
Loïc Maréchal / DLP february 2025

MULTITHREAD PARALLELISM
FOR NUMERICAL SIMULATION
How to easily accelerate any F.E. or F.V. solver on multicore CPUs

Motivations
• CPU sequential speed started to stall at beginning of the century. It used to

double every two years (corollary to Moore's Law) since the 70s but doubling
the speed takes around 6 or 7 years now.

• There are two reasons for this slow down: the heat wall (the heat dissipated
per square mm grows with the square of the frequency) and the memory wall
(memory latency is stuck to 60 ns -> 16 MHz).

• Since 2004 (free lunch time is over), the only way to keep on with Moore's
Law is to use some kind of concurrent computing: distributed parallelism (MPI
clusters), multithreading (pthreads on multicore CPUs), FPGS, GPU, vector
accelerators.

Parallel architectures: distributed vs. shared
• Distributed memory: a cluster of multiple machines connected with a network.

Machines cannot access each other’s memory, they need to explicitly ask for
data transfer with MPI (explicit memory access). This architecture can scale to
millions of cores but usually requires to completely rewrite the software.

• Shared memory: a single machine with a CPU containing several cores. The
machine's memory is accessible from every core (implicit memory access). A
sequential code can be multithreaded step by step rather easily.

• Hybrid systems: DSHM (Distributed Shared Memory), a single machine
hosting one to eight CPUs connected with a high-speed memory bus. It can
be programmed in tha same way as a shared memory system but getting an
optimal scaling requires to completely rewrite the code)

Fundamental laws of parallelism
• Amdahl's Law: if a code's normalized

runtime S + P = 1, then it's theoretical
maximum speedup is 1/S (1967 Gene
Amdahl / IBM).

• Scaling vs. Speedup: comparing two
versions of the same code, SC
(Sequential Code) and PC(n) (// code run
on n processors).

• Scaling: ratio between the runtimes of
PC(1) and PC(n).

• Speed-up: ratio between the runtimes of
SC and PC(n).

Fundamental laws of parallelism
• Handling the parallelism usually adds some compute and memory overhead which

means that PC(1) may be slower than SC. Consequently, achieving a high speed-up
is more complex than a high scaling.

• Strong scaling vs. Weak scaling:

• If a parallel code takes time T to process some data of size S using P processors, it
should take the same time to process 2S data on 2P processors. This is called weak
scaling, such parallelism is not meant to lower the runtime but to process bigger
data. This is the kind of performance that is expected from distributed parallelism
since adding more compute capacity adds more memory at the same time.

• If the same parallel code takes T/2 time to process the same amount of data S using
2P processors, it is called strong scaling. Such scaling is more difficult to obtain and
is usually the aim of multithreaded parallelism as the data size is bounded by a single
machine's memory.

Parallelism strategies
• Embarrassingly parallel: use concurrent computing only when it is

straightforward. If not, don't waste your time on parallelism but use it on other
software assets like debugging, UI, documentation and optimization.

• Parallel by design: since all hardware are parallel in some way, all software
should adapt to it from its inception regardless of efficiency.

• Opportunistic parallelism: evaluate the cost/benefit of the different concurrent
programing schemes. Multithreading can increase the speed by an order of
magnitude at a reasonable cost.

Basic memory access patterns
• One of the biggest issues with parallel algorithms are concurrent memory

writes at the same location which requires costly synchronizations.

• Direct memory read or write: i=1..n; U(i) = V(i); Uses the full memory
bandwidth and straightforward to parallelize as there are no concurrent writes.

• Indirect memory reads with direct memory write: i=1..n; U(i) = V(W(i)); No
concurrent writes issues but much slower. Because of the memory
indirection, the runtime depends on the memory latency (60 ns) not on the
memory throughput (<1 ns).

• Indirect memory writes: i=1..n; U(V(i)) = W(i); memory writes may occur
simultaneously at the same location causing wrong calculation. Each loop
iteration must perform a costly synchronization before writing to memory.

Dealing with concurrent writes accesses
• Scatter gathers: each parallel thread writes only in its own local buffer and

after all calculations are done, a parallel gathering process sums up all local
contributions. This scheme works fine but adds useless runtime and memory
consumption.

• Atomic operations: a lightweight synchronization to make sure that two
threads will never write at the same memory location at the same time. It is
very easy to use, but only a single instruction can be atomic, not a sequence
of instruction. The hidden synchronization operations grow as the square of
the number of threads !

• In place memory writes: partitions the data into more pieces as there are
threads and make sure that all running threads write to different memory
locations at the same time.

Access patterns with mesh data structures
• Loop over elements and read face, edge or node-based data, make some

calculation and store the result inside an element based structure: indirect
memory reads, direct memory writes. No issue with parallelization but
inefficient memory access pattern.

• Loop over elements, make some calculations based on elements' data and
add the contribution to its faces, edges or nodes: these indirect memory
writes must be dealt with.

• Stack based, recursive or arbitrary path algorithm: very challenging to
parallelize with any scheme !

Parallel languages and libraries
• OpenMP: general purpose, efficient with simple memory access patterns but

not optimized for algorithms working on meshes.

• Atomic operations: efficient but not general purpose and can be tricky to use
when working with complex data structures.

• Compilers' automatic parallelization capacity: general purpose but inefficient
except for very basic algorithms.

• Pthreads: very efficient and general purpose but requires a lot of knowledge.
Quite invasive in the source code.

• LPlib: a library dedicated to multithreading loops working on unstructured
meshes. Efficient and easy to use but not for general purpose.

The LPlib
• One ANSI C file to compile and link along your code and one header file to

include.

• No need to rewrite your code, an existing serial code can be easily
parallelized.

• Light library memory overhead, no user's data duplication.

• Threads run asynchronously, avoiding synchronization barriers.

• High concurrency thanks to dynamic scheduling.

• Based on open source and standard pthread library that is available on all
systems (Linux, macOS, Windows)

Direct loops: partitions

• 2 threads -> 2 blocks

• Block 1: elements 1,2,3,4,5,6

• Block 2: elements 7,8,9,10,11,12

Direct loops: data structures
typedef struct{

double t, coordinates[2];

int num;

}VerStruct;

typedef struct{

VerStruct *VTab[4];

double t;

}QuadStruct;

typedef struct{

int nbv, nbq;

VerStruct VTab[nbv];

QuadStruct QTab[nbq];

}MeshStruct;

Direct loops

main()

{

 for(i=0; i<mesh->nbq; i++)

 for(j=0; j<4; j++)

 mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t;

}

void AddTemperature(int begin, int end, int thread,

void *arguments) {

 MeshStruct *mesh = (MeshStruct *)arguments;

 for(i=begin; i<end; i++)

 for(j=0; j<4; j++)

 mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t;

}

main() {

 LibIdx = InitParallel(2);

 QuadType = NewType(LibIdx, mesh->nbq);

 LaunchParallel(LibIdx, QuadType, 0, AddTemperature, mesh);

 StopParallel(LibIdx);

}

Indirect loops

main() {

 for(i=0; i<mesh->nbq; i++)

 for(j=0; j<4; j++)

 mesh->QTab[i]->VTab[j]->t += mesh->QTab[i]->t;

}

void AddTemperature(int begin, int end, int thread, void *arguments) {

 MeshStruct *mesh = (MeshStruct *)arguments;

 for(i=begin; i<end; i++)

 for(j=0;j<4;j++)

 mesh->QuadTab[i]->VerTab[j]->t += mesh->QuadTab[i]->t;

}

main() {

 LibIdx = InitParallel(2);

 QuadType = NewType(LibIdx, mesh->nbq);

 VerType = NewType(LibIdx, mesh->nbv);

 BeginDependency(LibIdx, QuadType, VerType);

 for(i=0; i<mesh->nbq; i++)

 for(j=0; j<4; j++)

 AddDependency(LibIdx, i, mesh->QTab[i]->VTab[j]->num);

 EndDependency(LibIdx);

 LaunchParallel(LibIdx, QuadType, VerType, AddTemperature, mesh);

 StopParallel(LibIdx);

}

Indirect loops: partitioning

• 2 threads -> 4 blocks !

• Block 1: elements 1,2,3

• Block 2: elements 4,5,6

• Block 3: elements 7,8,9

• Block 4: elements 10,11,12

• 1 / the two threads will process

• blocks 1 and 3 concurrently

• 2 / then they will process blocks 2 and 4

Sample runtimes and scaling

Code Mesh size Sequential Parallel with
1 thread

Parallel with
64 threads Speed-up Scaling

basic test 100M 11.80 0.25 47

indirect write 925M 718.72 19.77 36

build edges 925M 74.66 88.43 2.86 26 31

setup
neighbours 925M 138.53 8.91 15

Wolf 33M 815.67 18.33 44

P1toPk 10M 10.97 0.32 34

Hilbert renumbering: pattern

Hilbert Renumbering: a close look

Hilbert Renumbering: visual partitioning

Hilbert acceleration
• Hilbert or any SFC renumbering reduces

cache misses and greatly increases
memory throughput in indirect memory
reads loops.

• It also enables an implicit mesh partitioning
that is suitable for in-place parallelism to
perfectly handle indirect memory writes
loops.

• A simple mesh reordering addresses both
memory indirection challenges.

• It even speeds up sequential algorithms
that work with meshes and were not meant
to use any kind of SFC renumbering.

Random Hilbert Speed-up

libHOM
Compute 25M

P2 tets
11.64 9.96 1.17

Vizir
open 100M

hexes
8.32 5.85 1.42

Optet
optimize 25M

tets
182.64 91.29 2.00

Build face
neighbours of

25M tets
36.00 11.68 3.08

Software availability
• Open source with BSD3 license: you can do whatever you want with it.

• Available on GitHub: https://github.com/LoicMarechal/LPlib

• Documentation and examples are provided: it is easier to start from one of the
examples and adapt it to your needs.

• Requires only the pthread library: link with -lpthread on Linux, pthread.dll on
Windows and nothing to add on macOS ;-)

• Posix Threads has been the de facto standard for more than 30 years and is
here to stay.

• Hardware, system and compiler agnostic: no vendor lock-in.

https://github.com/LoicMarechal/LPlib

Perspective
• Slide nº6 sums it all !

• Set a speed increase objective beforehand: x10 or x1000 imply completely
different paths.

• The sequential algorithm you are developing may be facing competitors that
use a 384 multicore CPU (2xAMD Epyc 9965), 7.6 million cores (Fujitsu
Fugaku) or 600 million GPU compute units (HPE-Cray El Capitan).

• Concurrent programing imposes a constant burden on the development,
maintenance and evolution process.

• But it's so much fun !

