
Mesh Decomposition for Parallel
Unstructured Mesh Generation

David Marcum

Outline

� AFLR motivation and basic algorithm.

� Need for parallel operation.

� Sub-domain decomposition.

� Mesh generation process with sub-domains.

� Initial results & future directions.

� What type of chair is it?

International Chair

� What type of chair is it?

International Chair

� What type of chair is it?

International Chair

� What type of chair is it?

International Chair

� What type of chair is it?

International Chair

� What type of chair is it?

International Chair

Motivation: “High-End” CFD Applications
(Commercial Aircraft)

Simulation	Courtesy	of	The	Boeing	Company
CFD	Solver:	Metacomp Technologies	CFD++
Mesh	Generation	Framework:	Boeing	MADCAP
Mesh	Generation:	MSU	AFLR surface	and	volume	mesh	generation

High-resolution	mesh	200+	million	elements

Some	characteristics:

•Large	variation	in	length	scales
•Thick	BL	regions
•Precise	BL	growth
•Small	gaps

•Anisotropic	surface	meshes

•Small	details	often	crucial	to	predicting	key	flow	physics

Initial Triangulation

� Outer region uses AFLR based
mesh generation.

� Starting point is an initial
triangulation of the boundary.

� Process here is shown in 2D
with purely isotropic elements.

Point Insertion & Connectivity Optimization

Need for Parallel Mesh Generation
� Realistic configurations require an ever increasing level of resolution

that scales with computational resources available. Hundreds of
millions of elements is production level work in some cases.

� Far from ultimate level of resolution in many applications (turbulent
flow, etc.)

� Mesh generation in serial becomes the bottleneck in the process in
terms of time required.

� Inclusion of mesh generation within the solver process for solution
adaptation or geometry that changes require that the mesh processing
be done as a scalable process also.

� Need a truly scalable mesh generation process for current and future
use.

Scalable Parallelization
� A single strategy for scalable and optimal parallel and vector operations is not

possible. The local operations produce global changes and the mesh itself is
dynamically evolving data.

� Multiple approaches and strategies are being considered in this work to eventually
produce a truly scalable methodology.
� Uniform core mesh for large regions of similar sized elements. This is very fast (1G

elements in a couple minutes of serial for total mesh). It is also readily parallelized and
scalable. Limited to regions of similar sized elements and very specific applications.

� Decomposition into subdomains for independent meshing for macro scale parallelization.
§ Unstructured coarse mesh decomposition into subdomains with true internal boundaries.
§ Iterative partitioning of subdomains throughout the process.
§ Oct-tree like decomposition with virtual or pseudo-constrained sub-domain boundaries.
§ Goal is a decomposition that produces no artifacts and requires no direct inter-processor

communication. Each sub-domain is intended to be processed independently.
� Fine scale parallelization of individual local processes within each subdomain.

Scalable Parallelization: BL Issues
� The strategy proposed for basic mesh generation is suitable for

both isotropic and anisotropic metric driven mesh generation of
the outer mesh.

� BL portion is currently generated by a differing process. It also
scales with the boundary surface mesh which is a known entity at
the time or of processing. Decomposition based on the surface
mesh seems more appropriate in this case. Basic multi-level
parallel approach still applies.

� Current work with anisotropic aligned metric driven mesh
generation shows promise for a more universal and unified
approach.

Domain Decomposition Strategies (1)
� Coarse Mesh Decomposition: Issues include problems in arriving at a

suitable coarse mesh, internal surface mesh generation (overhead), and
limited scalability. REJECTED.

Domain Decomposition Strategies (2)
� Iterative Partitioning: Issues include requirement of a full-domain initial

mesh and significant communication when repartitioning. REJECTED.

Domain Decomposition Strategies (3)
� Virtual Domain Decomposition: Use simple Cartesian/oct-tree like

virtual decomposition. Virtual boundaries must be extracted, transferred,
and combined with others. UNDER DEVELOPMENT.

Domain Decomposition Strategies (4)
� Virtual Domain Decomposition with Pseudo-Constrained Sub-

Domains: Use simple Cartesian/oct-tree like virtual decomposition. No
coloring needed. Sub-domains temporarily constrained with corner points
and triangulated surfaces. Issues with virtual boundaries are significantly
minimized (single surface extraction). No coloring needed. UNDER
DEVELOPMENT.

Automated Domain Decomposition
� A simple Cartesian decomposition was considered for the overall decomposition. In this

approach the decomposition itself is trivial.

� The domain is over decomposed for load-balancing and the minimum number of sub-domains
required can be determined for a given number of cores.

� A scheduler is required to load-balance and launch new processes as old ones complete
(collaborative with ODU).

� AFLR mesh generation operates independently on each sub-domain of the decomposition.

� Modifications were required within AFLR to implement this approach.
� Boundary-conditions and boundary surface recovery were modified to allow virtual boundaries

(those between interior sub-domains).
� Boundary-conditions also modified for pseudo-constrained sub-domain boundaries.
� Sub-domain seeding was added to allow generation of volume elements for domains without

true boundary surface portions. With advancing method there must be something to advance
from.

Individual Sub-Domain Processing
� Each individual sub-domain is comprised of virtual or pseudo-constrained

sub-domain boundaries along with true boundary surface portions in some
sub-domains.

� Since our mesh generation algorithm relies on frontal advancement we need
to add more fronts.

� Seeding with element clusters was chosen to provide the additional fronts.
§ Seed clusters do not produce artifacts like a surface would.
§ Sizing based on actual local length scales (or metric if used) from the

background mesh.
§ Essential if there are no true boundary surfaces in sub-domain.
§ Used in all sub-domain cases as portion of true boundary may be very small.

� Result is a process that behaves as in standard mode.

Sub-Domain Coloring
• Only used with virtual boundary method.

• A coloring process is used to sort the sub-domains.

• A simple coloring is used to illustrate the process.

• Consider a domain that is enclosed within a Cartesian sub-domain
mesh with each cell or sub-domain of size ∆x, ∆y, and ∆z. This can be
represented topologically as an i, j, and k domain, where i represents
variation in x only, j represents variation in y only, and k represents
variation in z only. On the first pass every other sub-domain within a
given i-row (constant j and k) is available for processing independently.
The i-row above each is skipped as well as the entire adjacent k-plane
(constant k). This pattern is continued until all the sub-domains are
accounted for.

Sub-Domain Coloring (continued)
• The numbers shown correspond to each pass. There are a total of 8

passes required with this form of coloring, the first four for the odd k-
planes and the next four the even ones. Pass 1 sub-domains must pass
their right and left boundaries to Pass 2 sub-domains, their top and bottom
boundaries to Pass 3 sub-domains, and their front and back boundaries to
Pass 5 sub-domains.

• Coloring on odd k-planes 1,3,5…

1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1
3 4 3 4 3 4 3 4 3
1 2 1 2 1 2 1 2 1

Sub-Domain Coloring (continued)

� Coloring on even k-planes 2,4,6…

5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 2 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5
7 8 7 8 7 8 7 8 7
5 6 5 6 5 6 5 6 5

Individual Sub-Domains With a
Boundary Portion

Seeding for Sub-Domains Without any
True Boundaries (start)

Advancement From Seeds

Advancement From Seeds (5 passes)

Advancement From Seeds (final)

Trimming and Classification of Virtual
Sub-Domain Boundaries
� Mesh generation is allowed to advance past the virtual sub-domain boundaries.

§ Distance is based on local length scale (typical is 2 X the individual element size).
§ Allows algorithm to perform optimally in terms of quality, which degrades if the mesh

generation is not allowed some room for optimizing with smoothing and local-
reconnection.

� Since the domain is not enclosed in true boundaries, the boundary recovery process
can not simply delete external elements used to start the method.

� The process is modified by trimming based on the virtual sub-domain boundaries
and subsequent classification of which boundary surface an exposed element
belongs in.

� Classification is required as virtual boundaries result in surfaces of exposed
elements that must be passed to neighboring sub-domains as constraints in
subsequent mesh generation.

Final Sub-Domain Mesh After Trimming

Pseudo-Constrained Approach
� Previous virtual-constrained method imposed no hard constraints only virtual

boundaries and sub-domain interfaces were derived. This led to questions on
robustness in forming guaranteed valid connections with neighbors. Pseudo-
constrained algorithm addresses this issue. The temporary constraints are
removed in subsequent processing on sub-domain interface regions.

� Constraint surfaces are triangulated with additional temporary points (speeds up
subsequent mesh generation). The constraint surfaces only serve as a temporary
interface that is guaranteed to connect to the neighbor sub-domain. Volume mesh
generation within each sub-domain is fully independent and includes a buffer
near the constraint surfaces to preserve interior mesh quality. Multiple passes are
then added after each sub-domain is processed. Within those passes new sub-
domains are created that contain the buffer region near constraint surfaces.
Multiple passes allow individual sub-domains of similar numbers to the initial to
be created and processed on each pass.

Pseduo-Constrained Sub-Domains
� Use simple Cartesian/oct-tree like virtual decomposition. No coloring

needed. Sub-domains temporarily constrained with corner points and
triangulated surfaces.

� No coloring needed.

� Minimum of 4 passes required.

Ø Pass 1 (regions)

Ø Pass 2 (surfaces)

Ø Pass 3 (edges)

Ø Pass 4 (corner points)

Pseduo-Constrained Sub-Domains
Processing
� Mesh generation allowed to advance close to the temporarily constrained

sub-domain boundaries.
§ Distance is based on local length scale (typicaly 0.7~1.5 X local length scale).

� Since the domain is enclosed in true boundaries, the boundary recovery
process is as normal.

� After sub-domains are combined the adjacent regions must be refined. A
single closed surface of fully refined faces is extracted around each in at least
3 additional passes (surface, edge and corner point regions).

� Inner boundary surface extraction is robust and rigorous as it is constructed
from a fully valid volume (and not pieced together).

� Pass 2, 3, 4, … use sub-comains with true boundary surface constraints from
the generated volume mesh.

Pseudo-Constrained Sub-Domain Mesh
Initial Boundary Surfaces

Sub-domain with temporary
constraint points and
triangulation.

Pseudo-Constrained Sub-Domain Mesh
after Pass 1

Automated Domain Decomposition, Initial
Results
� Typical single processor run times of about 5 hours or more for 150-200 M elements (isotropic)

can be reduced to 5-10 min on 20 processors. Note that the underlying algorithms have an
J(N1.x) work effort component so efficiency can appear >100% (and it certainly isn’t).

� Overhead of sub-domain creation, extraction and merge is order 3-5% in current form with file
based transfer of information.

� Load-balancing and/or sub-domain refinement is required to maintain parallel efficiency.

� The present results indicate for large meshes, 100’s to even 1000’s of processors may be able
to be used effectively.

� Further, there are no artifacts from the sub-domains. Artifacts do not occur as there are no
imposed internal boundary constraints that are fixed and the element size follows the same
methodology (background mesh) as serial mode.

� There are no discernable differences either visually or through mesh quality statistics.

Launch Vehicle Geometry

Launch Vehicle Geometry (continued)

Results With Sub-Domains

One	domain With	sub-domains

Results With Sub-Domains (continued)

One	domain With	sub-domains

Results With Sub-Domains (continued)

One	domain With	sub-domains

Results With Sub-Domains (continued)

One	domain With	sub-domains

Results With Sub-Domains (continued)

One	domain With	sub-domains

Domain	split	into	1355	sub-domains.

Launch Vehicle Geometry with Pseduo-
Constrained Sub-Domains

Summary
� Virtual sub-domain boundary concept needs more work (heuristic based) to be fully viable for

insuring valid derived sub-domain boundaries.

� Pseudo-constrained sub-domain boundary approach is more rigorous and appears quite
viable as one key part of a truly scalable process.

� Resulting mesh really is essentially the same with either virtual or pseudo-constrained
boundaries.

� Current work will focus on further developing the pseudo-constrained sub-domain boundary
approach.

� Future mesh generator work focused on both completing sub-domain approach and fine-scale
parallelization.

� Future controller work focused on improving load-balancing and will investigate alternatives to
the simple oct-tree like decomposition now used. Many alternatives are directly usable
including local refinement and use of irregular shaped sub-domains (they don’t have to be
planes).

