THE LP3 LIBRARY

Easy and efficient multithreading
of serial codes that deal with meshes

Part 1: from the user's point of view
Part 2: multiple chips machines
Part 3: Hilbert renumbering

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: motivations

Shared memory parallelism:

+little knowledge needed

+step by step parallelization of serial code
+short development time

-limited speed up (an order of magnitude)
-limited data size

Distribute memory parallelism:

+strong scaling capabilities (3 orders of magnitude)

+memory capacity grows with compute capacity

-strong knowledge is needed if you want to do it all by yourself

-it takes to completely parallelize the code before you can run it on a cluster
-scaling is not guarantied

It is a choice between a low risk, low reward approach
and a high risk, high reward one.

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: from the user's point of view

LP3 = Loop Parallelism Library Version 3

Works on shared memory computers: since CPU frequency stalled in recent years
and distributed memory parallelism requires a lot of time and knowledge, we think

that multi-threading is the best way to go.

Enables loop parallelism in C programs

One ANSI C file to compile and link along your code and one header file to include

No need to rewrite your code, an existing serial code can be easily parallelized

Light library memory overhead, no user's data duplication

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: simple direct access loop

9 12
2 threads -> 2 blocks
8 11 Block 1: elements 1,2,3,4,5,6
Block 2: elements 7,8,9,10,11,12
7 10

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: simple direct access loop

typedef struct

{
double t, coordinates[2];
int num;

VerStruct;

typedef struct
{
VerStruct *VTabl[4];
double t;
}QuadStruct;

typedef struct
{
int nbv, nbq;
VerStruct VTab[nbv |;
QuadStruct QTab[nbq];
MeshStruct;

Loic Maréchal, INRIA, jan 2015, MSU

Serial loop Parallel loop

void AddTemperature(int begin, int end, int thread, void *arguments)

, {
Ena'”() MeshStruct *mesh = (MeshStruct *)arguments;
for(i=Q; i<rpesh->an; i++) for(i=begin; i<end; i++)
for(j=0; j<4; j++) _ _ for(j=0; j<4; j++)
mesh->QTabli]->t += mesh->QTab[i]->VTabl[j]->t; mesh->QTabli]->t += mesh->QTab[i]->VTablj]->t;
; }
main()
{

Libldx = InitParallel(2);

QuadType = NewType(Libldx, mesh->nbq);
LaunchParallel(Libldx, QuadType, 0, AddTemperature, mesh);
StopParallel(Libldx);

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: indirect access loop

void AddTemperature(int begin, int end, int thread, void *arguments)

. {
Enam() MeshStruct *mesh = (MeshStruct *)arguments;
for(i=0; i<mesh->nbg; i++) for(i=begin; i<end; i++)
for(j=0; j<4; j++) _ _ for(j=0;j<4;j++)
mesh->QTabli]->VTab[j]->t += mesh->QTab[i]->t; mesh->QuadTab]i]->VerTab[j]->t += mesh->QuadTab[i]->t;
} }
main()
{

Libldx = InitParallel(2);
QuadType = NewType(Libldx, mesh->nbq);
VerType = NewType(Libldx, mesh->nbv);

BeginDependency(Libldx, QuadType, VerType);
for(i=0; ikmesh->nbq; i++)
for(j=0; j<4; j++)
AddDependency(Libldx, i, mesh->QTab[i]->VTabl[j]->num);
EndDependency(Libldx);

LaunchParallel(Libldx, QuadType, VerType, AddTemperature, mesh);

StopParallel(Libldx);

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: indirect access loop

Sample mesh Compatibility matrix between blocks
3 6 9 12 1.2 3 4
1/1(1]10]0
2 5 8 11 2|1|r[rjo

2 threads -> 4 blocks !

Block 1: elements 1,2,3 1 / the two threads will process

blocks 1 and 3 concurrently
Block 2: elements 4,5,6 2 / then they will process blocks 2 and 4

Block 3: elements 7,8,9
Block 4: elements 10,11,12

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 1: some results

WOLF cfd solver:
Parallel section represents 98% of total serial run time.
A dozen of loops have been parallelized in three days.

HEXOTIC hex mesher:

Parallel section represents 67% of total serial run time.
Only node smoothing has been parallelized which
required two days of work.

cpu amdabhl speedup cpu amdahl speedup

2 |.5 |.5 2 1.9 |.8

4 2 K 4 3.7 3.1

8 2.4 2.2 8 7 5.7

|6 12.3 10.3

Amdahl's law:
p = parallel section of a program 32 19.7 |7
s = serial section
p+s=1

speedup with n processors = 1/(s + p/n)
maximum theoretical speedup with an
infinite number of processors =1/s

Loic Maréchal, INRIA, jan 2015, MSU

City

|Case || Mesh kind |# of Vertices|# of tetrahedra|# of triangles|
Meé uniform 7815 37922 5848
IRT uniform 74507 400033 32286
City adapted isotropic 677278 3974570 67408
Falcon||adapted anisotropic 2025231 11860697 164 872
SSBJ |ladapted anisotropic 4249176 25076 962 334 348
Spike |[ladapted anisotropic 8069 621 48045 800 182286

Cases M6| IRT| City| Falcon| SSBJ| Spike

1 Proc| 1.000{ 1.000[1.000{ 1.000] 1.000{ 1.000

Speed-up 2 Proc| 1.814] 1.959| 1.956| 1.961| 1.969| 1.975
4 Proc| 3.265 3.748| 3.866] 3.840| 3.750| 3.880

8 Proc| 5.059] 6.765 7.231] 6.861| 7.031| 7.223

LP3 Part 1 : performance

WOLF CFD solver "spike" test case: 50 iterations, 9 millions vertices:
-running on an xserve with 2 xeon 5570 quad-core at 2.93 ghz
-serial code: 2203s

-parallel code on 8 cores: 289s on wall clock, 2312s cumulative time
-speedup is 7.6

-total parallelism overhead is less than 5%

-memory overhead is negligible: 300 KB

The xserve crossbar architecture is OK, but ccNUMA machines are more challenging:
-altix 4700 with 128 itanium2 at 1.6 ghz
serial code = 9354s
/l 8 cores = 1539s (speedup = 6)
//100 cores = 256s (speedup = 36)

Several reasons to these poor speedups:

-Amdahl's law: serial part is 2% in this test case, so theoretical speedup is 50
-High memory latency: 332ns cache miss on Altix vs 112ns on the xserve
-LP3 library overhead

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 2: Multiple chips machines

C1 C1 Cc2
| M1 | | M1 | | M2 |
1 CPU: 2 CPUs:
latency = 100 ns latency = (100 + 200) /2 = 150 ns
throughput 60 GB/s throughput (60 + 30) / 2 = 45 GB/s

4 CPUs:
latency = (100 + 200 + 200 + 300) / 4 = 200 ns
throughput (60 + 10 + 10 +10) / 4 = 22.5 GB/s

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 3: Hilbert renumbering

Level 1

2 3
I 4
Level 2
6 |7 |10]1l
51819112
4 13 |14]13
| | 2 |I15]16

HEEe

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part3: Hilbert renumbering

i}
ceas 4045

B320

12

€
53
PG
239
5428
201

3738

REGE 4377
4243

al

Eqn™=0.022% -0{02y +1z -58=0

6639 4334

3667

il o]

o

v

N o4

\\
W
W 173 175
\\
W
WY
33 Wy)
\\
Wy
\
\
\ g7
4 ?

/

82
|||I|I\ 325
324
] 276

17

rd

275 270

B
323 o
273
] 327 274
326
7
2
Fob

Egn: ~thag2x -0.02) +1z -sgL;fr”’J’/’/f/,//’/’/’

Loic Maréchal, INRIA, jan 2015, MSU

LP3 Part 3: Hilbert renumbering

o
S
AN

SRR
13 NN
S RRRKNARNY
WYYy,

Ay

N0

, vy AYAVAVY

) vy
SN 7 AAY

i

oA

\ VAV A)
A

aval

A

Loic Maréchal, INRIA, jan 2015, MSU

marechal

LP3: Hilbert renumbering

Test case: a 10 millions tetrahedral mesh is optimized by performing four optimizations

steps that smooth nodes and swap edges to improve the quality of elements.
Both smoothing and swapping are multithreaded.

Renumbering time: 2.4 seconds on a quad core laptop.

You can either use an external command line or an internal LP3's procedure.

Corei7 | original | Hilbert | speed up
serial 63.1 41.3 1.5
4 cores 36.9 12.7 2.9
speed up 1.7 3.3

Xeon E5 | original | Hilbert | speed up
serial 53.1 41.3 |.2

10 cores 31.8 4.8 6.6

speed up 1.7 8.6

Loic Maréchal, INRIA, jan 2015, MSU

Conclusion: multithreading is worth considering

Qualities:

-it has a very low memory and time overhead

-threads run asynchronously, avoiding synchronization barriers.

-it is much more nimble since, if a thread gets stuck for any reason,

the others will keep on working without waiting for it.

-memory duplication is avoided with the help of SFC and dependencies tables
-can speed up a code by an order of magnitude with a limited effort

Limitations:

-scaling is harder with ccNUMA multi-chips machines

-lowering Amdahl's factor under 1% is difficult while only parallelizing loops
-64+ cores machines are more expensive than their cluster counterparts

Future work:
-hybrid distributed and shared memory parallelism is probably the best way to go
-parallel stacks based processing because loops are not always the best iterators

Loic Maréchal, INRIA, jan 2015, MSU

