\lceil\frac{d+1}{2}\right\rceil} n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
$$

uses
\rightarrow bijection between k-sets and cells in k-order Voronoi diagrams - the sampling theorem (from randomization theory)

Combinatorial complexity of k-order Voronoi diagrams

Theorem
If P be a set of n points in \mathbb{R}^{d}, the number of vertices and faces in all the Voronoi diagrams $\operatorname{Vor}_{j}(P)$ of orders $j \leq k$ is:

$$
O\left(k^{\left\lceil\frac{d+1}{2}\right\rceil} n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
$$

Proof

uses :

- bijection between k-sets and cells in k-order Voronoi diagrams
- the sampling theorem (from randomization theory)

k-sets and k-order Voronoi diagrams

P a set of n points in \mathbb{R}^{d}
k-sets
A k-set of P is a subset P^{\prime} of P with size k that can be separated from $P \backslash P^{\prime}$ by a hyperplane k-order Voronoi diagrams k points of P have a cell in $\operatorname{Vor}_{k}(P)$ iff there exists a ball that contains those points and only those
\Rightarrow each cell of $\operatorname{Vor}_{k}(P)$ corresponds to a k-set of

k-sets and k-order Voronoi diagrams

P a set of n points in \mathbb{R}^{d}
k-sets
A k-set of P is a subset P^{\prime} of P with size k that can be separated from $P \backslash P^{\prime}$ by a hyperplane
k-order Voronoi diagrams
k points of P have a cell in $\operatorname{Vor}_{k}(P)$ iff there exists a ball that contains those points and only those
\Rightarrow each cell of $\operatorname{Vor}_{k}(P)$ corresponds to a k-set of $\phi(P)$

k-sets and k-levels in arrangements of hyperplanes

- For a set of points $P \in \mathbb{R}^{d}$, we consider the arrangement of the dual hyperplanes $\mathcal{A}\left(P^{*}\right)$
- h defines a k set $P^{\prime} \Rightarrow h$ separates P^{\prime} (below h) from $P \backslash P^{\prime}$ (above h) $\Rightarrow \quad h^{*}$ is below the k hyperplanes of $P^{* *}$ and above those of $P^{*} \backslash P^{*}$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}\left(P^{*}\right)$ of level k, i.e. with k hyperplanes of P^{*} above it.

k-sets and k-levels in arrangements of hyperplanes

- For a set of points $P \in \mathbb{R}^{d}$, we consider the arrangement of the dual hyperplanes $\mathcal{A}\left(P^{*}\right)$
- h defines a k set $P^{\prime} \Rightarrow h$ separates P^{\prime} (below h) from $P \backslash P^{\prime}$ (above h) $\Rightarrow \quad h^{*}$ is below the k hyperplanes of $P^{* *}$ and above those of $P^{*} \backslash P^{\prime *}$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}\left(P^{*}\right)$ of level k, i.e. with k hyperplanes of P^{*} above it.

k-sets and k-levels in arrangements of hyperplanes

- For a set of points $P \in \mathbb{R}^{d}$, we consider the arrangement of the dual hyperplanes $\mathcal{A}\left(P^{*}\right)$
- h defines a k set $P^{\prime} \Rightarrow h$ separates P^{\prime} (below h) from $P \backslash P^{\prime}$ (above h) $\Rightarrow \quad h^{*}$ is below the k hyperplanes of $P^{\prime *}$ and above those of $P^{*} \backslash P^{\prime *}$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}\left(P^{*}\right)$ of level k, i.e. with k hyperplanes of P^{*} above it.

Bounding the number of k-sets

$c_{k}(P)$: Number of k-sets of $P=$ Number of cells of level k in $\mathcal{A}\left(P^{*}\right)$
$c_{\leq k}(P)=\sum_{l \leq k} c_{l}(P)$
$c^{\prime} \leq k(P)$: Number of vertices of $\mathcal{A}\left(P^{*}\right)$ with level at most k
$c_{\leq k}^{\leq}(n)=\max _{|P|=n} c_{\leq k}(P) c_{\leq k}^{\prime}(n)=\max _{|P|=n} c_{\leq k}^{\prime}(P)$
Hyp. in general position : each vertex $\in d$ hyperplanes incident to 2^{d} cells Vertices of level k are incident to cells with level $\in[k, k+d]$ Cells of level k have incident vertices with level $\in[k-d, k]$

$$
c_{\leq k}(n)=O\left(c^{\prime} \leq k(n)\right)
$$

Regions, conflicts and the sampling theorem

O a set of n objects.
$\mathcal{F}(O)$ set of configurations defined by O

- each configuration is defined by a subset of b objects
- each configuration is in conflict with a subset of O
$\mathcal{F}_{j}(O)$ set of configurations in conflict with j objects
$\left|\mathcal{F}_{\leq k}(O)\right|$ number of configurations defined by O in conflict with at most k objects of O
$f_{0}(r)=\operatorname{Exp}\left(\mid \mathcal{F}_{0}(R \mid)\right.$ expected number of configurations defined and without conflict on a random r-sample of O.

Regions, conflicts and the sampling theorem

O a set of n objects.
$\mathcal{F}(O)$ set of configurations defined by O

- each configuration is defined by a subset of b objects
- each configuration is in conflict with a subset of O
$\mathcal{F}_{j}(O)$ set of configurations in conflict with j objects
$\left|\mathcal{F}_{\leq k}(O)\right|$ number of configurations defined by O in conflict with at most k objects of O
$f_{0}(r)=\operatorname{Exp}\left(\mid \mathcal{F}_{0}(R \mid)\right.$ expected number of configurations defined and without conflict on a random r-sample of O.

The sampling theorem [Clarkson \& Shor 1992]
For $2 \leq k \leq \frac{n}{b+1}, \quad\left|\mathcal{F}_{\leq k}(O)\right| \leq 4(b+1)^{b} k^{b} f_{0}\left(\left\lfloor\frac{n}{k}\right\rfloor\right)$

Proof of the sampling theorem

$$
f_{0}(r)=\sum_{j}\left|\mathcal{F}_{j}(O)\right| \frac{\binom{n-b-j}{r-b}}{\binom{n}{r}} \geq\left|\mathcal{F}_{\leq k}(O)\right| \frac{\binom{n-b-k}{r-b}}{\binom{n}{r}}
$$

then, we prove that for $r=\frac{n}{k}$

$$
\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} \geq \frac{1}{4(b+1)^{b} k^{b}}
$$

$$
\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}}=\underbrace{\frac{r!}{(r-b)!} \frac{(n-b)!}{n!}}_{\geq \frac{1}{(b+1)^{b} k^{b}}} \underbrace{\frac{(n-r)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!}}_{\geq \frac{1}{4}}
$$

Proof of the sampling theorem

 end$$
\begin{aligned}
\frac{(n-r)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!} & =\prod_{j=1}^{k} \frac{n-r-k+j}{n-b-k+j} \geq\left(\frac{n-r-k+1}{n-b-k+1}\right)^{k} \\
& \geq\left(\frac{n-n / k-k+1}{n-k}\right)^{k} \\
& \geq(1-1 / k)^{k} \geq 1 / 4 \text { pour }(2 \leq k) \\
\frac{r n}{(r-b)!} \frac{(n-b)!}{n!} & =\prod_{l=0}^{b-1} \frac{r-l}{n-l} \geq \prod_{l=1}^{b} \frac{r+1-b}{n} \\
\geq & \prod_{l=1}^{b} \frac{n / k-b}{n} \\
\geq & 1 / k^{b}\left(1-\frac{b k}{n}\right)^{b} \geq \frac{b}{k^{b}(b+1)^{b}} \\
& \geq \text { pour }\left(k \leq \frac{n}{b+1}\right)
\end{aligned}
$$

Bounding the number of k-sets

$c_{k}(P)$: Number of k-sets of $P=$ Number of cells of level k in $\mathcal{A}\left(P^{*}\right)$.
$c_{\leq k}(P)=\sum_{l \leq k} c_{l}(P)$
$c^{\prime} \leq k(P)$: Number of vertices of $\mathcal{A}\left(P^{*}\right)$ with level at most k.

Objects $O: \mathrm{n}$ hyperplanes of \mathbb{R}^{d}
Configurations : vertices in $\mathcal{A}(O), b=d$
Conflict between v and $h: v \in h^{+}$

Sampling th: $c^{\prime} \leq k(P) \leq 4(d+1)^{d} k^{d} f_{0}\left(\left\lfloor\frac{n}{k}\right\rfloor\right)$
Upper bound th: $\left.f_{0}\left(\left\lfloor\frac{n}{k}\right\rfloor\right)=O\left(\frac{n^{\left\lfloor\frac{d}{2}\right\rfloor}}{k^{\left\lfloor\frac{d}{2}\right\rfloor}}\right) \quad\right\} \Rightarrow c^{\prime} \leq k(n)=O\left(k^{\left\lceil\frac{d}{2}\right\rceil} n\left\lfloor\frac{d}{2}\right\rfloor\right)$

Combinatorial complexities

- Number of vertices of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^{d}

Number of cells of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^{d}
Total number of $j \leq k$ sets for a set of n points in \mathbb{R}^{d}

$$
\left(k^{\left\lceil\frac{d}{2}\right\rceil} n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

- Total number of faces in the Voronoi diagrams of order $j \leq k$ for a set of n points in \mathbb{R}^{d}

Combinatorial complexities

- Number of vertices of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^{d}

Number of cells of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^{d}
Total number of $j \leq k$ sets for a set of n points in \mathbb{R}^{d}

$$
\left(k^{\left\lceil\frac{d}{2}\right\rceil} n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

- Total number of faces in the Voronoi diagrams of order $j \leq k$ for a set of n points in \mathbb{R}^{d}

$$
\left(k^{\left\lceil\frac{d+1}{2}\right\rceil} n_{n}^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
$$

Restriction of Delaunay triangulation

Let $\Omega \subseteq \mathbb{R}^{d}$ and $P \in \mathbb{R}^{d}$ a finite set of points.
$\operatorname{Vor}(E) \cap \Omega$ is a cover of Ω. Its nerve is called the Delaunay triangulation of E restricted to Ω, noted $\operatorname{Del}_{\mid \Omega}(P)$

If $\operatorname{Vor}(E) \cap \Omega$ is a good cover of $\Omega, \operatorname{Del}_{\mid \Omega}(P)$ is homotopy equivalent to Ω
(Nerve theorem)

Union of balls

- What is the combinatorial complexity of the boundary of the union U of n balls of \mathbb{R}^{d} ?
- Compare with the complexity of the arrangement of the bounding hyperspheres
- How can we compute U ?
- What is the image of U in the space of spheres ?

Restriction of $\operatorname{Del}(B)$ to $U=\bigcup_{b \in B} b$

- $U=\bigcup_{b \in B} b \cap V(b) \quad$ and $\quad \partial U \cap \partial b=V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{\mid U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, \quad b \cap V(b)$ is convex and thus contractible
- $\mathcal{C}=\{b \cap V(b), b \in B\}$ is a good cover of U
- The nerve of \mathcal{C} is a deformation retract of U
homotopy equivalent (Nerve theorem)

Restriction of $\operatorname{Del}(B)$ to $U=\bigcup_{b \in B} b$

- $U=\bigcup_{b \in B} b \cap V(b) \quad$ and $\quad \partial U \cap \partial b=V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{\mid U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, \quad b \cap V(b)$ is convex and thus contractible
- $\mathcal{C}=\{b \cap V(b), b \in B\}$ is a good cover of U
- The nerve of \mathcal{C} is a deformation retract of U
homotopy equivalent (Nerve theorem)

Restriction of $\operatorname{Del}(B)$ to $U=\bigcup_{b \in B} b$

- $U=\bigcup_{b \in B} b \cap V(b) \quad$ and $\quad \partial U \cap \partial b=V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{\mid U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, b \cap V(b)$ is convex and thus contractible

- The nerve of \mathcal{C} is a deformation retract of U
homotony equivalent (Nerve theorem)

Restriction of $\operatorname{Del}(B)$ to $U=\bigcup_{b \in B} b$

- $U=\bigcup_{b \in B} b \cap V(b) \quad$ and $\quad \partial U \cap \partial b=V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{\mid U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, \quad b \cap V(b)$ is convex and thus contractible
- $\mathcal{C}=\{b \cap V(b), b \in B\}$ is a good cover of U
- The nerve of \mathcal{C} is a deformation retract of U
homotopy equivalent (Nerve theorem)

Restriction of $\operatorname{Del}(B)$ to $U=\bigcup_{b \in B} b$

- $U=\bigcup_{b \in B} b \cap V(b) \quad$ and $\quad \partial U \cap \partial b=V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{\mid U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, \quad b \cap V(b)$ is convex and thus contractible
- $\mathcal{C}=\{b \cap V(b), b \in B\}$ is a good cover of U
- The nerve of \mathcal{C} is a deformation retract of U
homotopy equivalent (Nerve theorem)

Cech complex versus $\operatorname{Del}_{\mid U}(B)$

- Both complexes are homotopy equivalent to U
- The size of $\operatorname{Cech}(B)$ is $\Theta\left(n^{d}\right)$
- The size of $\operatorname{Del}_{\mid U}(B)$ is $\Theta\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$

Filtration of a simplicial complex

(1) A filtration of K is a sequence of subcomplexes of K

$$
\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K
$$

such that: $\quad K^{i+1}=K^{i} \cup \sigma^{i+1}$, where σ^{i+1} is a simplex of K
(2) Alternatively a filtration of K can be seen as an ordering $\sigma_{1}, \ldots \sigma_{m}$ of the simplices of K such that the set K^{i} of the first i simplices is a subcomplex of K

The ordering should be consistent with the dimension of the simplices

Filtration plays a central role in topological persistence

Filtration of a simplicial complex

(1) A filtration of K is a sequence of subcomplexes of K

$$
\emptyset=K^{0} \subset K^{1} \subset \cdots \subset K^{m}=K
$$

such that: $\quad K^{i+1}=K^{i} \cup \sigma^{i+1}$, where σ^{i+1} is a simplex of K
(2) Alternatively a filtration of K can be seen as an ordering $\sigma_{1}, \ldots \sigma_{m}$ of the simplices of K such that the set K^{i} of the first i simplices is a subcomplex of K

The ordering should be consistent with the dimension of the simplices

Filtration plays a central role in topological persistence

α-filtration of Delaunay complexes

P a finite set of points of \mathbb{R}^{d}

$$
U(\alpha)=\bigcup_{p \in P} B(p, \alpha)
$$

$$
\alpha \text {-complex }=\operatorname{Del}_{\mid U(\alpha)}(P)
$$

The filtration $\left\{\operatorname{Del}_{\mid U(\alpha)}(P), \alpha \in \mathbb{R}^{+}\right\}$is called the α-filtration of $\operatorname{Del}(P)$

Shape reconstruction using α-complexes (2d)

Alpha Controls the desired level of detail.

$\alpha=\infty$

Shape reconstruction using α-complexes (3d)

Constructing the α-filtration of $\operatorname{Del}(P)$

$\sigma \in \operatorname{Del}(P)$ is said to be Gabriel iff $\sigma \cap \sigma^{*} \neq \emptyset$

Algorithm

```
for each d-simplex \sigma\inDel}(P):\quad\operatorname{amin}(\sigma)=r(\sigma
for each k-face \sigma\in\operatorname{Del}(P)
    \alpha med
    if }\sigma\mathrm{ is Gabriel then }\mp@subsup{\alpha}{\operatorname{min}}{}(\sigma)=r(\sigma
                                    else }\mp@subsup{\alpha}{\operatorname{min}}{}(\sigma)=\mp@subsup{\alpha}{\operatorname{med}}{}(\sigma
```


Constructing the α-filtration of $\operatorname{Del}(P)$

$\sigma \in \operatorname{Del}(P)$ is said to be Gabriel iff $\sigma \cap \sigma^{*} \neq \emptyset$

Algorithm

$$
\text { for each } d \text {-simplex } \sigma \in \operatorname{Del}(P): \quad \alpha_{\text {min }}(\sigma)=r(\sigma)
$$ for $k=d-1, \ldots, 0$, for each k-face $\sigma \in \operatorname{Del}(P)$

$$
\begin{aligned}
& \alpha_{\text {med }}(\sigma)=\min _{\sigma \in \operatorname{coface}(\sigma)} \alpha_{\text {min }}(\sigma) \\
& \text { if } \sigma \text { is Gabriel then } \alpha_{\text {min }}(\sigma)=r(\sigma) \\
& \text { else } \alpha_{\text {min }}(\sigma)=\alpha_{\text {med }}(\sigma)
\end{aligned}
$$

α-filtration of weighted Delaunay complexes

$$
B=\left\{b_{i}=\left(p_{i}, r_{i}\right)\right\}_{i=1, \ldots, n} W(\alpha)=\bigcup_{i=1}^{n} B\left(p_{i}, \sqrt{r_{i}^{2}+\alpha^{2}}\right)
$$

α-complex $=\operatorname{Del}_{W(\alpha)}(B)$
Filtration: $\left\{\operatorname{Del}_{W(\alpha)}(B), \alpha \in \mathbb{R}^{+}\right\}$

