Mesh adaptation for embedded boundary meshes and Generation and visualization of high-order meshes

Rémi Feuillet

GAMMA3 and POEMS

19 March 2018 2nd year Ph.D. student seminar GAMMA3 - MEDISIM - POEMS

Outline of the presentation

I will present my work as Ph.D. student in the GAMMA3 Project.

Outline

Mesh adaptation for embedded boundary meshes

- Digh-order mesh generation
- Bigh-order meshes and solutions visualization

Perspectives

Proceedings

Mesh adaptation for embedded boundary meshes

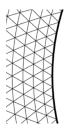
Mesh adaptation for embedded boundary meshes

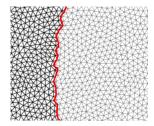
High-order mesh generation

High-order meshes and solutions visualization

Perspectives

- Issues with the explicit representation of an object inside a mesh.
- Embedding a geometry may be a solution.
- Application of the method in CFD for the Euler equations.
- Example of a body-fitted and embedded boundaries.

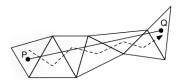




[1] Fidkowski et al. Triangular cut-cell adaptative method for Navier-Stokes equations, 2007

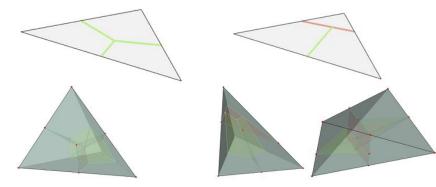
- [2] Fahrat et al. Algorithms for interface treatment and load computation in embedded boundary methods, 2011
- [3] Löhner et al. Adaptative embedded unstructured grid methods, 2004

• First step: find out where the geometry intersects the mesh. Construction via path along the elements. The first considered element is one containing a vertex of the edge/triangle of the embedded geometry.



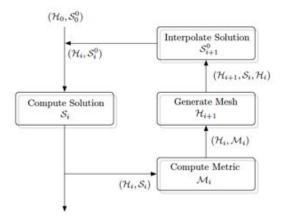
• Second step: Determine if a vertex is *covered* or not by the geometry. Choice of a first vertex known as a non covered by the geometry and then tag all vertices linked by a non intersected edge to a known non-covered vertex.

Local modifications of Finite Volume median cells: Cut-cell method.

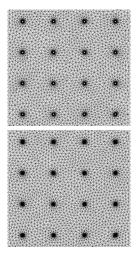


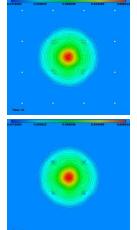
- Modifications of the flow solver.
- A slipping boundary condition is induced on intersected edges.
- For visualization and adaptation purposes, a constant value is imposed for covered vertices and computations are cancelled for these points. (No penalization)
- Local modifications for gradient computation.
- Works for implicit and explicit time integration and also for order 1 and 2 in space.
- Works as well for steady and unsteady simulations.

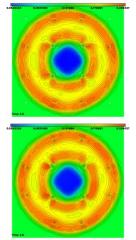
Coupling with mesh adaptation



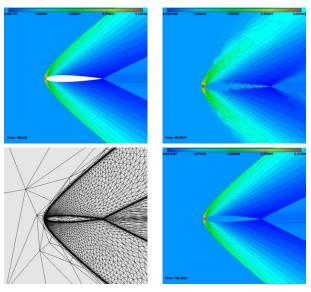
Case of an unsteady simulation.



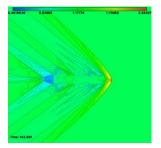


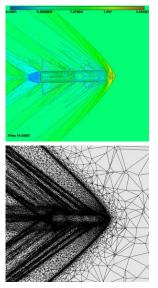


Case of an embedded supersonic NACA0012 airfoil.



Case of an embedded supersonic missile.





Mesh adaptation for embedded boundary meshes

2

High-order mesh generation

High-order meshes and solutions visualization

Perspectives

High-order mesh generation

- High-order meshes are more and more used.
- Generation of a curved mesh from an initial \mathbb{P}_1 straight mesh.
- Based on a high-order (of the order of the wanted curved mesh) finite element resolution of the linear elasticity equation.
- The input is the pre-curved boundary mesh, interpreted as a Dirichlet boundary condition.
- The output is a valid curved high-order mesh.

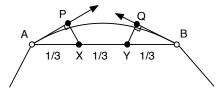
^[1] Toulorge et al. Robust untangling of curvilinear meshes, 2016

^[2] Karman et al. High-Order Mesh Curving Using WCN Mesh Optimization, 2016

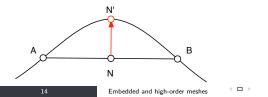
^[3] Turner et al. A Variational Framework for High-order Mesh Generation, 2017

High-order mesh generation

- The curvature of the boundary is either created from the \mathbb{P}_1 mesh or deduced from a CAD model.
- A cubic reconstruction can be deduced from a P₁ mesh. The two constructed control points define a P₃ curve.



• The distance to the curved boundary is a Dirichlet boundary condition for the linear elasticity problem.



High order FE resolution of the linear elasticity equation

- A ℙ_k-Lagrange shape function on a simplex and its gradient are a polynomial combination of the barycentric coordinates of this simplex.
- Exact formula for shape function and shape function gradient products can be analytically found at any order on a straight element.

$$\begin{split} \int_{\mathcal{K}_d} \prod_{i=1}^{d+1} \lambda_i^{\beta_i} \mathrm{d}\Omega &= \frac{\prod\limits_{i=1}^{d+1} \beta_i!}{\left(d + \sum\limits_{i=1}^{d+1} \beta_i\right)!} d! |\mathcal{K}_d|, \quad \forall (\beta_i) \in \mathbb{N} \quad i \in \llbracket 1, .., d+1 \rrbracket \\ \nabla_{\mathbf{X}} \lambda_i &= \frac{1}{d! |\mathcal{K}_d|} \mathbf{n}_i \end{split}$$

- Quadrature formulas are only used on non-straight elements.
- Provides a significant speed-up in the matrix assembling.

Validity and quality criteria for the HO mesh

- An element is valid if and only if its jacobian is strictly positive evreywhere inside it.
- For an element of degree d, the jacobian is of degree p (p ≥ d). It can be written it into a Bézier form:

$$J(u, v, w) = \sum_{i=1}^{p} N_i B_i^p(u, v, w)$$

- If J ≤ 0 for a given (u, v, w) then min_iN_i ≤ 0. But the opposite is not necessarily true.
- A possible quality function:

$$Q = \alpha \frac{hS_k max(V_1, V_k) N_{max}^{1/n}}{V_k min(V_1, V_k) N_{min}^{1/n}}$$

• Q = 1 when the element is regular and is the standard quality function when the element is straight.

Validity of the HO element

• The validity of an high-order element is not that intuitive ! The following element is valid even if the control polygon overlaps itself. (Control points are the coefficients of the mapping in the Bernstein basis.)

High-order mesh untangling

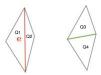
- Sometimes, the generated mesh can be invalid: we need to untangle it where needed.
- Toulorge et al. use a *log-barrier* to untangle blobs of an high-order mesh:

$$min_{x}F(x,\epsilon) \text{ where } F(x,\epsilon) = \sum_{e=1}^{Nbe_{b}} \sum_{i=1}^{p} \left[\log(\frac{N_{i}(x) - \epsilon J_{0}^{e}}{J_{0}^{e}(1-\epsilon)}) \right]^{2} + \left(\frac{N_{i}(x)}{J_{0}^{e}} - 1\right)^{2}$$

- J_0^e is the \mathbb{P}_1 jacobian of e, ϵ is chosen as $\min_{i,e} \frac{N_i}{J_0^e} 0.01 |\min_{i,e} \frac{N_i}{J_0^e}|$.
- Each term of the sum is a convex function, infinite when $N_i = \epsilon J_0^e$ and minimal when $N_i = J_0^e$.

Towards a generalization of the edge swapping (in 2D)

• \mathbb{P}_1 case : a swap occurs if $max(Q1, Q2) \ge max(Q3, Q4)$



- \mathbb{P}_2 case : a swap occurs if $max(Q1, Q2) \ge min_x max(Q3(x), Q4(x))$.
- x is the coordinates of the node of the swapped edge that can be optimized if the cavity is curved.
- Quality function and maximum function are not smooth enough for differentiable optimization.
- Smooth maximum function:

$$S_{\alpha}(x_1,..,x_n) = rac{\sum_{i=1}^n x_i e^{lpha x_i}}{\sum_{i=1}^n e^{lpha x_i}}$$
 with $lpha \gg 1$

- Deduction of a smooth quality function \tilde{Q} .
- A swap occurs if $max(\tilde{Q1}, \tilde{Q2}) \ge min_x S_{\alpha}(\tilde{Q3}(x), \tilde{Q4}(x))$?

Illustration of a \mathbb{P}_2 curved mesh with the initial mesh in 2D.

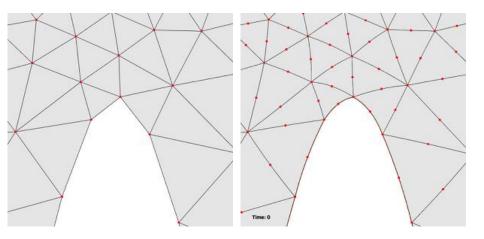


Illustration of a \mathbb{P}_2 curved mesh with the initial mesh in 3D.

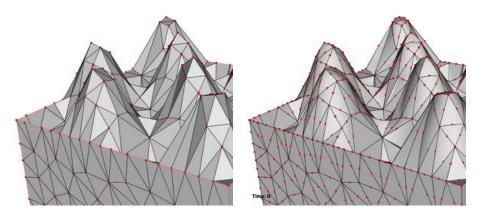
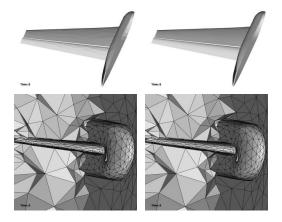


Illustration of a \mathbb{P}_2 curved mesh with the initial mesh in a more complex case of a high-lift 3D. Surface and volume mesh.



High-order meshes and solutions visualization

Mesh adaptation for embedded boundary meshes

High-order meshes and solutions visualization

Perspectives

Proceedings

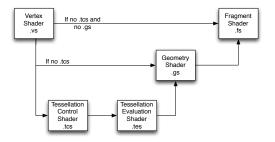
High-order meshes and solutions visualization

- A real need to visualize high-order meshes as their development is ongoing.
- High-order solvers provide high-order solutions that need to be properly displayed.
- Most of the techniques use elements subdivision (even when they are straight on CPU) to render high-order solutions.
- Other techniques use ray-tracing that may be greedy in computations.
- We provide a solution that does not subdivide straight entities at all and subdivides curved entities on the fly on GPU.

Remacle et Al, Efficient visualization of high-order finite elements, 2006
Peiro et al., High-Order Visualization with ElVis, 2015

Curved surface elements visualization

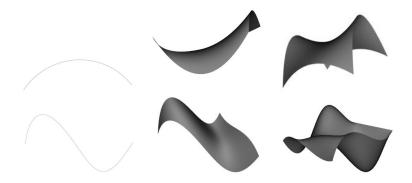
 The visualization process relies on the use of the OpenGL 4.0 graphic pipeline that can be customized with up to five different shader stages.



- The accuracy of the geometric approximation can be controlled thanks to a tesselation shaders.
- Among built-in variables, we can pass trough our own variables:
- \implies for a pixel we then know: (x, y, z), or (u, v), or primitive ids.
 - Textures are used to stored raw data (HO-Solutions).

Curved surface elements visualization

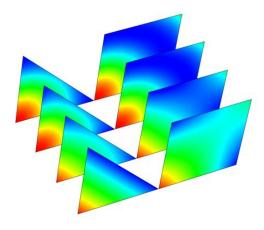
- Elements of degree 2 (up) and degree 3 (bottom) displayed with Vizir.
- From left to right: edge, triangle and quadrilateral.



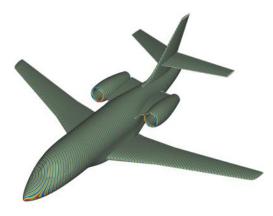
Curved surface elements visualization

Illustration of an anisotropic \mathbb{P}_2 surface mesh approximating a shuttle NURBS with 2nd order elements.

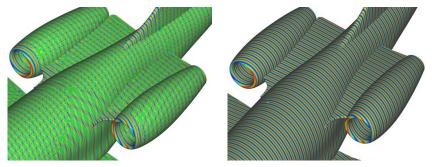
- Rendering of high order solutions from degree 0 to degree 4.
- Pixel exact rendering on straight elements.
- Rendering of an interpolated solution cos(π(x² + y²)) on a triangle and a quadrilateral from degree 1 to degree 4.



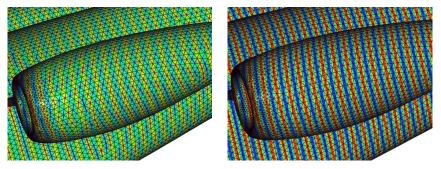
• Example of 2 different solutions rendering on a Dassault Falcon \mathbb{P}_1 mesh with \mathbb{P}_1 and \mathbb{P}_3 solution.



• Example of 2 different solutions rendering on a Dassault Falcon \mathbb{P}_1 mesh with \mathbb{P}_1 and \mathbb{P}_3 solution.



• Example of 2 different solutions rendering on a Dassault Falcon \mathbb{P}_1 mesh with \mathbb{P}_1 and \mathbb{P}_3 solution.



Mesh adaptation for embedded boundary meshes

Digh-order mesh generation

High-order meshes and solutions visualization

Perspectives

- Mesh adaptation for embedded geometries
 - Finish and validate the embedded mesh adaptation with fixed geometries for the Euler equations.
- High-order mesh generation
 - Reduce zone of elasticity resolution.
 - Once swap is done in 2D, generalize it in 3D and apply all to the high-order moving mesh problems.
 - Curved boundary layer mesh generation.
- High-order mesh visualization
 - Enhancement of the wireframe rendering.
 - Development of high-order cut plane and isolines rendering.

Digh-order mesh generation

Bigh-order meshes and solutions visualization

Perspectives

Embedded and high-order meshes

Accepted peer-reviewed proceedings in international conferences

 A. Loseille, R. Feuillet Vizir: High-order mesh and solution visualization using OpenGL 4.0 graphic pipeline. 56th AIAA Aerospace Sciences Meeting, AIAA Scitech. (January 2018)

Submitted peer-reviewed proceedings in international conferences

• AIAA Aviation 2018 (accepted)

- **R. Feuillet**, A. Loseille, F. Alauzet *High-order moving mesh techniques: Application to curved mesh and high-order curved boundary layers generation*
- J. Vanharen, **R. Feuillet**, F. Alauzet *Mesh adaptation for fluid-structure interaction problems*

Submitted communications in international conferences

- ECCM ECFD 2018 (accepted)
 - R. Feuillet, A. Loseille, F. Alauzet Generation and motion of high-order meshes based on a high-order linear elasticity model
 - J. Vanharen, **R. Feuillet**, F. Alauzet *Mesh adaptation for fluid-structure interaction problems*
- ICOSAHOM 2018
 - **R. Feuillet**, A. Loseille, F. Alauzet *High-order mesh operations based* on a linear elasticity model
- WCCM 2018
 - A. Loseille, R. Feuillet High-order mesh visualization