Simplicial Complexes

Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica

Examples of simplicial complexes

Algorithmic Geometry

Geometric simplices

A *k*-simplex σ is the convex hull of k + 1 points of \mathbb{R}^d that are affinely independent

$$\sigma = \operatorname{conv}(p_0, ..., p_k) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \ \lambda_i \ p_i, \ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

 $k = \dim(\operatorname{aff}(\sigma))$ is called the dimension of σ

Faces of a simplex

 $V(\sigma) =$ set of vertices of a *k*-simplex σ

 $\forall V' \subseteq V(\sigma), \operatorname{conv}(V') \text{ is a face of } \sigma$

a
$$k$$
-simplex has $\left(egin{array}{c} k+1\ i+1 \end{array}
ight)$ faces of dimension i

total nb of faces
$$=\sum_{i=0}^{d} \left(egin{array}{c} k+1 \\ i+1 \end{array}
ight) = 2^{k+1}-1$$

Algorithmic Geometry

Geometric simplicial complexes

A finite collection of simplices *K* called the faces of *K* such that

• $\forall \sigma \in K, \sigma \text{ is a simplex}$

•
$$\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$$

∀σ, τ ∈ K, either σ ∩ τ = Ø or σ ∩ τ is a common face of both

The dimension of a simplicial complex *K* is the max dimension of its simplices

A subset of *K* which is a complex is called a subcomplex of *K*

The underlying space $|K| \subset \mathbb{R}^d$ of *K* is the union of the simplices of *K*

Example 1 : Triangulation of a finite point set of \mathbb{R}^d

• A simplicial *d*-complex *K* is pure if every simplex in *K* is the face of a *d*-simplex.

A triangulation of a finite point set P ∈ ℝ^d is a pure geometric simplicial complex K s.t. vert(K) = P and |K| = conv(P).

Example 1 : Triangulation of a finite point set of \mathbb{R}^d

- A simplicial *d*-complex *K* is pure if every simplex in *K* is the face of a *d*-simplex.
- A triangulation of a finite point set P ∈ ℝ^d is a pure geometric simplicial complex K s.t. vert(K) = P and |K| = conv(P).

Example 2 : triangulation of a polygonal domain of \mathbb{R}^2

A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^2$ is a pure geometric simplicial complex *K* s.t. $vert(K) = vert(\Omega)$ and $|K| = \Omega$.

Exercises

- Show that such a triangulation exists for any Ω
- Propose an algorithm of complexity O(n log n) to compute it where n = \$\pmyvert(Ω)
- Show that some polyhedral domains of R³ do not admit a triangulation

Algorithmic Geometry

Triangulations 1

Simplicial Complexes 8 / 1

Example 2 : triangulation of a polygonal domain of \mathbb{R}^2

A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^2$ is a pure geometric simplicial complex *K* s.t. $vert(K) = vert(\Omega)$ and $|K| = \Omega$.

Exercises

- Show that such a triangulation exists for any Ω
- Propose an algorithm of complexity O(n log n) to compute it where n = \$vert(Ω)
- ► Show that some polyhedral domains of ℝ³ do not admit a triangulation

Algorithmic Geometry

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope

$$\operatorname{conv}(P) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

• *P* is in general position iff no subset of k + 2 points lie in a *k*-flat

• If *P* is in general position, all faces of conv(*P*) are simplices

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope

$$\operatorname{conv}(P) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

• *P* is in general position iff no subset of k + 2 points lie in a *k*-flat

• If *P* is in general position, all faces of conv(*P*) are simplices

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope

$$\operatorname{conv}(P) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

- *P* is in general position iff no subset of k + 2 points lie in a *k*-flat
- If *P* is in general position, all faces of conv(*P*) are simplices

Given a finite set of elements P, an abstract simplicial complex K with vertex set P is a set of subsets of P s.t.

The elements of K are called the (abstract) simplices or faces of K

The dimension of a simplex σ is $dim(\sigma) = \sharp vert(\sigma) - 1$

Nerve of a finite cover $\mathcal{U} = \{U_1, ..., U_n\}$ of *X*

An example of an abstract simplicial complex

The nerve of \mathcal{U} is the simplicial complex K(U) defined by

$$\sigma = [U_{i_0}, ..., U_{i_k}] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^k U_{i_j} \neq \emptyset$$

Algorithmic Geometry

Realization of an abstract simplicial complex

• A realization of an abstract simplicial complex *K* is a geometric simplicial complex *K_g* whose corresponding abstract simplicial complex is isomorphic to *K*, i.e.

 $\exists \text{ bijective } f: \operatorname{vert}(K) \to \operatorname{vert}(K_g) \quad \text{s.t.} \quad \sigma \in K \quad \Rightarrow \quad f(\sigma) \in K_g$

• Any abstract simplicial complex K can be realized in \mathbb{R}^n

Hint :
$$v_i \to p_i = (0, ..., 0, 1, 0, ...0) \in \mathbb{R}^n$$
 $(n = \sharp vert(K))$ $\sigma = \operatorname{conv}(p_1, ..., p_n)$ (canonical simplex) $K_g \subseteq \sigma$

• Realizations are not unique but are all topologically equivalent (homeomorphic)

Algorithmic Geometry

Topological equivalence

Two subsets *X* and *Y* of \mathbb{R}^d are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f : X \to Y$ with continuous inverse f^{-1}

No need for the condition f^{-1} to be continuous if *X* is compact and *Y* is Hausdorff (e.g. a metric space)

Topological equivalence

Two subsets *X* and *Y* of \mathbb{R}^d are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f : X \to Y$ with continuous inverse f^{-1}

No need for the condition f^{-1} to be continuous if *X* is compact and *Y* is Hausdorff (e.g. a metric space)

Are these objects homeomorphic ?

Algorithmic Geometry

Triangulations 1

Simplicial Complexes 14 / 1

Are these objects homeomorphic ?

Are these objects homeomorphic ?

Triangulated balls and spheres

A triangulated *d*-ball ((d - 1)-sphere) is a simplicial complex whose realization is homeomorphic to the unit *d*-ball ((d - 1)-sphere) of \mathbb{R}^d

Examples

- a triangulated simple polygon
- ► the boundary complex of a simplicial *d*-polytope is a triangulated (*d* - 1)-sphere
- a triangulated polyhedron without hole

Triangulated balls and spheres

A triangulated *d*-ball ((d-1)-sphere) is a simplicial complex whose realization is homeomorphic to the unit *d*-ball ((d-1)-sphere) of \mathbb{R}^d

Examples

- a triangulated simple polygon
- the boundary complex of a simplicial *d*-polytope is a triangulated (d-1)-sphere
- a triangulated polyhedron without hole

A weaker notion of topological equivalence

Let *X* and *Y* be two subsets of \mathbb{R}^d . Two maps $f_0, f_1 : X \to Y$ are said to be homotopic if there exists a continuous map $H : [0, 1] \times X \to Y$ s.t.

 $\forall x \in X, \quad H(0,x) = f_0(x) \quad \land \quad H(1,x) = f_1(x)$

Homotopy equivalence

X and *Y* are said to be homotopy equivalent if there exist two continuous maps $f : X \to Y$ and $g : Y \to X$ such that $f \circ g (g \circ f)$ is homotopic to the identity map in *Y*(*X*)

Deformation retract : $r : X \to Y \subseteq X$ is a d.r. if it is homotopic to Id *X* and *Y* then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

Algorithmic Geometry

Homotopy equivalence

X and *Y* are said to be homotopy equivalent if there exist two continuous maps $f : X \to Y$ and $g : Y \to X$ such that $f \circ g (g \circ f)$ is homotopic to the identity map in *Y*(*X*)

Deformation retract : $r : X \to Y \subseteq X$ is a d.r. if it is homotopic to Id *X* and *Y* then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

Algorithmic Geometry

Homotopy equivalence

X and *Y* are said to be homotopy equivalent if there exist two continuous maps $f : X \to Y$ and $g : Y \to X$ such that $f \circ g (g \circ f)$ is homotopic to the identity map in *Y*(*X*)

Deformation retract : $r : X \to Y \subseteq X$ is a d.r. if it is homotopic to Id *X* and *Y* then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

Algorithmic Geometry

Nerve of a finite cover $\mathcal{U} = \{U_1, ..., U_n\}$ of *X*

The nerve of \mathcal{U} is the simplicial complex K(U) defined by

$$\sigma = [U_{i_0}, ..., U_{i_k}] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^k U_{i_j} \neq \emptyset$$

Algorithmic Geometry

Nerve of a cover

Nerve Theorem (Leray)

If any intersection of the U_i is either empty or contractible, then X and K(U) have the same homotopy type

Example 1: Cech complex of a point set $P \subset \mathbb{R}^d$

Algorithmic Geometry

- Show that $\sigma \in C(P, \alpha) \iff R(\operatorname{minball}(P)) \le \alpha$
- Propose an algorithm to compute minball(P)
 (O(#P) time complexity for fixed dimension d)
- Involves the computation of radii of spheres circumscribing *d*-simplices

Example 2 : Rips complex of P

 $\sigma \subseteq P \in R(P,\alpha) \quad \Leftrightarrow \quad \forall p,q \in \sigma \ \|p-q\| \leq \alpha \quad \Leftrightarrow \quad B(p,\frac{\alpha}{2}) \cap B(q,\frac{\alpha}{2}) \neq \emptyset$

- Show that $R(P, \alpha) \subseteq C(P, \alpha) \subseteq R(P, 2\alpha)$
- Computing R(P, α) reduces to computing the graph G (vertices+edges) of R(P, α) and computing the cliques of G

Nerves of Euclidean Voronoi diagrams

Voronoi cell $V(p_i) = \{x : ||x - p_i|| \le ||x - p_j||, \forall j\}$ Voronoi diagram (\mathcal{P}) = { collection of all cells $V(p_i), p_i \in \mathcal{P}$ }

Nerves of Euclidean Voronoi diagrams

The nerve of Vor(P) is called the Delaunay complex Del(P)Del(P) cannot always be realized in \mathbb{R}^d

Algorithmic Geometry

Triangulation of a finite point set of \mathbb{R}^d

• A simplicial *k*-complex *K* is pure if every simplex in *K* is the face of a *k*-simplex.

A triangulation of a finite point set P ∈ ℝ^d is a pure geometric simplicial complex K s.t. vert(K) = P and |K| = conv(P).

Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^d

- A simplicial *k*-complex *K* is pure if every simplex in *K* is the face of a *k*-simplex.
- A triangulation of a finite point set P ∈ ℝ^d is a pure geometric simplicial complex K s.t. vert(K) = P and |K| = conv(P).

Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^d

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set P ∈ ℝ^d is a pure geometric simplicial complex K s.t. vert(K) = P and |K| = conv(P).

Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

- Let *K* be a simplicial complex with vertex set *P*. The star of *p* ∈ *P* is the set of simplices of *K* that have *p* as a vertex
- The link of p is the set of simplices τ ⊂ σ such that σ ∈ star(p, K) but τ ∉ star(p, K)
- If K is a triangulation of a point set
 - the link of any vertex of $K \setminus \partial K$ is a triangulated (k-1)-sphere
 - the link of any vertex of ∂K is a triangulated (k-1)-ball

Data structures to represent simplicial complexes

Atomic operations

- Look-up/Insertion/Deletion of a simplex
- The facets and subfaces of a simplex
- The cofaces of a simplex
- Edge contractions
- Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?

The incidence graph

The Hasse diagram

- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

Algorithmic Geometry

[B., Maria 2014]

- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

Algorithmic Geometry

[B., Maria 2014]

- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

Triangulations 1

[B., Maria 2014]

The simplex tree is a trie

- Index the vertices of *K*
- 2) associate to each simplex $\sigma \in K$, the sorted list of its vertices
- 3 store the simplices in a trie.

Performance of the simplex tree

- Explicit representation of all simplices
- #nodes = $\#\mathcal{K}$
- Memory complexity: O(1) per simplex.
- depth = dim $(\mathcal{K}) + 1$
- #children $(\sigma) \leq \#$ cofaces $(\sigma) \leq deg(last(\sigma))$

Data	$ \mathcal{P} $	D	d	r	k	T_{g}	E	$T_{\rm Rips}$	$ \mathcal{K} $	$T_{\rm tot}$	$T_{\rm tot}/ \mathcal{K} $
Bud	49,990	3	2	0.11	3	1.5	1,275,930	104.5	354,695,000	104.6	$3.0 \cdot 10^{-7}$
Bro	15,000	25	?	0.019	25	0.6	3083	36.5	116,743,000	37.1	$3.2\cdot10^{-7}$
Cy8	6,040	24	2	0.4	24	0.11	$76,\!657$	4.5	13,379,500	4.61	$3.4\cdot10^{-7}$
Kl	90,000	5	2	0.075	5	0.46	1,120,000	68.1	233,557,000	68.5	$2.9 \cdot 10^{-7}$
$\mathbf{S4}$	50,000	5	4	0.28	5	2.2	$1,\!422,\!490$	95.1	$275,\!126,\!000$	97.3	$3.6\cdot 10^{-7}$

- Show how to implement the atomic operations on a ST [B., Maria 2014]
- Show how to represent a Rips complex

Computing the min. enclosing ball mb(P) of $P \subset \mathbb{R}^d$

Properties

- mb(P) is unique
- mb(P) is determined by at most d + 1 points
- If $B = \operatorname{mb}(P \setminus \{p\})$ and $p \notin B$, then $p \in \partial \operatorname{mb}(P)$
- same results for mb (P, Q), the min ball *B* such that $P \subset \text{int}B$ and $Q \in \partial B$ (if it exists)
 - If $B = \operatorname{mb}(P \setminus \{p\}, Q)$) and $p \notin B$, then
 - $p \in \partial \operatorname{mb}(P, Q)$ (if it exists)
 - $\blacktriangleright \Leftrightarrow \mathsf{mb}(P,Q) = \mathsf{mb}(P \setminus \{p\}, Q \cup \{p\})$

Computing the min. enclosing ball $\mathsf{mb}(P)$ of $P \subset \mathbb{R}^d$

Algorithm

input P $Q := \emptyset$ // points on ∂ mb(P) mb(P) := miniball(P, Q) stop

Algorithm miniball(P, Q) // Q = points that have to be on ∂ minball

() if
$$P = \emptyset$$
 then compute directly $B := \mathsf{mb}(Q)$

🙆 else

- choose a random $p \in P$
- $B := \mathsf{miniball}(P \setminus \{p\}, Q)$
- $\textbf{if } p \notin B \text{ then } B := \min(P \setminus \{p\}, Q \cup \{p\})$

return B

Complexity analysis

Let T(n,j) = expected number of tests $p \notin B$, $p \in P$ with #P = n and j = d + 1 - #Q

T(0,j) = 0 and T(n,0) = 0since *p* is any point among *P* and $\#(P \cap \partial B) = j$,

proba (
$$p \notin B = \text{miniball}(P \setminus \{p\}, Q)) \leq \frac{j}{n}$$

$$T(n,j) \le T(n-1,j) + O(1) + \frac{j}{n} T(n-1,j-1)$$

$$\Rightarrow T(n,j) \le (j+1)! n$$

Complexity of mb(P) = O(d) T(n, d+1) = O(n) for fixed d