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� AFLR motivation and basic algorithm.

� Need for parallel operation.

� Sub-domain decomposition.

� Mesh generation process with sub-domains.

� Initial results & future directions.
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Motivation: “High-End” CFD Applications 
(Commercial Aircraft)

Simulation	Courtesy	of	The	Boeing	Company
CFD	Solver:	Metacomp Technologies	CFD++
Mesh	Generation	Framework:	Boeing	MADCAP
Mesh	Generation:	MSU	AFLR surface	and	volume	mesh	generation

High-resolution	mesh	200+	million	elements

Some	characteristics:

•Large	variation	in	length	scales
•Thick	BL	regions
•Precise	BL	growth
•Small	gaps

•Anisotropic	surface	meshes

•Small	details	often	crucial	to	predicting	key	flow	physics



Initial Triangulation

� Outer region uses AFLR based 
mesh generation.

� Starting point is an initial 
triangulation of the boundary.

� Process here is shown in 2D 
with purely isotropic elements.



Point Insertion & Connectivity Optimization



Need for Parallel Mesh Generation
� Realistic configurations require an ever increasing level of resolution 

that scales with computational resources available. Hundreds of 
millions of elements is production level work in some cases.

� Far from ultimate level of resolution in many applications (turbulent 
flow, etc.)

� Mesh generation in serial becomes the bottleneck in the process in 
terms of time required.

� Inclusion of mesh generation within the solver process for solution 
adaptation or geometry that changes require that the mesh processing 
be done as a scalable process also.

� Need a truly scalable mesh generation process for current and future 
use.



Scalable Parallelization
� A single strategy for scalable and optimal parallel and vector operations is not 

possible. The local operations produce global changes and the mesh itself is 
dynamically evolving data. 

� Multiple approaches and strategies are being considered in this work to eventually 
produce a truly scalable methodology.
� Uniform core mesh for large regions of similar sized elements. This is very fast (1G 

elements in a couple minutes of serial for total mesh). It is also readily parallelized and 
scalable. Limited to regions of similar sized elements and very specific applications.

� Decomposition into subdomains for independent meshing for macro scale parallelization.
§ Unstructured coarse mesh decomposition into subdomains with true internal boundaries.
§ Iterative partitioning of subdomains throughout the process.
§ Oct-tree like decomposition with virtual or pseudo-constrained sub-domain boundaries.
§ Goal is a decomposition that produces no artifacts and requires no direct inter-processor 

communication. Each sub-domain is intended to be processed independently.
� Fine scale parallelization of individual local processes within each subdomain.



Scalable Parallelization: BL Issues
� The strategy proposed for basic mesh generation is suitable for 

both isotropic and anisotropic metric driven mesh generation of 
the outer mesh.

� BL portion is currently generated by a differing process. It also 
scales with the boundary surface mesh which is a known entity at 
the time or of processing. Decomposition based on the surface 
mesh seems more appropriate in this case. Basic multi-level 
parallel approach still applies.

� Current work with anisotropic aligned metric driven mesh 
generation shows promise for a more universal and unified 
approach.



Domain Decomposition Strategies (1)
� Coarse Mesh Decomposition: Issues include problems in arriving at a 

suitable coarse mesh, internal surface mesh generation (overhead), and 
limited scalability. REJECTED.



Domain Decomposition Strategies (2)
� Iterative Partitioning: Issues include requirement of a full-domain initial 

mesh and significant communication when repartitioning. REJECTED.



Domain Decomposition Strategies (3)
� Virtual Domain Decomposition: Use simple Cartesian/oct-tree like 

virtual decomposition. Virtual boundaries must be extracted, transferred, 
and combined with others. UNDER DEVELOPMENT.



Domain Decomposition Strategies (4)
� Virtual Domain Decomposition with Pseudo-Constrained Sub-

Domains: Use simple Cartesian/oct-tree like virtual decomposition. No 
coloring needed. Sub-domains temporarily constrained with corner points 
and triangulated surfaces. Issues with virtual boundaries are significantly 
minimized (single surface extraction). No coloring needed. UNDER 
DEVELOPMENT.



Automated Domain Decomposition
� A simple Cartesian decomposition was considered for the overall decomposition. In this 

approach the decomposition itself is trivial.

� The domain is over decomposed for load-balancing and the minimum number of sub-domains 
required can be determined for a given number of cores.

� A scheduler is required to load-balance and launch new processes as old ones complete 
(collaborative with ODU).

� AFLR mesh generation operates independently on each sub-domain of the decomposition.

� Modifications were required within AFLR to implement this approach.
� Boundary-conditions and boundary surface recovery were modified to allow virtual boundaries 

(those between interior sub-domains).
� Boundary-conditions also modified for pseudo-constrained sub-domain boundaries.
� Sub-domain seeding was added to allow generation of volume elements for domains without 

true boundary surface portions. With advancing method there must be something to advance 
from.



Individual Sub-Domain Processing
� Each individual sub-domain is comprised of virtual or pseudo-constrained 

sub-domain boundaries along with true boundary surface portions in some 
sub-domains.

� Since our mesh generation algorithm relies on frontal advancement we need 
to add more fronts.

� Seeding with element clusters was chosen to provide the additional fronts.
§ Seed clusters do not produce artifacts like a surface would.
§ Sizing based on actual local length scales (or metric if used) from the 

background mesh.
§ Essential if there are no true boundary surfaces in sub-domain.
§ Used in all sub-domain cases as portion of true boundary may be very small.

� Result is a process that behaves as in standard mode.



Sub-Domain Coloring
• Only used with virtual boundary method.

• A coloring process is used to sort the sub-domains.

• A simple coloring is used to illustrate the process. 

• Consider a domain that is enclosed within a Cartesian sub-domain 
mesh with each cell or sub-domain of size ∆x, ∆y, and ∆z. This can be 
represented topologically as an i,  j, and k domain, where i represents 
variation in x only, j represents variation in y only, and k represents 
variation in z only. On the first pass every other sub-domain within a 
given i-row (constant j and k) is available for processing independently. 
The i-row above each is skipped as well as the entire adjacent k-plane 
(constant k). This pattern is continued until all the sub-domains are 
accounted for.



Sub-Domain Coloring (continued)
• The numbers shown correspond to each pass. There are a total of 8 

passes required with this form of coloring, the first four for the odd k-
planes and the next four the even ones. Pass 1 sub-domains must pass 
their right and left boundaries to Pass 2 sub-domains, their top and bottom 
boundaries to Pass 3 sub-domains, and their front and back boundaries to 
Pass 5 sub-domains.

• Coloring on odd k-planes 1,3,5…

1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1



Sub-Domain Coloring (continued)

� Coloring on even k-planes 2,4,6…

5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 2 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5



Individual Sub-Domains With a 
Boundary Portion



Seeding for Sub-Domains Without any 
True Boundaries (start)



Advancement From Seeds



Advancement From Seeds (5 passes)



Advancement From Seeds (final)



Trimming and Classification of Virtual
Sub-Domain Boundaries
� Mesh generation is allowed to advance past the virtual sub-domain boundaries.

§ Distance is based on local length scale (typical is 2 X the individual element size).
§ Allows algorithm to perform optimally in terms of quality, which degrades if the mesh 

generation is not allowed some room for optimizing with smoothing and local-
reconnection.

� Since the domain is not enclosed in true boundaries, the boundary recovery process 
can not simply delete external elements used to start the method.

� The process is modified by trimming based on the virtual sub-domain boundaries 
and subsequent classification of which boundary surface an exposed element 
belongs in.

� Classification is required as virtual boundaries result in surfaces of exposed 
elements that must be passed to neighboring sub-domains as constraints in 
subsequent mesh generation.



Final Sub-Domain Mesh After Trimming



Pseudo-Constrained Approach
� Previous virtual-constrained method imposed no hard constraints only virtual 

boundaries and sub-domain interfaces were derived. This led to questions on 
robustness in forming guaranteed valid connections with neighbors. Pseudo-
constrained algorithm addresses this issue. The temporary constraints are 
removed in subsequent processing on sub-domain interface regions.

� Constraint surfaces are triangulated with additional temporary points (speeds up 
subsequent mesh generation). The constraint surfaces only serve as a temporary 
interface that is guaranteed to connect to the neighbor sub-domain. Volume mesh 
generation within each sub-domain is fully independent and includes a buffer 
near the constraint surfaces to preserve interior mesh quality. Multiple passes are 
then added after each sub-domain is processed. Within those passes new sub-
domains are created that contain the buffer region near constraint surfaces. 
Multiple passes allow individual sub-domains of similar numbers to the initial to 
be created and processed on each pass.



Pseduo-Constrained Sub-Domains
� Use simple Cartesian/oct-tree like virtual decomposition. No coloring 

needed. Sub-domains temporarily constrained with corner points and 
triangulated surfaces.

� No coloring needed.

� Minimum of 4 passes required.

Ø Pass 1 (regions)

Ø Pass 2 (surfaces) 

Ø Pass 3 (edges)

Ø Pass 4 (corner points)



Pseduo-Constrained Sub-Domains 
Processing
� Mesh generation allowed to advance close to the temporarily constrained

sub-domain boundaries.
§ Distance is based on local length scale (typicaly 0.7~1.5 X local length scale).

� Since the domain is enclosed in true boundaries, the boundary recovery 
process is as normal.

� After sub-domains are combined the adjacent regions must be refined. A 
single closed surface of fully refined faces is extracted around each in at least 
3 additional passes (surface, edge and corner point regions).

� Inner boundary surface extraction is robust and rigorous as it is constructed 
from a fully valid volume (and not pieced together).

� Pass 2, 3, 4, … use sub-comains with true boundary surface constraints from 
the generated volume mesh.



Pseudo-Constrained Sub-Domain Mesh 
Initial Boundary Surfaces

Sub-domain with temporary 
constraint points and 
triangulation.



Pseudo-Constrained Sub-Domain Mesh 
after Pass 1



Automated Domain Decomposition, Initial 
Results
� Typical single processor run times of about 5 hours or more for 150-200 M elements (isotropic) 

can be reduced to 5-10 min on 20 processors. Note that the underlying algorithms have an 
J(N1.x) work effort component so efficiency can appear >100% (and it certainly isn’t).

� Overhead of sub-domain creation, extraction and merge is order 3-5% in current form with file 
based transfer of information.

� Load-balancing and/or sub-domain refinement is required to maintain parallel efficiency.

� The present results indicate for large meshes, 100’s to even 1000’s of processors may be able 
to be used effectively.

� Further, there are no artifacts from the sub-domains. Artifacts do not occur as there are no 
imposed internal boundary constraints that are fixed and the element size follows the same 
methodology (background mesh) as serial mode.

� There are no discernable differences either visually or through mesh quality statistics.



Launch Vehicle Geometry



Launch Vehicle Geometry (continued)



Results With Sub-Domains

One	domain With	sub-domains



Results With Sub-Domains (continued)

One	domain With	sub-domains



Results With Sub-Domains (continued)

One	domain With	sub-domains



Results With Sub-Domains (continued)

One	domain With	sub-domains



Results With Sub-Domains (continued)

One	domain With	sub-domains



Domain	split	into	1355	sub-domains.

Launch Vehicle Geometry with Pseduo-
Constrained Sub-Domains



Summary
� Virtual sub-domain boundary concept needs more work (heuristic based) to be fully viable for 

insuring valid derived sub-domain boundaries.

� Pseudo-constrained sub-domain boundary approach is more rigorous and appears quite 
viable as one key part of a truly scalable process.

� Resulting mesh really is essentially the same with either virtual or pseudo-constrained
boundaries.

� Current work will focus on further developing the pseudo-constrained sub-domain boundary 
approach.

� Future mesh generator work focused on both completing sub-domain approach and fine-scale 
parallelization. 

� Future controller work focused on improving load-balancing and will investigate alternatives to 
the simple oct-tree like decomposition now used. Many alternatives are directly usable 
including local refinement and use of irregular shaped sub-domains (they don’t have to be 
planes).


