Simplicial Complexes

Jean-Daniel Boissonnat Geometrica, INRIA

http://www-sop.inria.fr/geometrica

Examples of simplicial complexes

Geometric simplices

A k-simplex σ is the convex hull of $k+1$ points of \mathbb{R}^{d} that are affinely independent

$$
\sigma=\operatorname{conv}\left(p_{0}, \ldots, p_{k}\right)=\left\{x \in \mathbb{R}^{d}, x=\sum_{i=0}^{k} \lambda_{i} p_{i}, \quad \lambda_{i} \in[0,1], \quad \sum_{i=0}^{k} \lambda_{i}=1\right\}
$$

$k=\operatorname{dim}(\operatorname{aff}(\sigma))$ is called the dimension of σ

1-simplex $=$ line segment
2-simplex = triangle
3-simplex = tetrahedron

Faces of a simplex

$V(\sigma)=$ set of vertices of a k-simplex σ
$\forall V^{\prime} \subseteq V(\sigma), \operatorname{conv}\left(V^{\prime}\right)$ is a face of σ
a k-simplex has $\binom{k+1}{i+1}$ faces of dimension i
total nb of faces $=\sum_{i=0}^{d}\binom{k+1}{i+1}=2^{k+1}-1$

Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

- $\forall \sigma \in K, \sigma$ is a simplex
- $\sigma \in K, \tau \subset \sigma \Rightarrow \tau \in K$
- $\forall \sigma, \tau \in K$, either $\sigma \cap \tau=\emptyset$ or $\sigma \cap \tau$ is a common face of both

Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its simplices

A subset of K which is a complex is called a subcomplex of K
The underlying space $|K| \subset \mathbb{R}^{d}$ of K is the union of the simplices of K

Example 1 : Triangulation of a finite point set of \mathbb{R}^{d}

- A simplicial d-complex K is pure if every simplex in K is the face of a d-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^{d}$ is a pure geometric
simplicial complex K s.t. $\quad \operatorname{vert}(K)=P \quad$ and $\quad|K|=\operatorname{conv}(P)$.

Example 1 : Triangulation of a finite point set of \mathbb{R}^{d}

- A simplicial d-complex K is pure if every simplex in K is the face of a d-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^{d}$ is a pure geometric simplicial complex K s.t. $\quad \operatorname{vert}(K)=P \quad$ and $\quad|K|=\operatorname{conv}(\mathrm{P})$.

Example 2 : triangulation of a polygonal domain of \mathbb{R}^{2}

A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^{2}$ is a pure geometric simplicial complex K s.t. $\quad \operatorname{vert}(K)=\operatorname{vert}(\Omega) \quad$ and $\quad|K|=\Omega$.

Example 2 : triangulation of a polygonal domain of \mathbb{R}^{2}

A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^{2}$ is a pure geometric simplicial complex K s.t. $\quad \operatorname{vert}(K)=\operatorname{vert}(\Omega) \quad$ and $\quad|K|=\Omega$.

Exercises

- Show that such a triangulation exists for any Ω
- Propose an algorithm of complexity $O(n \log n)$ to compute it where $n=\sharp$ vert (Ω)
- Show that some polyhedral domains of \mathbb{R}^{3} do not admit a triangulation

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope

$$
\begin{aligned}
\operatorname{conv}(P)= & \left\{x \in \mathbb{R}^{d}, x=\sum_{i=0}^{k} \lambda_{i} p_{i},\right. \\
& \left.\lambda_{i} \in[0,1], \quad \sum_{i=0}^{k} \lambda_{i}=1\right\}
\end{aligned}
$$

Supporting hyperplane H : $H \cap P \neq \emptyset, \quad P$ on one side of H

Faces : $\operatorname{conv}(P) \cap H, H$ supp. hyp.

- P is in general position iff no subset of $k+2$ points lie in a k-flat
- If P is in general position, all faces of conv (P) are simplices

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope
$\begin{aligned} \operatorname{conv}(P)= & \left\{x \in \mathbb{R}^{d}, x=\sum_{k=0}^{k} \lambda_{i} p_{i},\right. \\ & \left.\lambda_{i} \in[0,1], \quad \sum_{i=0}^{k} \lambda_{i}=1\right\}\end{aligned}$
Supporting hyperplane H : $H \cap P \neq \emptyset, \quad P$ on one side of H

Faces : $\operatorname{conv}(P) \cap H, H$ supp. hyp.

- P is in general position iff no subset of $k+2$ points lie in a k-flat
- If P is in general position, all faces of $\operatorname{conv}(P)$ are simplices

Example 3 : the boundary complex of the convex hull of a finite set of points in general position

Polytope

$$
\begin{aligned}
\operatorname{conv}(P)= & \left\{x \in \mathbb{R}^{d}, x=\sum_{i=0}^{k} \lambda_{i} p_{i},\right. \\
& \left.\lambda_{i} \in[0,1], \quad \sum_{i=0}^{k} \lambda_{i}=1\right\}
\end{aligned}
$$

Supporting hyperplane H : $H \cap P \neq \emptyset, \quad P$ on one side of H

Faces: $\operatorname{conv}(P) \cap H, H$ supp. hyp.

- P is in general position iff no subset of $k+2$ points lie in a k-flat
- If P is in general position, all faces of $\operatorname{conv}(P)$ are simplices

Abstract simplicial complexes

Given a finite set of elements P, an abstract simplicial complex K with vertex set P is a set of subsets of P s.t.
(1) $\forall p \in P, \quad p \in K$
(2) if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$

The elements of K are called the (abstract) simplices or faces of K
The dimension of a simplex σ is $\operatorname{dim}(\sigma)=\sharp$ vert $(\sigma)-1$

Nerve of a finite cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ of X

An example of an abstract simplicial complex

The nerve of \mathcal{U} is the simplicial complex $K(U)$ defined by

$$
\sigma=\left[U_{i_{0}}, \ldots, U_{i_{k}}\right] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^{k} U_{i_{j}} \neq \emptyset
$$

Realization of an abstract simplicial complex

- A realization of an abstract simplicial complex K is a geometric simplicial complex K_{g} whose corresponding abstract simplicial complex is isomorphic to K, i.e.

$$
\exists \text { bijective } f: \operatorname{vert}(K) \rightarrow \operatorname{vert}\left(K_{g}\right) \quad \text { s.t. } \quad \sigma \in K \Rightarrow f(\sigma) \in K_{g}
$$

- Any abstract simplicial complex K can be realized in \mathbb{R}^{n}

$$
\begin{aligned}
& \text { Hint : } v_{i} \rightarrow p_{i}=(0, \ldots, 0,1,0, \ldots 0) \in \mathbb{R}^{n} \\
& \quad \sigma=\operatorname{conv}\left(p_{1}, \ldots, p_{n}\right) \\
& \quad K_{g} \subseteq \sigma
\end{aligned}
$$

- Realizations are not unique but are all topologically equivalent (homeomorphic)

Topological equivalence

Two subsets X and Y of \mathbb{R}^{d} are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f: X \rightarrow Y$ with continuous inverse f^{-1}

Topological disks

Not a topological disk

No need for the condition f^{-1} to be continuous if X is compact and Y is Hausdorff (e.g. a metric
space)

Topological equivalence

Two subsets X and Y of \mathbb{R}^{d} are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f: X \rightarrow Y$ with continuous inverse f^{-1}

Not a topological disk

No need for the condition f^{-1} to be continuous
if X is compact and Y is Hausdorff (e.g. a metric space)

Are these objects homeomorphic?

Are these objects homeomorphic ?

Are these objects homeomorphic ?

Triangulated balls and spheres

A triangulated d-ball (($d-1)$-sphere) is a simplicial complex whose realization is homeomorphic to the unit d-ball $\left((d-1)\right.$-sphere) of \mathbb{R}^{d}

Triangulated balls and spheres

A triangulated d-ball $((d-1)$-sphere) is a simplicial complex whose realization is homeomorphic to the unit d-ball $\left((d-1)\right.$-sphere) of \mathbb{R}^{d}

Examples

- a triangulated simple polygon
- the boundary complex of a simplicial d-polytope is a triangulated ($d-1$)-sphere
- a triangulated polyhedron without hole

A weaker notion of topological equivalence

Let X and Y be two subsets of \mathbb{R}^{d}. Two maps $f_{0}, f_{1}: X \rightarrow Y$ are said to be homotopic if there exists a continuous map $H:[0,1] \times X \rightarrow Y$ s.t.

$$
\forall x \in X, \quad H(0, x)=f_{0}(x) \quad \wedge \quad H(1, x)=f_{1}(x)
$$

Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g(g \circ f)$ is homotopic to the identity map in $Y(X)$

Deformation retract : $r: X \rightarrow Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type
X is said to be contractible if it has the same homotopy type as a point

Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g(g \circ f)$ is homotopic to the identity map in $Y(X)$

Deformation retract : $r: X \rightarrow Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type
X is said to be contractible if it has the same homotopy type as a point

Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g(g \circ f)$ is homotopic to the identity map in $Y(X)$

Deformation retract : $r: X \rightarrow Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type
X is said to be contractible if it has the same homotopy type as a point

Nerve of a finite cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$ of X

The nerve of \mathcal{U} is the simplicial complex $K(U)$ defined by

$$
\sigma=\left[U_{i_{0}}, \ldots, U_{i_{k}}\right] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^{k} U_{i_{j}} \neq \emptyset
$$

Nerve of a cover

Nerve Theorem (Leray)

If any intersection of the U_{i} is either empty or contractible, then X and $K(U)$ have the same homotopy type

Example 1: Cech complex of a point set $P \subset \mathbb{R}^{d}$

$$
\sigma \subseteq P \in C(P, \alpha) \Leftrightarrow \cap_{p \in \sigma} B(p, \alpha) \neq \emptyset
$$

Exercises

- Show that $\sigma \in C(P, \alpha) \Leftrightarrow R(\operatorname{minball}(P)) \leq \alpha$
- Propose an algorithm to compute minball (P) $(O(\# P)$ time complexity for fixed dimension d)
- Involves the computation of radii of spheres circumscribing d-simplices

Example 2 : Rips complex of P

$$
\sigma \subseteq P \in R(P, \alpha) \Leftrightarrow \forall p, q \in \sigma\|p-q\| \leq \alpha \quad \Leftrightarrow \quad B\left(p, \frac{\alpha}{2}\right) \cap B\left(q, \frac{\alpha}{2}\right) \neq \emptyset
$$

Exercises

- Show that $R(P, \alpha) \subseteq C(P, \alpha) \subseteq R(P, 2 \alpha)$
- Computing $R(P, \alpha)$ reduces to computing the graph G (vertices+edges) of $R(P, \alpha)$ and computing the cliques of G

Nerves of Euclidean Voronoi diagrams

Voronoi cell

$$
V\left(p_{i}\right)=\left\{x:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\|, \forall j\right\}
$$

Voronoi diagram $(\mathcal{P})=\left\{\right.$ collection of all cells $\left.V\left(p_{i}\right), p_{i} \in \mathcal{P}\right\}$

Nerves of Euclidean Voronoi diagrams

The nerve of $\operatorname{Vor}(P)$ is called the Delaunay complex $\operatorname{Del}(P)$
$\operatorname{Del}(P)$ cannot always be realized in \mathbb{R}^{d}

Triangulation of a finite point set of \mathbb{R}^{d}

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^{d}$ is a pure geometric simplicial complex K s.t. $\quad \operatorname{vert}(K)=P \quad$ and $\quad|K|=\operatorname{conv}(\mathrm{P})$.

Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^{d} is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^{d}

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^{d}$ is a pure geometric simplicial complex K s.t. \quad vert $(K)=P \quad$ and $\quad|K|=\operatorname{conv}(\mathrm{P})$.

> Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^{d} is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^{d}

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^{d}$ is a pure geometric simplicial complex K s.t. \quad vert $(K)=P \quad$ and $\quad|K|=\operatorname{conv}(\mathrm{P})$.

Problem : show that the Delaunay triangulation of a finite point set of \mathbb{R}^{d} is a triangulation under some mild genericity assumption

Stars and links

- Let K be a simplicial complex with vertex set P. The star of $p \in P$ is the set of simplices of K that have p as a vertex
- The link of p is the set of simplices $\tau \subset \sigma$ such that $\sigma \in \operatorname{star}(p, K)$ but $\tau \notin \operatorname{star}(p, K)$

If K is a triangulation of a point set

- the link of any vertex of $K \backslash \partial K$ is a triangulated $(k-1)$-sphere
- the link of any vertex of ∂K is a triangulated $(k-1)$-ball

Data structures to represent simplicial complexes

Atomic operations

- Look-up/Insertion/Deletion of a simplex
- The facets and subfaces of a simplex
- The cofaces of a simplex
- Edge contractions
- Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?

The incidence graph

$$
\begin{array}{ll}
G(V, E) \quad & \sigma \in V \Leftrightarrow \sigma \in K \\
& (\sigma, \tau) \in E \Leftrightarrow \sigma \subset \tau
\end{array}
$$

The Hasse diagram

$$
\begin{array}{ll}
G(V, E) \quad & \sigma \in V \Leftrightarrow \sigma \in K \\
& (\sigma, \tau) \in E \Leftrightarrow \sigma \subset \tau \wedge \operatorname{dim}(\sigma)=\operatorname{dim}(\tau)-1
\end{array}
$$

The simplex tree

(1) Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order

2 Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

The simplex tree

(1) Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
(2) Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

The simplex tree

(1) Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
(2) Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

The simplex tree

(1) Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
(2) Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

The simplex tree is a trie

(1) index the vertices of K
(2) associate to each simplex $\sigma \in K$, the sorted list of its vertices
(3) store the simplices in a trie.

Performance of the simplex tree

- Explicit representation of all simplices
- \#nodes $=\# \mathcal{K}$
- Memory complexity: $O(1)$ per simplex.
- depth $=\operatorname{dim}(\mathcal{K})+1$
- \#children $(\sigma) \leq \# \operatorname{cofaces}(\sigma) \leq \operatorname{deg}(\operatorname{last}(\sigma))$

Data	$\|\mathcal{P}\|$	D	d	r	k	T_{g}	$\|E\|$	$T_{\text {Rips }}$	$\|\mathcal{K}\|$	$T_{\text {tot }}$	$T_{\text {tot }} /\|\mathcal{K}\|$
Bud	49,990	3	2	0.11	3	1.5	$1,275,930$	104.5	$354,695,000$	104.6	$3.0 \cdot 10^{-7}$
Bro	15,000	25	$?$	0.019	25	0.6	3083	36.5	$116,743,000$	37.1	$3.2 \cdot 10^{-7}$
Cy8	6,040	24	2	0.4	24	0.11	76,657	4.5	$13,379,500$	4.61	$3.4 \cdot 10^{-7}$
Kl	90,000	5	2	0.075	5	0.46	$1,120,000$	68.1	$233,557,000$	68.5	$2.9 \cdot 10^{-7}$
S4	50,000	5	4	0.28	5	2.2	$1,422,490$	95.1	$275,126,000$	97.3	$3.6 \cdot 10^{-7}$

Exercises

- Show how to implement the atomic operations on a ST
[B., Maria 2014]
- Show how to represent a Rips complex

Computing the min. enclosing ball $\mathrm{mb}(P)$ of $P \subset \mathbb{R}^{d}$

Properties

- $\mathrm{mb}(P)$ is unique
- $\mathrm{mb}(P)$ is determined by at most $d+1$ points
- If $B=\operatorname{mb}(P \backslash\{p\})$ and $p \notin B$, then $p \in \partial \mathrm{mb}(P)$
- same results for $\mathrm{mb}(P, Q)$, the min ball B such that

$$
P \subset \operatorname{int} B \quad \text { and } \quad Q \in \partial B \quad \text { (if it exists) }
$$

If $B=\operatorname{mb}(P \backslash\{p\}, Q))$ and $p \notin B$, then

- $p \in \partial \mathrm{mb}(P, Q)$ (if it exists)
- $\Leftrightarrow \mathrm{mb}(P, Q)=\mathrm{mb}(P \backslash\{p\}, Q \cup\{p\})$

Computing the min. enclosing ball $\mathrm{mb}(P)$ of $P \subset \mathbb{R}^{d}$

Algorithm

input P
$Q:=\emptyset \quad / /$ points on $\partial \mathrm{mb}(P)$
$\mathrm{mb}(\mathrm{P}):=$ miniball (P, Q)
stop
Algorithm miniball $(P, Q) \quad / / Q=$ points that have to be on ∂ minball
(1) if $P=\emptyset$ then compute directly $B:=\mathrm{mb}(Q)$
(2) else
(1) choose a random $p \in P$
(2) $B:=\operatorname{miniball}(P \backslash\{p\}, Q)$
(3) if $p \notin B$ then $B:=$ miniball $(P \backslash\{p\}, Q \cup\{p\}) \quad / / p \in \partial B$
(3) return B

Complexity analysis

Let $T(n, j)=$ expected number of tests $p \notin B, p \in P$ with $\quad \# P=n \quad$ and $\quad j=d+1-\# Q$
$T(0, j)=0$ and $T(n, 0)=0$
since p is any point among P and $\#(P \cap \partial B)=j$,
proba $(p \notin B=\operatorname{miniball}(P \backslash\{p\}, Q)) \leq \frac{j}{n}$

$$
\begin{aligned}
& T(n, j) \leq T(n-1, j)+O(1)+\frac{j}{n} T(n-1, j-1) \\
& \quad \Rightarrow \quad T(n, j) \leq(j+1)!n
\end{aligned}
$$

Complexity of $\mathrm{mb}(P)=O(d) T(n, d+1)=O(n)$ for fixed d

