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MULTITHREAD PARALLELISM 
FOR NUMERICAL SIMULATION
How to easily accelerate any F.E. or F.V. solver on multicore CPUs



Motivations
• CPU sequential speed started to stall at beginning of the century. It used to 

double every two years (corollary to Moore's Law) since the 70s but doubling 
the speed takes around 6 or 7 years now.


• There are two reasons for this slow down: the heat wall (the heat dissipated 
per square mm grows with the square of the frequency) and the memory wall 
(memory latency is stuck to 60 ns -> 16 MHz).


• Since 2004 (free lunch time is over), the only way to keep on with Moore's 
Law is to use some kind of concurrent computing: distributed parallelism (MPI 
clusters), multithreading (pthreads on multicore CPUs), FPGS, GPU, vector 
accelerators.



Parallel architectures: distributed vs. shared
• Distributed memory: a cluster of multiple machines connected with a network. 

Machines cannot access each other’s memory, they need to explicitly ask for 
data transfer with MPI (explicit memory access). This architecture can scale to 
millions of cores but usually requires to completely rewrite the software.


• Shared memory: a single machine with a CPU containing several cores. The 
machine's memory is accessible from every core (implicit memory access). A 
sequential code can be multithreaded step by step rather easily.


• Hybrid systems: DSHM (Distributed Shared Memory), a single machine 
hosting one to eight CPUs connected with a high-speed memory bus. It can 
be programmed in tha same way as a shared memory system but getting an 
optimal scaling requires to completely rewrite the code)



Fundamental laws of parallelism
• Amdahl's Law: if a code's normalized 

runtime S + P = 1, then it's theoretical 
maximum speedup is 1/S (1967 Gene 
Amdahl / IBM).


• Scaling vs. Speedup: comparing two 
versions of the same code, SC 
(Sequential Code) and PC(n) (// code run 
on n processors).


• Scaling: ratio between the runtimes of 
PC(1) and PC(n).


• Speed-up: ratio between the runtimes of 
SC and PC(n).



Fundamental laws of parallelism
• Handling the parallelism usually adds some compute and memory overhead which 

means that PC(1) may be slower than SC. Consequently, achieving a high speed-up 
is more complex than a high scaling.


• Strong scaling vs. Weak scaling:


• If a parallel code takes time T to process some data of size S using P processors, it 
should take the same time to process 2S data on 2P processors. This is called weak 
scaling, such parallelism is not meant to lower the runtime but to process bigger 
data. This is the kind of performance that is expected from distributed parallelism 
since adding more compute capacity adds more memory at the same time.


• If the same parallel code takes T/2 time to process the same amount of data S using 
2P processors, it is called strong scaling. Such scaling is more difficult to obtain and 
is usually the aim of multithreaded parallelism as the data size is bounded by a single 
machine's memory.



Parallelism strategies
• Embarrassingly parallel: use concurrent computing only when it is 

straightforward. If not, don't waste your time on parallelism but use it on other 
software assets like debugging, UI, documentation and optimization.


• Parallel by design: since all hardware are parallel in some way, all software 
should adapt to it from its inception regardless of efficiency.


• Opportunistic parallelism: evaluate the cost/benefit of the different concurrent 
programing schemes. Multithreading can increase the speed by an order of 
magnitude at a reasonable cost.



Basic memory access patterns
• One of the biggest issues with parallel algorithms are concurrent memory 

writes at the same location which requires costly synchronizations.


• Direct memory read or write: i=1..n; U(i) = V(i); Uses the full memory 
bandwidth and straightforward to parallelize as there are no concurrent writes.


• Indirect memory reads with direct memory write: i=1..n; U(i) = V(W(i));  No 
concurrent writes issues but much slower. Because of the memory 
indirection, the runtime depends on the memory latency (60 ns) not on the 
memory throughput (<1 ns).


• Indirect memory writes: i=1..n; U(V(i)) = W(i);  memory writes may occur 
simultaneously at the same location causing wrong calculation. Each loop 
iteration must perform a costly synchronization before writing to memory.



Dealing with concurrent writes accesses
• Scatter gathers: each parallel thread writes only in its own local buffer and 

after all calculations are done, a parallel gathering process sums up all local 
contributions. This scheme works fine but adds useless runtime and memory 
consumption.


• Atomic operations: a lightweight synchronization to make sure that two 
threads will never write at the same memory location at the same time. It is 
very easy to use, but only a single instruction can be atomic, not a sequence 
of instruction. The hidden synchronization operations grow as the square of 
the number of threads !


• In place memory writes: partitions the data into more pieces as there are 
threads and make sure that all running threads write to different memory 
locations at the same time.



Access patterns with mesh data structures
• Loop over elements and read face, edge or node-based data, make some 

calculation and store the result inside an element based structure: indirect 
memory reads, direct memory writes. No issue with parallelization but 
inefficient memory access pattern.


• Loop over elements, make some calculations based on elements' data and 
add the contribution to its faces, edges or nodes: these indirect memory 
writes must be dealt with.


• Stack based, recursive or arbitrary path algorithm: very challenging to 
parallelize with any scheme !



Parallel languages and libraries
• OpenMP: general purpose, efficient with simple memory access patterns but 

not optimized for algorithms working on meshes.


• Atomic operations: efficient but not general purpose and can be tricky to use 
when working with complex data structures.


• Compilers' automatic parallelization capacity: general purpose but inefficient 
except for very basic algorithms.


• Pthreads: very efficient and general purpose but requires a lot of knowledge. 
Quite invasive in the source code.


• LPlib: a library dedicated to multithreading loops working on unstructured 
meshes. Efficient and easy to use but not for general purpose.



The LPlib
• One ANSI C file to compile and link along your code and one header file to 

include.


• No need to rewrite your code, an existing serial code can be easily 
parallelized.


• Light library memory overhead, no user's data duplication.


• Threads run asynchronously, avoiding synchronization barriers.


• High concurrency thanks to dynamic scheduling.


• Based on open source and standard pthread library that is available on all 
systems (Linux, macOS, Windows)



Direct loops: partitions

• 2 threads -> 2 blocks


• Block 1: elements 1,2,3,4,5,6


• Block 2: elements 7,8,9,10,11,12



Direct loops: data structures
typedef struct{ 

double t, coordinates[2]; 

int num; 

}VerStruct; 

typedef struct{ 

VerStruct *VTab[4]; 

double t; 

}QuadStruct; 

typedef struct{ 

int nbv, nbq; 

VerStruct VTab[ nbv ]; 

QuadStruct QTab[ nbq ]; 

}MeshStruct;



Direct loops

main()  

{ 

    for(i=0; i<mesh->nbq; i++)  

        for(j=0; j<4; j++)  

            mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t;  

} 

void AddTemperature(int begin, int end, int thread, 

void *arguments) { 

    MeshStruct *mesh = (MeshStruct *)arguments;  

    for(i=begin; i<end; i++)  

        for(j=0; j<4; j++)  

            mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t; 

}  

main() {  

    LibIdx = InitParallel(2);  

    QuadType = NewType(LibIdx, mesh->nbq);  

    LaunchParallel(LibIdx, QuadType, 0, AddTemperature, mesh); 

    StopParallel(LibIdx);  

}



Indirect loops

main() { 

    for(i=0; i<mesh->nbq; i++)  

        for(j=0; j<4; j++)  

            mesh->QTab[i]->VTab[j]->t += mesh->QTab[i]->t;  

} 

void AddTemperature(int begin, int end, int thread, void *arguments) {  

    MeshStruct *mesh = (MeshStruct *)arguments;  

    for(i=begin; i<end; i++)  

        for(j=0;j<4;j++)  

            mesh->QuadTab[i]->VerTab[j]->t += mesh->QuadTab[i]->t;  

}  

main() {  

    LibIdx = InitParallel(2);  

    QuadType = NewType(LibIdx, mesh->nbq);  

    VerType = NewType(LibIdx, mesh->nbv);  

    BeginDependency(LibIdx, QuadType, VerType);  

    for(i=0; i<mesh->nbq; i++)  

        for(j=0; j<4; j++)  

            AddDependency(LibIdx, i, mesh->QTab[i]->VTab[j]->num); 

    EndDependency(LibIdx);  

    LaunchParallel(LibIdx, QuadType, VerType, AddTemperature, mesh);  

    StopParallel(LibIdx);  

}



Indirect loops: partitioning

• 2 threads -> 4 blocks !


• Block 1: elements 1,2,3


• Block 2: elements 4,5,6


• Block 3: elements 7,8,9


• Block 4: elements 10,11,12

• 1 / the two threads will process


• blocks 1 and 3 concurrently


• 2 / then they will process blocks 2 and 4



Sample runtimes and scaling

Code Mesh size Sequential Parallel with 
1 thread

Parallel with 
64 threads Speed-up Scaling

basic test 100M 11.80 0.25 47

indirect write 925M 718.72 19.77 36

build edges 925M 74.66 88.43 2.86 26 31

setup 
neighbours 925M 138.53 8.91 15

Wolf 33M 815.67 18.33 44

P1toPk 10M 10.97 0.32 34



Hilbert renumbering: pattern



Hilbert Renumbering: a close look



Hilbert Renumbering: visual partitioning



Hilbert acceleration
• Hilbert or any SFC renumbering reduces 

cache misses and greatly increases 
memory throughput in indirect memory 
reads loops.


• It also enables an implicit mesh partitioning 
that is suitable for in-place parallelism to 
perfectly handle indirect memory writes 
loops.


• A simple mesh reordering addresses both 
memory indirection challenges.


• It even speeds up sequential algorithms 
that work with meshes and were not meant 
to use any kind of SFC renumbering.

Random Hilbert Speed-up

libHOM 
Compute 25M 

P2 tets
11.64 9.96 1.17

Vizir 
open 100M 

hexes
8.32 5.85 1.42

Optet 
optimize 25M 

tets
182.64 91.29 2.00

Build face 
neighbours of 

25M tets
36.00 11.68 3.08



Software availability
• Open source with BSD3 license: you can do whatever you want with it.


• Available on GitHub: https://github.com/LoicMarechal/LPlib


• Documentation and examples are provided: it is easier to start from one of the 
examples and adapt it to your needs.


• Requires only the pthread library: link with -lpthread on Linux, pthread.dll on 
Windows and nothing to add on macOS ;-)


• Posix Threads has been the de facto standard for more than 30 years and is 
here to stay.


• Hardware, system and compiler agnostic: no vendor lock-in.

https://github.com/LoicMarechal/LPlib


Perspective
• Slide nº6 sums it all !


• Set a speed increase objective beforehand: x10 or x1000 imply completely 
different paths.


• The sequential algorithm you are developing may be facing competitors that 
use a 384 multicore CPU (2xAMD Epyc 9965), 7.6 million cores (Fujitsu 
Fugaku) or 600 million GPU compute units (HPE-Cray El Capitan).


• Concurrent programing imposes a constant burden on the development, 
maintenance and evolution process.


• But it's so much fun !


