
Easy and efficient multithreading
of serial codes that deal with meshes

Part 1: from the user's point of view
Part 2: multiple chips machines
Part 3: Hilbert renumbering

Loïc Maréchal, INRIA, jan 2015, MSU

THE LP3 LIBRARY

LP3 Part 1: motivations

Loïc Maréchal, INRIA, jan 2015, MSU

Shared memory parallelism:
+little knowledge needed
+step by step parallelization of serial code
+short development time
-limited speed up (an order of magnitude)
-limited data size

Distribute memory parallelism:
+strong scaling capabilities (3 orders of magnitude)
+memory capacity grows with compute capacity
-strong knowledge is needed if you want to do it all by yourself
-it takes to completely parallelize the code before you can run it on a cluster
-scaling is not guarantied

It is a choice between a low risk, low reward approach
and a high risk, high reward one.

LP3 Part 1: from the user's point of view

LP3 = Loop Parallelism Library Version 3

Enables loop parallelism in C programs

One ANSI C file to compile and link along your code and one header file to include

No need to rewrite your code, an existing serial code can be easily parallelized

Light library memory overhead, no user's data duplication

Works on shared memory computers: since CPU frequency stalled in recent years
and distributed memory parallelism requires a lot of time and knowledge, we think
that multi-threading is the best way to go.

Loïc Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: simple direct access loop

Loïc Maréchal, INRIA, jan 2015, MSU

1

2

3 6

5

4 7

8

9

10

11

12

2 threads -> 2 blocks

Block 1: elements 1,2,3,4,5,6

Block 2: elements 7,8,9,10,11,12

LP3 Part 1: simple direct access loop

Loïc Maréchal, INRIA, jan 2015, MSU

typedef struct
{
 double t, coordinates[2];
 int num;
}VerStruct;

typedef struct
{
 VerStruct *VTab[4];
 double t;
}QuadStruct;

typedef struct
{
 int nbv, nbq;
 VerStruct VTab[nbv];
 QuadStruct QTab[nbq];
}MeshStruct;

Parallel loop

Loïc Maréchal, INRIA, jan 2015, MSU

main()
{
 for(i=0; i<mesh->nbq; i++)
 for(j=0; j<4; j++)
 mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t;
}

void AddTemperature(int begin, int end, int thread, void *arguments)
{
 MeshStruct *mesh = (MeshStruct *)arguments;

 for(i=begin; i<end; i++)
 for(j=0; j<4; j++)
 mesh->QTab[i]->t += mesh->QTab[i]->VTab[j]->t;
}

main()
{
 LibIdx = InitParallel(2);
 QuadType = NewType(LibIdx, mesh->nbq);
 LaunchParallel(LibIdx, QuadType, 0, AddTemperature, mesh);
 StopParallel(LibIdx);
}

Serial loop

LP3 Part 1: indirect access loop

Loïc Maréchal, INRIA, jan 2015, MSU

main()
{
 for(i=0; i<mesh->nbq; i++)
 for(j=0; j<4; j++)
 mesh->QTab[i]->VTab[j]->t += mesh->QTab[i]->t;
}

void AddTemperature(int begin, int end, int thread, void *arguments)
{
 MeshStruct *mesh = (MeshStruct *)arguments;

 for(i=begin; i<end; i++)
 for(j=0;j<4;j++)
 mesh->QuadTab[i]->VerTab[j]->t += mesh->QuadTab[i]->t;
}

main()
{
 LibIdx = InitParallel(2);
 QuadType = NewType(LibIdx, mesh->nbq);
 VerType = NewType(LibIdx, mesh->nbv);

 BeginDependency(LibIdx, QuadType, VerType);
 for(i=0; i<mesh->nbq; i++)
 for(j=0; j<4; j++)
 AddDependency(LibIdx, i, mesh->QTab[i]->VTab[j]->num);
 EndDependency(LibIdx);

 LaunchParallel(LibIdx, QuadType, VerType, AddTemperature, mesh);

 StopParallel(LibIdx);
}

LP3 Part 1: indirect access loop

Loïc Maréchal, INRIA, jan 2015, MSU

1

2

3 6

5

4 7

8

9

10

11

12

2 threads -> 4 blocks !
Block 1: elements 1,2,3
Block 2: elements 4,5,6
Block 3: elements 7,8,9
Block 4: elements 10,11,12

Sample mesh Compatibility matrix between blocks

1 2 3 4

1

2

3
4

1

1

0 0

0

0

00

1

1

1

1

1 1

11

1 / the two threads will process
 blocks 1 and 3 concurrently
2 / then they will process blocks 2 and 4

LP3 Part 1: some results

Loïc Maréchal, INRIA, jan 2015, MSU

cpu amdahl speedup

2 1.5 1.5

4 2 1.9

8 2.4 2.2

cpu amdahl speedup

2 1.9 1.8

4 3.7 3.1

8 7 5.7

16 12.3 10.3

32 19.7 17

HEXOTIC hex mesher:
Parallel section represents 67% of total serial run time.
Only node smoothing has been parallelized which
required two days of work.

WOLF cfd solver:
Parallel section represents 98% of total serial run time.
A dozen of loops have been parallelized in three days.

Amdahl's law:
p = parallel section of a program
s = serial section
p + s = 1
speedup with n processors = 1/(s + p / n)
maximum theoretical speedup with an
infinite number of processors = 1 / s

10 Frédéric Alauzet and Adrien Loseille

small test case with a light amount of work points out the over-cost of the scheduler
for pthreads handling which is a weakness of the proposed approach. More precisely,
we recall that launching and stopping a thread cost approximatively 37 000 CPU
cycles. As the parallelization is at the loop level, obtaining correct speed-ups requires
that the cost of handling each thread must remain negligible compared to the amount
of work they are processing. But, this is not the case for the M6 test case. Indeed,
if we analyze the time step loop, on 8 processors, this loop deals with 977 vertices
each requiring 100 CPU cycles. Consequently, the management of the thread costs
the equivalent of 38% of the total cost of the operations.

The speed-up of a parallel code is one criteria, but it is also of utmost importance
to specify the real speed of a code. As regards flow solvers, it is di⌅cult to compare
their speed as the total time of resolution depends on several parameters such as
the RK scheme (for explicit solver), the mesh quality that conditions the time step,
the chosen CFL, etc. Therefore, for the same computation, high variations could
appear. To specify the relative speed of the solver, we choose to provide the CPU
time per vertex per iteration:

speed =
CPU time

of vertices�# of iterations
.

For the test cases on the Mac Xserve, the serial speed of the solver varies between
3.4 and 3.87 microseconds (µs) while a speed between 0.47 µs (for the spike) and
0.76 µs (for the M6) is obtained on 8 processors. To give an idea, a speed of 0.5 µs
is equivalent to performing one iteration in half a second for a one million vertices
mesh. In conclusion, the faster a routine, the harder it is to parallelize it with a
satisfactory speed-up.

Cases M6 IRT City Falcon SSBJ Spike

Speed-up

1 Proc 1.000 1.000 1.000 1.000 1.000 1.000
2 Proc 1.814 1.959 1.956 1.961 1.969 1.975
4 Proc 3.265 3.748 3.866 3.840 3.750 3.880
8 Proc 5.059 6.765 7.231 6.861 7.031 7.223

Table 5. Speed-ups of the flow solver as compared to the serial version for all the
test cases from 2 to 8 processors.

The flow solver has also been run on a 128 processors SGI Altix computer at the
Barcelona Supercomputing Center to make a preliminary analysis on using a large
number of processors. Such a machine uses a ccNUMA architecture su�ering from
high memory latency. In this context, minimizing main memory accesses through
Hilbert SFC based renumbering, is all the more important. The considered test case
is a large anisotropic adapted mesh containing almost 400 million tetrahedra. The
speed-ups from 1 to 100 processors are given in Table 6. These first results are very
encouraging and we are thus confident for the obtention of good speed-ups up to
128 processors in a near future.

of proc 1 2 4 8 16 32 64 100
Speed-up 1.000 1.954 3.235 6.078 9.815 17.258 26.649 36.539

Table 6. Speed-ups of the flow solver on a 128 processors SGI Altix computer.

4 Frédéric Alauzet and Adrien Loseille

Meshes associated with these test cases are shown in Figure 1 and their characteris-
tics are summarized in Table 1. Note that the SSBJ and the spike test cases involve
very high size scale factor and highly anisotropic adapted meshes. For instance, for
the SSBJ, the minimal mesh size on the aircraft is 2mm and has to be compared
with a domain size of 2.5km.

All the runs have been done on a 2.8 GHz dual-chip Intel Core 2 Quad (eight-
processor) Mac Xserve with 32 GB of RAM.

Case Mesh kind # of vertices # of tetrahedra # of triangles

M6 uniform 7 815 37 922 5 848
IRT uniform 74 507 400 033 32 286
City adapted isotropic 677 278 3 974 570 67 408
Falcon adapted anisotropic 2 025 231 11 860 697 164 872
SSBJ adapted anisotropic 4 249 176 25 076 962 334 348
Spike adapted anisotropic 8 069 621 48 045 800 182 286

Table 1. Characteristics of all test cases.

M6 SSBJ IRT

City Falcon Spike
Fig. 1. View of the considered test cases meshes.

4 The Hilbert space filling curve

The notion of space filling curves (SFCs) has emerged with the development of the
concept of the Cantor set [9]. Explicit descriptions of such curves were proposed
by Peano [28] and Hilbert [15]. SFCs are, in fact, fractal objects [22]. A complete

LP3 Part 1 : performance

Loïc Maréchal, INRIA, jan 2015, MSU

WOLF CFD solver "spike" test case: 50 iterations, 9 millions vertices:
-running on an xserve with 2 xeon 5570 quad-core at 2.93 ghz
-serial code: 2203s
-parallel code on 8 cores: 289s on wall clock, 2312s cumulative time
-speedup is 7.6
-total parallelism overhead is less than 5%
-memory overhead is negligible: 300 KB

The xserve crossbar architecture is OK, but ccNUMA machines are more challenging:
-altix 4700 with 128 itanium2 at 1.6 ghz
 serial code = 9354s
 // 8 cores = 1539s (speedup = 6)
 //100 cores = 256s (speedup = 36)

Several reasons to these poor speedups:
-Amdahl's law: serial part is 2% in this test case, so theoretical speedup is 50
-High memory latency: 332ns cache miss on Altix vs 112ns on the xserve
-LP3 library overhead

LP3 Part 2: Multiple chips machines

Loïc Maréchal, INRIA, jan 2015, MSU

C1

M1

C1

M1

C2

M2

C3

M3

C4

M4

C1 C2

M1 M2

1 CPU:
latency = 100 ns

throughput 60 GB/s

2 CPUs:
latency = (100 + 200) / 2 = 150 ns
throughput (60 + 30) / 2 = 45 GB/s

4 CPUs:
latency = (100 + 200 + 200 + 300) / 4 = 200 ns
throughput (60 + 10 + 10 +10) / 4 = 22.5 GB/s

LP3 Part 3: Hilbert renumbering

Loïc Maréchal, INRIA, jan 2015, MSU

2 3

1 4

6 7 10 11

5 8 9 12

4 3 14 13

1 2 15 16

Level 1

Level 2

LP3 Part3: Hilbert renumbering

Loïc Maréchal, INRIA, jan 2015, MSU

LP3 Part 3: Hilbert renumbering

Loïc Maréchal, INRIA, jan 2015, MSU

marechal

LP3: Hilbert renumbering

Loïc Maréchal, INRIA, jan 2015, MSU

Test case: a 10 millions tetrahedral mesh is optimized by performing four optimizations
steps that smooth nodes and swap edges to improve the quality of elements.
Both smoothing and swapping are multithreaded.

Renumbering time: 2.4 seconds on a quad core laptop.

You can either use an external command line or an internal LP3's procedure.

Core i7 original Hilbert speed up

serial 63.1 41.3 1.5

4 cores 36.9 12.7 2.9

speed up 1.7 3.3

Xeon E5 original Hilbert speed up

serial 53.1 41.3 1.2

10 cores 31.8 4.8 6.6

speed up 1.7 8.6

 Conclusion: multithreading is worth considering

Loïc Maréchal, INRIA, jan 2015, MSU

Qualities:
-it has a very low memory and time overhead
-threads run asynchronously, avoiding synchronization barriers.
-it is much more nimble since, if a thread gets stuck for any reason,
 the others will keep on working without waiting for it.
-memory duplication is avoided with the help of SFC and dependencies tables
-can speed up a code by an order of magnitude with a limited effort

Limitations:
-scaling is harder with ccNUMA multi-chips machines
-lowering Amdahl's factor under 1% is difficult while only parallelizing loops
-64+ cores machines are more expensive than their cluster counterparts

Future work:
-hybrid distributed and shared memory parallelism is probably the best way to go
-parallel stacks based processing because loops are not always the best iterators

