Parallel and dynamic mesh adaptation of tetrahedral-based meshes for propagating fronts and interfaces: application to premixed combustion and primary atomization.

> Vincent Moureau. Pierre Bénard, Ghislain Lartigue CORIA, CNRS, University of Rouen, France

Renaud Mercier – SAFRAN TECH, France

Algiane Froehly – LMB/INRIA Bordeaux

In memoriam C. Dobrzynski – LMB/INRIA Bordeaux

Séminaire INRIA

05/06/2018 - Saclay

Aeronautical engines

Engine design is driven by two major constraints

Fuel efficiency

- Economic constraints
 - → reduced fuel consumption
 - ➡ reduced CO₂ emissions
- Global efficiency of the engine

Pollutant emissions

- International regulations
 - ⇒ CAEP regulations
- Main pollutants

Smoke in the trail of a B-52

- UHC
- Smoke
- Carbon Monoxide (CO)
- Nitrogen Oxides (NOx)

Prediction of performances and pollutant emissions in aeronautical engines

- A highly challenging task
 - Unsteady, multi-scale and multi-physics flow
 - Complex geometry

- Unsteady approaches are mandatory to predict these phenomena
- Objective: develop LES models for pollutant predictions

E S 2

Driving mechanism: Moore's law

The power of super-computers almost doubles every 18 months

Projected Performance Development

Driving mechanism: Moore's law (revisited) Erich Strohmaier, ISC 2017, Frankfurt **PERFORMANCE DEVELOPMENT** 500 June 2013 749 PFlop/s 1 Eflop/s 93 PFlop/s 100 Pflop/s 10 Pflop/s SUM 1 Pflop/s 100 Tflop/s 432 TFlop/s N=1 10 Tflop/s 1 Tflop/s 1.17 TElop/ N=500 100 Gflop/s 59.7 GFlop/s 10 Gflop/s June 2008 1 Gflop/s 400 MFlop/s 100 Mflop/s 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

The end of Moore's law has a strong impact on the new architectures.

Top 500, june 2017

▶ 6 different CPU/GPU types in the top 10...

	510	Manufacturer	Computer	Country	Conse	Resar	Power (MW)
1	National Supercomputing Center in Wuxi	NRCPC	Sunway TaihuLight NRCPC Sunway SW26010, 260C 1.45GHz	China	10,649,600	93.0	15.4
2	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
3	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC50, Xeon E5 12C 2.6GHz, Aries, NVIDIA Tesia P100	Switzerland	361,760	19.6	2.27
4	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
5	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
6	Lawrence Berkeley National Laboratory	Cray	Cori Cray XC40, Intel Xeons Phi 7250 68C 1.4 GHz, Aries	USA	622,336	14.0	3.94
7	JCAHPC Joint Center for Advanced HPC	Fujitsu	Oakforest-PACS PRIMERGY CX1640 M1, Intel Xeons Phi 7250 68C 1.4 GHz, OmniPath	Japan	556,104	13.6	2.72
8	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
9	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
10	Los Alamos NL / Sandia NL	Cray	Trinity Cray XC40, Xeon E5 16C 2.3GHz, Aries	USA	301,0564	8.10	4.23

And HPLinpack is not a good benchmark for our CFD applications

Outline

- Context
 - LES of aeronautical engines
 - HPC evolution
- The YALES2 flow solver
- LES of the PRECCINSTA burner with finite-rate chemistry
- Towards dynamic mesh adaptation of fronts and interfaces
 - Strategy
 - Application to propagating flames
 - Application to primary atomization
- Conclusion and prospects

Flow solver

YALES2

Vort. mag.

300

- Low-Mach number Navier-Stokes equations with projection method [1,2]
- Unstructured meshes with adaptive grid refinement
- 400k+ lines of object-oriented fortran2008
- MPI and hybrid OpenMP/MPI
- 4th-order central finite-volume method [3]
- Combustion modeling
 - Tabulated or complex chemistry, NOx prediction model...
- Two-phase flows
 - Spray modeling (Lagrangian particles)
 - Primary atomization (Accurate Conservative Levelset)
- Suited for massively parallel computing (>32 000 procs)

The YALES2 network

- A collaborative network supported by the French combustion community
- More than 200 trained researchers and engineers

In-core and parallel performances

- Two-level domain decomposition [1]
 - Mesh is split into cell groups at the core level
 - Enables to fit in L2 cache memory
 - Used for the preconditioning of the linear solvers

In-house linear solvers

[1] Moureau et. al., CR Mecanique, 2011

Towards lean-premixed low-NOx burners

LES of the PRECCINSTA burner with finite-rate chemistry

The PRECCINSTA burner (1/2)

- Experimental lean-premixed CH4/air combustor with swirl
- Designed by SAFRAN Helicopter Engines (Turbomeca)
- Built to test LES capability for prediction of combustion instabilities
- Different equivalence ratios corresponding to stable or unstable regimes
- Non-intrusive measurements perfomed at DLR (Germany)

PRECCINSTA experimental burner

Equivalence ratio is decreasing slightly from 0.8 to 0.5

The PRECCINSTA burner (2/2)

A remaining open question...

- No wall temperature/heat flux are available in the experiment
- Results from adiabatic simulations versus experiment

- V flame (heat loss) versus M flame (adiabatic) ?
- Difficult to model with tabulated chemistry => finite-rate chemistry

HPC for finite-rate chemistry

$$\frac{\partial \rho Y_k}{\partial t} + \nabla \cdot \rho Y_k \mathbf{u} = \nabla \cdot (-\rho \mathbf{V}_k Y_k) + \dot{\omega}_k \qquad 10 \le k \le 100$$

transport diffusion reactions
$$\frac{10^{-6} s}{10^{-9} s} \qquad 10^{-12} s$$

Key ingredients

Dynamic TFLES model	 Allows to resolve the flame front on the LES grid (Colin et al. 2000) 		
Operator splitting	 Each phenomenon is advanced at its own characteristic time 		
CVODE stiff integrator	 Variable order and variable timestep integration with error control + analytical Jacobian + full vectorization of reaction rates and Jacobian 		
Dynamic load balancing	 2-level task sharing algorithm based on MPI (Fontenaille et al., submitted to EUROPAR 2018) 		

- ✓ Validated with up to 91 species and 700 reactions (kerosene/air combustion)
- ✓ Good performances up to 32'000 cores

Mesochallenge Myria 2017 @ CRIANN FIRELES PRACE project, 16384 cores on Curie

Mesochallenge Myria 2017 @ CRIANN FIRELES PRACE project, 16384 cores on Curie

Complete extinction of external flame => V-shape flame

OH field

P. Bénard et al., accepted to the 2018 Int. Comb. Symp., Dublin

Dynamic h-adaptation of a premixed flame

F-TACLES combustion model [1], refinement ratio = 6

H-adaptation performed with the MMG library from INRIA

[1] Fiorina et al., C&F, 2009

www.mmgtools.org

H-adaptation of tetrahedral-based meshes

Consists in topology changes to refine or unrefine the mesh locally

- Node insertion in Delaunay triangulations
- Edge or face swapping
- Element collapsing
- ...

Several open-source libraries exist

- **MMG3D**, http://www.mmgtools.org
- MADLIB, http://sites.uclouvain.be/madlib/
- NETGEN, http://www.hpfem.jku.at/netgen/
- TETGEN, http://wias-berlin.de/software/tetgen/
- CGAL, http://www.cgal.org/
- MeshAdapt, http://www.scorec.rpi.edu/~xli/MeshAdapt.html
- Very few libraries are (massively) parallel
- Other constraint: need to have a fine control on the mesh quality to continue using finite-volume schemes

Parallel h-adaptation strategy

- Can we imagine a parallel algorithm based on sequential adaptation libraries such as MMG3D?
- If mesh adaptation is performed on each processor, problems will arise at the proc interface. The choice made in YALES2 is to leave the processor interface untouched

Parallel h-adaptation strategy

- > Designed for massively distributed meshes [Bénard et al., IJNMF, 2015]
- Skewness is a key parameter for 4th-order central schemes
- Example for 4 processors

Load balancing strategies

- 1. Parallel load balancing with PARMETIS4 [1]
 - The cell group graph is built and repartitioned in parallel
 - Edge weights multiplied by 100 at the interface
 - Uncontiguous partition and may lead to empty processors

Constrained load balancing

- 2. Sequential load balancing with METIS5 [2]
 - The cell group graph is built on master and partitioned
 - Partition is then modified to minimize data movement
 - Contiguous partition if input graph is contiguous

- 3. Selective load balancing based on skewness
 - Only the cell groups with a bad skewness on the interface are moved

In following examples, #3 is used during the inner steps and #2 is performed at the end.

NIRS - UNIVERSITE et INSA

[1] Karypis et al., JPDC, 1998[2] Karypis et al., SIAM JSC, 1999

Refinement example of a sphere on 4 procs

- Step 1 to 4: same procedure based on MMG3D + load balancing
- Step 5: optimization of the mesh for LES + better load balancing

Application of dynamic mesh adaptation to propagating flames

Application: Turbulent flame kernel propagation

- CH4/air BFER scheme, DTFLES model, phi = 1.0, u'/SL = 22.5
- Refinement ratios = 1, 3, 6

Finite-rate chemistry MMG3D4

Y A L E S Z Y A L E S Z Y A L E S Z 🧖

Application: Ignition in a SAFRAN HE combustor

- SAFRAN Tech simulation
- F-TACLES model [Fiorina et al.]
- Iso-temperature at 1300K colored by vorticity

Parameters

- Based on gradient of progress variable
- Refinement ratio = 5
- 41M to 75M tets
- Physical duration = 0.3 ms
- 5h on 512 Cobalt cores
- 1 adaptation every 15 iter.
- 1 adaptation = 4 minutes
- Adaptation cost = 50%

On-going simulations with periodic dynamic remeshing by G. Vaudor

Courtesy R. Mercier

Towards optimal and user-independent LES of aeronautical burners

- With R. Mercier, SAFRAN TECH and C. Dobrzynski, IMB/INRIA
- Finalist at the 2018 TERATEC simulation awards

Application of dynamic mesh adaptation to primary atomization

Typical flow topology

Jet in cross-flow configuration

Level set tracking: the ACLS method (Desjardins et al., JCP 2009)

Hyperbolic tangent

$$\phi(\mathbf{x},t) = \frac{1}{2} \left(\tanh\left(\frac{\mathbf{d}(\mathbf{x},t)}{2\epsilon}\right) + 1 \right)$$

G ₫ Å

φ 🥖

In YALES2, the hyperbolic tangent is used so that transport and reinitialization are conservative (Olsson and Kreiss, JCP, 2005)

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = 0$$
$$\frac{\partial \phi}{\partial \tau} + \nabla \cdot (\phi(1 - \phi)\mathbf{n}) = \nabla \cdot (\epsilon(\nabla \phi \cdot \mathbf{n})\mathbf{n})$$

The ACLS is coupled to the Ghost-Fluid Method (Fedkiw et al., 2000) for the pressure jump

Coupling of ACLS with dynamic mesh adaptation

Interface driven adaptation with imposed maximum metric gradient

Metric definition

 $M(\mathcal{D}) = \min\left(\Delta x_{\text{init}}, \max\left(\Delta x_{\min}, (|\mathcal{D}| - N_p \Delta x_{\min}) * |\nabla M|_0\right)\right)$

• Control of adaptation events $N_{\text{iter}}^{\text{adapt}} = \frac{N_p}{\text{CFL}} \frac{\Delta t^{\text{CFL}}}{\Delta t}$

Validation for droplet collision

Ashgriz et al.,

JFM 1990

Water/air

We = 23

Oh = 0.0047

 $d_{drop} = 400 \ \mu m$

 $\Delta x_{min} = 4 \,\mu m$

 $\Delta x_{max} = 80 \ \mu m$

6M cells

Interface dynamics correctly reproduced at an affordable cost

Validation for droplet collision: performances

Mesh skewness evolution

MMG_v5 skewness filters are mandatory

to keep a reasonable skewness

CPU cost

112 cores, Intel Xeon Broadwell, Myria super-computer @ CRIANN

	Relative	RCT
	cost	(ms.proc/ite/node)
Adaptation	23.1%	19.3
Interface	26.8%	22.4
tracking		
Advection	13.9%	11.6
Poisson	34.2%	28.5
equation		

Mean iteration count between remeshing events is 94. Adaptation loop lasts 20s on average.

This affordable adaptation cost has been obtained after numerous optimizations

- . High-pressure kerosene jet in cross-flow
- . Relevant for multi-point injection systems
- . Ragucci et al., Atomization & Sprays, 2007

. Reference operating conditions

- Injector diameter: D=0.5 mm
- Flow section: 25 mm x 25 mm
- Pressure: 10 bars
- Vair= 37 m/s and Vkerosene= 17 m/s
- Reair= 590 287 and Rekerosene= 4477
- Weaero= $\rho airV^2 k \acute{e}roD/\sigma = 63.5$
- Momentum ratio $q=\rho kero V^2 kero /\rho air V^2 air = 14.2$

. Numerics

- . Ghost-Fluid Method [Fedkiw et al., 2000]
- Accurate Conservative Levelset [Desjardins et al., 2009]
- Paper accepted to ICLASS 2018, Chicago

Quantitative comparisons

Application to a SAFRAN Aircraft Engines injector

- > Pressure-swirl atomizer
- Simulation includes the full injector geometry

Conclusions

- LES of complex burners with finite-rate chemistry becomes feasible
 - On-going PRACE simulations with GRI3 mechanism (52 species, 300+ reactions)
- Dynamic mesh adaptation is a solution to achieve more accuracy for a given cell count
- Many theoretical and numerical developments are still required
 - Modeling of space/time commutation errors in LES
 - Performance model for better time control of adaptation
 - Automatic hgrad control from user metric
 - Surface remeshing

Acknowledgments

- PhDs and postdocs of the YALES2 team
- R. Mercier SAFRAN Tech, France
- C. Dobrzynski, A. Froehly IMB/INRIA Bordeaux, France
- A. Pushkarev, G. Balarac LEGI, Grenoble, France
- L. Bricteux and his team, UMONS, Belgium
- CPU hours from PRACE, GENCI and CRIANN

References

High performance linear solvers

• Malandain, M., Maheu, N., and Moureau, V., "Optimization of the deflated Conjugate Gradient algorithm for the solving of elliptic equations on massively parallel machines", J. Comp. Physics, 2013

Numerics

- Vantieghem, S., "Numerical simulations of quasi-static magnetohydrodynamics using an unstructured finite volume solver: development and applications", 2011, PhD Thesis.
- Kraushaar, M., « Application of the compressible and low-Mach number approaches to Large-Eddy Simulation of turbulent flows in aero-engines », 2011, PhD Thesis

References on the code

- Moureau, V., Domingo, P., and Vervisch, L., "From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modelling", Comb. and Flame, 2011, 158, 1340–1357
- Moureau, V., Domingo, P., and Vervisch, L., "Design of a massively parallel CFD code for complex geometries", Comptes Rendus Mécanique, 2011, 339 (2-3), 141-148

Other references

http://www.coria-cfd.fr/index.php/User:Moureauv

