
A NEW APPROACH TO OCTREE-BASEDHEXAHEDRAL MESHING
Löıc MARÉCHAL

SIMULOG & INRIA, Gamma Project,

Domaine de Voluceau, Rocquencourt,

BP 105, 78153 Le Chesnay Cedex, France.

Email: loic.marechal@inria.fr

ABSTRACT
A number of algorithms have been proposed to fulfill the strong demand for fully automated all-hexahedral meshers.
Since none of them solved thoroughly the problem, people divided it into simpler ones. They enumerated the major
kinds of configurations encountered in industry and tried to develop a set of applications, each of them focusing
on a single problem. This paper presents a new approach to the octree-based algorithm and aims to add a new
solution to the engineer “hex-toolkit”. This method has been introduced by R. Schneiders [15] and is, likewise, done
in three steps: (i) An octree structure is built around a discrete geometry. (ii) A conformal, all-hexahedral mesh
is generated by inserting the so-called conforming patterns (which are completely new ones). (iii) The boundary
of the geometry is recovered by a smoothing technique. This rough method is fast and automated for any kind of
geometries. Furthermore, mesh adaptation for finite element computation is easily implemented, thanks to the octree
hierarchic structure.

Keywords: Volume meshing, Unstructured Hexahedra, Octree, Conforming patterns, Mesh adapta-

tion. 1. INTRODUCTION
The demand for a fully automated all-hexahedral
mesher has been strong for the past decade.
Various methods have been proposed in those
times. Since none of them addressed the prob-
lem thoroughly, people focused on a subset of the
user’s requirements, relaxing one or more con-
straints. Thus, methods like unconformal hex,
semi-automated or non general-purpose schemes
evolved into products.

If the perfect hex-mesher is a chimera, it could be
possible to develop a set of different algorithms
covering a wide range of problems which could do
the trick.

Recently, T.Blaker gave a survey of problems en-

countered and solutions used nowadays in hex
meshing [2]. While the purpose of this paper is
not to make a complete state of the art in hex-
meshing, i have to recall briefly the different kinds
of methods currently available:

• block decomposition, which gives good qual-
ity meshes but is not fully automated and not
of general purpose,

• advancing-front which could produce good
meshes on a wide variety of geometries, but
is still in the state of research,

• tetrahedra decomposition into hexahedra is
the most reliable method, but produces
poorly shaped elements,



• grid/octree methods are automated, robust
and generic but have quality related problems
near the boundary,

Right now, the whole range of available products
cannot cover all the needs. Consequently there
exists some demand for new methods completing
the user’s hex-toolkit. For instance, some people
still require a so-called meshing-black-box. An al-
gorithm robust enough to mesh any kind of ge-
ometries without human intervention, even though
they loose fine control on the element orientation,
position and quality. Of course they would rather
prefer a perfect quality mesh, but for those people,
robustness and ease of use is more important than
the shape of hexahedra.

I started developing a new method to fill this lack
of robust automated general-purpose, but rough
quality hex-mesh generator. The goal is to pro-
duce a better quality mesher than a simple tet to
hex splitting algorithm (which is the safest way to
get hexes), even though it may not match block
decomposition methods (in the case they are ap-
plicable !).2. A CRUDE BUT EFFICIENT METHOD2.1 Why an otree ?
I choose the octree method for several reasons:

• it is a robust method already implemented in
many domain decomposition algorithms,

• it is applicable to most kind of geometries,

• it seems natural to use an octree as basis
structure for hex-meshing since the octants in
the so constructed tree are perfect cubes !

Although it has the following drawbacks:

• octants are isotropic elements, thus, very
anisotropic geometries will lead to a great
number of hexahedra,

• since there are hanging nodes in the octree
(Fig. 1), it produces unconformal hexahedra.2.2 Basi sheme of the method

I take as input a triangulation of the boundary of
the domain to be meshed, then I create a volumic
hexahedral mesh and a surface quadrilateral mesh
on the fly. Here is a quick overview of this three
steps algorithm. Each step will be described in
the further sections.

Remarque 1 (Topology). The surface mesh is used
as a discrete support to describe the geometry.
Its topology (vertices, edges, and, obviously, tri-
angles) won’t be preserved in the final hex-mesh
because the vertices of the quadrilateral surface
of the volume mesh will only be projected on the
surface triangles.

Octree building: At first, an octree is con-
structed around this surface mesh so that it repre-
sents the details with the right size. At this stage it
is possible to intersect the octree with a size map
describing the required size of elements in every
location of space (see [5] for adaptation process
using quadtree/octree). This octree is made of
hexahedra only but is an unconformal mesh (Fig.
1).

Octree conforming: Then, some hexahedra
are inserted inside the unconformal elements of
the octree in order to avoid hanging nodes and
obtain a conformal hexahedral mesh. To each con-
figuration of unconformal element of the octree
corresponds a set of hexahedra called conforming-
pattern which connects every hanging nodes.

At this stage the result is an hex-mesh enclosing
the bounding box of the object to be meshed,
called a background mesh. Its elements are of
varying sizes in order to match the details of the
geometry or the required precision for a FEM com-
putation. It is now time to recover the real bound-
ary of the object. This is done by inserting the tri-
angles of the boundary into the hexahedra of the
volumic mesh. From this set of intersected hexes, I
derive a new surface close enough to the geometry
and project those hexahedra’ faces onto it.

Boundary recovery: A final stage inserts a
buffer layer under the surface of the hex mesh in
order to improve the quality of the elements which
have been distorted to match the geometry. A sim-
ple vertex smoothing is applied to smooth the size
variations generated by the octree (where an ele-
ment can have half, twice or the same size of its
neighbours).



Figure 1. Left: the geometry to be meshed enclosed
in its bounding box. Right: the resulting 2D quadtree
(octree in 3D). You may notice that the two biggest
quadrilaterals have hanging nodes on their right edge.
Consequently, they are unconformal elements. Here
I used a simple criterion imposing that each quadri-
lateral cell contains no more than one vertex of the
boundary.

Figure 2. This figure shows the simplified conforming
process in 2D. Mixed-element patterns are inserted
(left), then quads are split in four and triangles in three
quads in order to obtain a quad only conformal mesh
(right).

Figure 3. Recovery of boundary process: Find a
boundary piece in the volumic mesh close enough to
the geometry to be meshed. Then project those selected
faces on the real surface and remove useless elements.

Figure 4. A boundary layer is inserted (left) so that
each element has no more than one edge (one face in
3d) stuck on the surface. Consequently, it is possible to
“straighten” the distorted elements near the boundary.



3. OCTREE BUILDING
The first step is the construction of a bounding
box of the object. This box will be the octree’s
root. This octree is built in order to respect a set
of criteria. The purpose of this paper is not to
explain the complete octree theory, (see [13], [14]
and [6]). Figure 1 shows the process in a simple
2D case.

The main characteristics of the octree are the cri-
teria which are used to decide if a cell should be
subdivided or not. If an octant is considered too
large by at least one of the following criteria, it is
be subdivided:

c1. an octant cannot be intersected by two tri-
angles which are disjoint and form an angle
greater than a given threshold,

c2. an octant cannot be intersected by two re-
quired edges (for geometrical or computa-
tional purpose) which are disjoint and form
an angle greater than a given threshold,

c3. an unconformal octant (with hanging nodes
on its faces and edges) cannot have more than
15 unconformal brothers (elements sharing a
face or an edge with a given octant),

c4. an octant cannot have a size greater than the
one specified by the size-map (evaluated at
the center of the octant or the average size
evaluated at its eight vertices).

The third criterion is very important because it
smoothes the element size across the mesh. It
prevents useless variations that disturb the mesh
regularity and quality (Fig. 5). Furthermore, it
reduces the number of unconformal elements in
the octree and, consequently, the number of hex-
ahedra added in order to “conformize” it.4. OCTREE CONFORMING4.1 Overview
On this second stage, I ensure the mesh confor-
mity. An octree structure has a good property:
it is composed of perfect quality hexes only. Un-
fortunately, there are unconformal elements with
hanging nodes in the middle of their edges or faces
(Fig. 6, drawing 1). This problem is solved by in-
serting a set of hexahedra in each unconformal el-
ements so that they connect every hanging nodes.
The difficulty is to define those set of elements (the
so-called conforming patterns).

Figure 5. An unconformal element is surrounded by
four smaller one (left). After refining this cell, the
mesh looks more regular. Without this criterion, the
number of elements inserted to conformize the cell
would have overcome the number of elements added
by the refinement.

Let me explain the problem: a hexahedron can
have hanging nodes or not on its twelve edges and
its six faces. Thus, there are some thousands of
combinations and defining explicitly each of them
would be too painful. So I choose to subdivide
this problem into a four steps scheme in order to
reduce its complexity.4.2 Step 1: Reduing the omplexity
Insert a star-shaped pattern inside each unconfor-
mal elements (Fig. 6) in order to reduce the num-
ber of combinations. An original element is re-
placed by seven hexes. The center hex of the star-
shaped pattern cannot have hanging nodes and the
six others, as they share only one face with their
“father”, can only have hanging nodes in the mid-
dle of this inherited face or its four edges. There
are now 17 combinations of patterns required to
mesh those new elements, but some of them are
uneasy to find.

321Figure 6. After the insertion of the star-shaped pat-
tern, there remain six hexes with a hanging node on
only one face.

4.3 Step 2: Still reduing the omplexity
The second step’s goal is to reduce again the num-
ber of combinations. Let’s focus on a property
of the mesh obtained after the first step: if two



same-sized elements of the octree share the same
unconformal face (there are hanging nodes in the
middle of the quadrilateral and/or its edges, see
the thick face in fig. 7), a star-shaped pattern has
been inserted in both elements.

Consequently, the element with the thick face in
the fig. 7, drawing 1, and the other one in fig. 7,
drawing 2, share the same face and are symmet-
rical since none of their other faces or edges can
have hanging nodes.

Those two hexes will be merged by removing their
common face, giving a decahedron (Fig. 7, draw-
ing 5), which will be meshed with six conformal
hexahedra (this operation is called a two to six
split, Fig. 8).

543

21

Figure 7. Two neighbour by elements have two neigh-
bours and symmetric sons. Those sons are merged to
give a decahedron.

Now each of those six hexes share only one edge
with the two unconformal elements they come
from (the thick face in fig. 8 is the same as the
one shared by both elements in fig. 7, drawing
1 and 2). Thus, the elements generated by those
two steps are either conformal or have only one
unconformal edge with a hanging node (the thick
edges in fig. 8). So only one conforming-pattern
is needed in order to connect one edge’s hanging-
node to the other hex’s nodes (Fig. 9, pattern 2).4.4 Step 3: Transitional onformal but hybridmesh
The third step’s goal is to create a conforming
mesh by inserting patterns inside unconformal el-
ements. But now the number of combinations has

Figure 8. The 2 to 6 pattern, which splits two neigh-
bour hexes into six.

21Figure 9. At the end of step 2, there remain only two
configurations of unconformal elements: those with a
node in the middle of only one face and those with a
node in the middle of only one edge . 1 : the pattern
for an element with a hanging node in the middle of
one face. 2 : the pattern for an element with a hanging
node in the middle of one edge.

been greatly reduced by the two previous steps.
Indeed, there remain only two of them ! At this
stage, an unconformal hex can have only one un-
conformal face or one unconformal edge. Now I
only need two simple sets of patterns (Fig. 9 pat-
terns 1 and 2) to conformize the mesh. As you may
notice on the figure, the elements of the patterns
are not hexahedra only. There are also pentahe-
dra. After the third step the mesh is conformal
but hybrid.4.5 Step 4: Final onformal all-hexes mesh
The last step will subdivide every elements into
hexahedra so that the mesh remains conformal but
contains hexahedra only. The hexes will be split
into height smaller hexes and the pentahedra will
be split into six hexes as shown in the fig. 10.

After those four conforming steps, I obtain a back-



Figure 10. An hex is split into height hexes and a
penta into six hexes.

ground mesh composed of conformal hexahedra
only. This mesh respects the sizes required by
the geometry and the computation but it doesn’t
represent this geometry. I will now enforce the
boundary inside this volumic mesh.

Remarque 2. Those patterns allow to mesh any
configuration and solve the problem of Schneiders’
first set of patterns proposed in [15]. R. Schnei-
ders solved also the problem in [16] with a new
approach using “directional refinement”.5. BOUNDARY ENFORCING5.1 A three steps proess
First, the list of hexahedra intersected by the
boundary triangles is established. Those hexes are
called boundary hexes and some of their faces will
be selected as the final boundary. Note that those
boundary hexes must define a closed sub-domain,
otherwise, the result will be a surface quadrilateral
mesh without hexahedra.

The second step is the subdomain colouring. An
hex close to the bounding box is chosen as a start-
ing seed. Then a “flood-fill” algorithm colours the
neighbouring elements all over the mesh without
crossing boundary-hexes. The elements coloured
in this way constitute the first sub-domain (the
“exterior” that will be removed). The other un-
coloured elements define the inside of the object.

At third, the faces shared by the coloured and
the uncoloured hexes are set as the new bound-
ary. This surface is called the staircase boundary,
and will be mapped on the real boundary with
a projection. Each vertex of the boundary being
normal projected on the nearest triangle. After-
ward, a simple smoothing is done in order to im-
prove the quality of the quadrilaterals distorted by
the above projection.

In case of multiple subdomains, those steps are
recursively repeated.5.2 Projetion algorithm
Each hexahedra intersected by some boundary tri-
angles is processed the following way:

If the hex contains a corner point, choose the clos-
est vertex among those of the hex which belongs
to the staircase boundary. Then simply move the
selected hex’s vertex to the corner position.

If the hex is intersected by some ridge-edges, the
intersections between the ridges and the hex’s
faces are computed and the closest hex’s vertices
from those intersections are projected on the ridge
as shown in Figure 11.5.3 Distortion of boundary elements
The above process dramatically modifies the shape
of the elements near the boundary. A hexahedron
can degenerate into pentahedron if two of its faces
are mapped on a plane or into a tetrahedron in
case of three faces (Fig. 12).

At the end of this step, I obtain a volumic hexa-
hedral mesh with several subdomains defined by
quadrilateral boundaries. I am now able to enu-
merate the subdomains and to keep those of in-
terest (interior or exterior for example). Figure
3 shows the process of boundary and subdomains
recovery.

Figure 11. Left: two ridges intersect this hex. The
intersection between the ridges and the quadrilaterals
are represented as small empty circles. The closest
hex’s vertices to be projected are represented as filled
circles. Right: the distorted shape of the hex after pro-
jection of the selected vertices on the ridges.

6. QUALITY IMPROVEMENT
The last step inserts a buffer-layer along the
boundary elements in order to improve the quality



of the hexahedra which have several vertices stuck
on the surface and consequently cannot be freely
smoothed.6.1 Bu�er layer insertion
The insertion is done in three steps:

1. duplicate each surface vertices, duplicate in-
herit the position and attributes of their mod-
els,

2. connect the new vertices to the boundary us-
ing flat hexahedra and remove the boundary
attribute of former boundary nodes,

3. smooth the former boundary nodes so that
they get away from the duplicated nodes (Fig.
4).

This process is similar to an advancing front
scheme, thus, it is not a 100 % reliable algorithm.
In case of very sharp angles or very thin and com-
plex geometry, the layer may be as distorted as the
elements near the boundary. In such cases, invalid
elements will remain in the final mesh. Hitherto,
I could not fix this major problem. A fall back so-
lution could be the modification of the geometry
so that it is meshable without invalid elements.

Figure 12. Two cases of degenerated hexahedra near
the boundary. Left: elements have two (upper left)
or three (lower left) faces projected on a plane. After
the insertion of a buffer layer, the smoothing generally
improves their quality.

6.2 Smoothing
The smoothing scheme is a very simple one as
meshes generated with octree methods are “rigid-
ified” by the inherent grid structure. In addition,
hexes are very stiff elements. Moving on node
twists each quadrilateral faces of a hexahedron so
that their four vertices are no more coplanar.

The smoothing has two goals:

• reinflate some boundary elements flattened by
the bending process,

• smooth the size gap between small transition
elements (inside the star-shaped patterns, for
example) and their bigger neighbours.

For that purpose, I need a quality criterion and a
smoothing strategy.

Quality criterion In a first implementation I
tried a complete criterion (indeed, the product of a
set of criteria representing each a single property).
Edges and diagonals sizes, faces shape, twist and
area, and volume were taken into account. Such a
criterion was too strict and the slightest displace-
ment of one vertex lowered at least one of the sub-
criteria. Consequently, it was very difficult to find
a new position for a vertex so that it improves the
quality of all surrounding elements.

So, I came back to a basic but efficient criterion
which compute only the height mix-products in
order to guarantee the validity of the hex. A sim-
ple ratio between the min and max volumes gives
a fair idea of the element’s shape.

Vi = (
−−−−→
Ni0Ni1 ×

−−−−→
Ni0Ni2) ·

−−−−→
Ni0Ni3

Qe =
min(Vi)

max(Vi)

Where Ni0 is node i of the hexahedron and Nij are
its three neighbours connected through an edge.

Smoothing scheme

proc smooth mesh
for v := 1 to nbvertices do

push(stack) := vertices(v);
od
while stack 6= ∅ do



v := pop(stack);
Qmin := compute min quality(v);
smooth vertex(v);
Qmin opt := compute min quality(v);
if Qmin opt < α × Qmin

cancel displacement(v);
else

push ball(v, stack);
fi

od
end

proc compute min quality(v)
begin

Qmin := 1;
for i := 1 to degree(v) do

if quality(hexahedra(ball(v, i)) ≤ Qmin

Qmin := quality(hexahedra(ball(v, i));
fi

od
end

This program pops a vertex from the stack and
try to change its position so that it improves the
quality of the worst hexahedra of its ball (the set
of elements which share the same vertex). In case
of success, the vertices of the ball’s elements are
pushed on the stack. Thus, the process will try to
smooth again the other vertices of the ball as long
as it finds better positions.

In the regions where hexes are perfect, the quality
criterion will reject any displacement and no ver-
tices will be pushed on the stack. Otherwise, near
the boundary where bad elements stand, most of
displacements will be accepted. Consequently, the
stack will be filled up almost as fast as elements
are popped and the vertices will be smoothed as
many times as needed.

This stack-based smoothing shares the works out
among elements according to their quality. Bad
ones are allocated more smoothing-work than the
better ones. The quality improvement factor α al-
lows for a fine tuning of the convergence of the
algorithm and thus the time spent. α must be
included in the interval [1,∞]. A small value
means that any smoothing that does little im-
provement will be accepted. A bigger value means
that only dramatic improvement will be accepted,
thus pushing few vertices on the stack that will
quickly be emptied.

7. SO WHAT ?
I am currently writing an implementation of this
method in a piece of software called hexotic. In
this section I give the first impression on the be-
haviour of this implementation. Please note that
it is not yet fully operational (there is some work
to be done in buffer-layer insertion and ridge re-
covery as well as speed and memory use).7.1 Advantages of this method
Robustness: Octree method breaks up a global
problem into several simple ones located inside oc-
tants. There are a finite number of different con-
figurations encountered in an octant, thus, it is
possible to enumerate all of them and to associate
a solution with each of them. If an octree-based
scheme is able to solve any configurations in an oc-
tant, it can solve any global problem that can be
broken-up into octree. Although the implementa-
tion of the algorithm is still under development, I
ran a script meshing 110 different geometries with-
out any failure.

The program is also very tolerant about the qual-
ity of surface input mesh. It can mesh an un-
conformal, bad quality elements mesh with holes
and gaps due to bad C.A.D. definition. In addi-
tion, setting the minimal size of element in the
final mesh allows for some rough C.A.D. cleaning
on the fly. This greatly reduces the time spent in
“C.A.D. preparation”.

Speed: The whole meshing speed (including
I/O) range from 1,000 hexes/second to 10,000 h/s,
the average value being 4,000 h/s. Indeed, the
speed is not affected by the number of elements to
generate (as the algorithm is almost linear) but de-
pends on the compactness of the geometry. Since
octree generates a bounding box enclosing the ob-
ject, the more compact it is, the more useful ele-
ments will be kept in the final mesh. This increases
the ratio Speed = Nb useful elements

Total time
.

A general purpose method: Hexotic suc-
ceeded in meshing various kind of geometry rang-
ing from turbines and planes to cylinder-head and
human body.

Full automation and ease of use: The im-
plementation consists of a simple command line
program. It only requires one argument: the file-
name of the geometry to be meshed ! Optionaly,



the user may specify a size-map or min/max size
of the hexes.7.2 Drawbaks
Boundary orientation sensitive: The octree
grid is aligned with the three axis x, y, z, thus, the
elements cannot respect the orientation of the ge-
ometry. Likewise, two identical geometries only
differing by a rotation or a translation won’t pro-
duce the same volumic meshes.

Impossibility to respect a given boundary
topology: The final quadrilateral surface only
respects an analytical model derived from the dis-
crete surface given as input. Thus, no vertices
or edges from the triangulated will remain in the
hexahedral mesh.

Isotropic only: Octants are perfect cubes. In
order to mesh a thin geometry like a wing, the oc-
tree must be refined until the element size reaches
the thickness of the wing. The mesh obtained
will have much more elements than an anisotropic
scheme which would have mesh the wing with a
few hexahedra stretched along the main directions
of the geometry.

Bad quality elements near the boundary:
At present, there is still invalid elements (some of
their mix products are negative) near the bound-
ary. Bending and smoothing process have to be
improved to remove most of them. But there will
certainly remain invalid elements near very sharp
angles and ridges unaligned with the x, y, z axis.8. CONCLUSION
Hexotic does not intend to be the ultimate hex-
ahedral mesher. The main goal is to provide the
user with a new tool completing his hex-toolkit.
Engineers could use it for investigation purpose in
order to produce a first mesh of the studied model
in to time. Depending whether the hex-mesh is
suitable for computation or not, they could decide
to keep it or to create another one with a better
quality, but a more time consuming mesher.9. EXAMPLES

Name Nb of hexes Speed Figure

rod 6,151 4,823 17

falcon 10,992 2,510 18

turbine1 13,314 7,236

geci 48,355 6,023 14

cow 49,779 6,800 15

helico 70,780 1,730

af gating 121,762 3,059

cylinder head 132,745 4,271 16

commanche 304,329 3,443

engine40 727,905 3,920Table 1. A seletion of examples where some are de-pited in the following �gures. The meshing speeds(inluding any omputation and input/output) are in-diated in hexahedra per seond.



Figure 13. External view of the hex-mesh. You may see that quadrilaterals are distorted near the ridges. Insertionof suitable patterns is needed as post-proessing in order to avoid degenerated elements (not implemented at thistime).

Figure 14. Cut through a mechanical part. Hexes are shrunk around their center for better visualization. Since the
buffer-layer is not yet inplemented, there are some degenerated elements near the boundary.



Figure 15. Cow-head, cut through the hexes to show the transition elements. Hexes are bigger in the inner head and
are getting smaller in the horn and the muffle

Figure 16. Cylinder-head, resulting quadrilateral mesh. Notice the compactness of the refined regions. This mesh
looks more like a structured-block mesh than an octree.



Figure 17. The input triangulated surface of a falcon. If no user-specified sizemap is given, the mesher tries to mesh
this geometry with as few elements as possible (trying to mesh each detail with the largest possible hexes).

Figure 18. And the resulting quadrilateral mesh. Notice that the size of quadrilaterals does not matches the size of
triangles, but derives from the thickness of local details.



REFERENCES
[1] C.G. ARMSTRONG & M.A. PRICE, Mat and

associated technologies for structured meshing,
ECCOMAS, 2000.

[2] T. BLACKER, Meeting the challenge for auto-
mated conformal hexahedral meshing, IMR 9,
pp. 11-19, 2000.

[3] N.A. CALVO & S.R. IDELSOHN, All-
hexahedral element meshing: Generation
of the dual mesh by recurrent subdivision,
Comp. Meth. Appl. Mech. Engng, Vol. 182, pp.
371-378, 2000.

[4] N.T. FOLWELL & S.A. MITCHELL, Reliable
whisker weaving via curve contraction, IMR 7,
pp. 365-378, 1998.

[5] P.J. FREY & L. MARÉCHAL, Fast adaptive
quadtree mesh generation, IMR 7, pp. 211-224,
1998.

[6] P.J. FREY & P.L. GEORGE, Mesh Generation,
Hermes Science publishing, chapter 5, 1999.

[7] M. LAI, S. BENZLEY & D. WHITE, Auto-
mated hexahedral mesh generation by general-
ized multiple source to multiple target sweeping,
Int. J. Numer. Meth. Engng, Vol. 49, pp. 261-
275, 2000.

[8] M. MÜLLER-HANNEMANN, Hexahedral
mesh generation by successive dual cycle
elimination, IMR 7, pp. 379-393, 1998.

[9] S.J. OWEN & S. SAIGAL, H-Morph an indirect
approach to advancing front hex meshing, Int.
J. Numer. Meth. Engng, Vol. 49, pp. 289-312,
2000.

[10] A. SHEFFER, A. RAPPOPORT & M.
BERCOVIER, Hexahedral mesh generation us-
ing the embedded Voronöı graph, IMR 7, pp.
348-364, 1998.

[11] A. SHEFFER & M. BERCOVIER, Hexa-
hedral meshing of non-linear volumes using
Voronöı faces and edges, Int. J. Numer. Meth.
Engng, Vol. 49, pp. 329-351, 2000.

[12] J. SHEPHERD, S. BENZLEY & S.
MITCHELL, Interval assignment for vol-
umes with holes, Int. J. Numer. Meth. Engng,
Vol. 49, pp. 277-288, 2000.

[13] M.A.YERRY & M.S.SHEPHARD, A modified-
quadtree approach to finite element mesh gen-
eration, IEEE Computer Graphics Appl., Vol. 3,
pp. 39-46, 1983.

[14] M.S. SHEPHARD & M.K. GEORGES, Auto-
matic three-dimensional mesh generation by the
finite octree technique, SCOREC Report n

◦ 1,
1991.

[15] R. SCHNEIDERS & R. BÜNTEN, Automatic
generation of hexahedral finite element meshes,
Computer Aided Geometric Design, Vol. 12, pp.
693-707, 1995.

[16] R. SCHNEIDERS, Octree-based hexahedral
mesh generation, Int. J. of Comp. Geom. & Ap-
plications, Vol. 10, n

◦ 4, pp. 383-398, 2000.

[17] R. TAGHAVI, Automatic, parallel and fault
tolerant mesh generation from CAD, Engng.
Comp, Vol. 12, pp. 178-185, 1996.

[18] J.C. VASSBERG, Multi-block mesh extrusion
driven by a globally elliptic system, Int. J. Nu-
mer. Meth. Engng, Vol. 49, pp. 3-15, 2000.

[19] D.R. WHITE & T.J. TAUTGES, Automatic
scheme selection fot toolkit hex meshing, Int.
J. Numer. Meth. Engng, Vol. 49, pp. 127-144,
2000.


