
GHS3D, tetrahedral mesh generator

INRIA - Simulog-Technologies

March 7, 2005

1 Abstract

This technical note describes the GHS3D

1

automatic mesh generator. The available ver-

sion is the so-called V3.0 release

2

. Are de�ned the aim of the software, the input �les (a

surface mesh as input data) and the output �les

3

(the resulting tet mesh). The causes

of error are listed and possible corrections are proposed. Typical application examples

are shown and brie
y discussed. A short technical description of the algorithm and the

various ways to obtain the software are given.

GHS3D has been developed by the team Gamma (formerly Modulef) of INRIA in

collaboration with Dist�ene (the former Simulog-Technologies). The GHS3D software has

been included in di�erent commercial software packages proposed by various compa-

nies such as ANSYS, Matra-Datavision, MSC, E.S.P., Samtech, Dist�ene, ..., and many

others. It is also intensively used directly by di�erent end-users such as E.D.F., Re-

nault, SNECMA, Dassault-Aviation, and many others (such as dozen of university labs

in France, in the States and in a number of other countries).

2 Aim of the mesh generator

GHS3D is a fully automatic mesh generator which aims at providing a tetrahedral mesh

within a domain de�ned by a conforming mesh of its boundary. This surface mesh is

usually made up of triangles (while quad elements are also supported). Surface mesh

creation is not included in the generator. However, the user is responsible to provide

this surface mesh, for instance using its favorite CAD-CAM software package or using

other surface meshing tools (such those developed within the team Gamma).

1

Also referred to as TetMesh-GHS3D.

2

The current release o�ers a series of improvements as compared with the previous releases.

Improvements and changes include CPU cost, less number of tet, multi-material domain, shape quality,

robustness, extra delaunisation, self-centering and a series of changes that makes the implementation

easier. Some of these improvements (see Section 7.5) have been motivated by microelectronics concerns

and developed with the support of the EEC Magic Feat project (IST Project 1999-11433).

3

In the case of a brute usage of the software.

1

The volume mesh is governed by the properties of the surface mesh given as input.

The latter clearly governs the element density together with the mesh quality. In fact,

a major feature of the GHS3D algorithm is to preserve the surface entities meaning that

any surface face will be present in the resulting tet mesh and encountered as a tet face.

Remark : in addition to the surface mesh, (internal) points, edges and faces can be

explicitly speci�ed to govern the mesh generation process. These speci�ed items will

be present in the resulting mesh and, in other words, may give some degree of user's

guidance.

Other usages of GHS3D.

Three di�erent usages of GHS3D can be made for speci�c applications.

GHS3D can be used as a mesh optimizer. In such a case, a previously created tet

mesh is entered as data input and the algorithm optimizes this mesh in terms of element

quality (aspect ratio, see below).

GHS3D also produces diagnostics regarding the correctness of a surface mesh (see ERR

3*** in Section 10) and thus can be used to check the validity of a given surface mesh.

In case of a wrong surface mesh (self-intersection, overlapping elements, holes, lack of

conformity, etc.), these diagnostics help the user to correcting the surface mesh. Here is

a more \exotical" usage of the GHS3D algorithm that allows for a very fast detection of

surface mesh failures (this could be obtained in a few seconds or minutes based on the

number of faces).

GHS3D can be also serve to construct a hull of a given set of points. In this case, the

data consists of a set of points and no faces (meaning that the number of faces, NF in

the above xxx.faces, is null). The output is a xxx.boite �le (as described below) which

indeed is a triangulation of a certain hull of the points. In some cases, this hull is the

well-known convex hull, in others it may be a little bit di�erent.

2

3 Data

Two ASCII �les describing the surface mesh de�ning the volume of interest are input

as data. The surface mesh must be conformal. The input �les are called xxx.points and

xxx.faces (xxx being a basename) respectively.

3.1 The xxx.points �le

This �le stores the point coordinates. See Annex.

Remark : usually, �le xxx.points contains NP + 1 records where NP is the number

of points. In case the user wants to specify some internal points, they can be entered in

lines NP +2, ..., NP + n. (meaning that n� 1 extra points are provided). Such points

can be used to specify the density in such or such area around them in the domain, thus,

a stepsize (element size) must be given for each of them (see Annex).

3.2 The xxx.faces �le

This �le stores the boundary facets. See Annex.

The boundary mesh can be made of triangular facets but quad facets are also sup-

ported. Prescribed edges may be speci�ed and referred to as a type 2 facet.

A triangle is a type 3 facet with three vertices, a quadrilateral is a type 4 facet

while an edge is a type 2 face. Other types of facet are not supported. Note that a

quadrilateral facet is automatically subdivided into two triangles.

3

3.3 More about the data �les

A few remarks about the input �les and the �le organization scheme.

Remark : GHS3D also supports a xxx.mesh �le instead of the points and faces �les.

Remark : as optimizer, GHS3D uses the xxx.faces �le, a xxx.noboite �le and a xxx.bb

�le, the two latter being described below. In this case, the output �les xxx.noboite and

xxx.bb replace the corresponding input �les (with the same name).

Remark : if incorporated in an existing software, GHS3D is seen in a rather di�erent

way. Actually, for e�ciency reason, it is clear that the data must be provided in a

di�erent way. Obviously, the two above input �les must be avoided and replaced by a

direct call while the output �les must be also avoided since it is possible to have a direct

access to the tables of interest (element vertices, vertex coordinates, ...).

xxx.points xxx.faces xxx.faces xxx.noboite xxx.bb

\ / \ | /

GHS3D GHS3D

/ \ / \

xxx.noboite xxx.bb xxx.noboite xxx.bb

i) ii)

File organization : i) standard use of GHS3D, ii) GHS3D used as a mesh optimizer.

4

4 Output

As indicated in the above
owchart, there are two output �les, a noboite and a bb �le.

The noboite �le basically reports the tets and the point coordinates while the bb �le

reports the corresponding sizing information (i.e., a size is associated with the mesh

vertices, these scalar values being automatically produced by GHS3D).

For a noboite �le, binary as well as ASCII output can be produced while the bb �le

is an ASCII �le. See Annex.

Remark : in some case, the algorithm does not complete the mesh. Most of these

cases of failure are encountered at the time the boundary items are regenerated (see the

general scheme of the algorithm).

In such a situation, an output �le can be created, the so-called xxx.boite, this �le can

be used as data for a new run of the software. The xxx.boite �le has the same structure

as the xxx.noboite but does not contain the three last records. See Annex.

4.1 Bb ASCII �le

The bb output �le reports, for each mesh vertex, a stepsize. This ASCII �le is organized

as described in the Annex.

Note : The stepsize in a mesh vertex denotes, in some sense, the expected lenght of

all the edges emanating from this vertex.

4.2 Sub-domain (sub-region) a�ectation

In the case where several regions are meshed by GHS3D, the question is to make it possible

to know to which sub-region a tet belongs. In this way, it will be easy to assign a region

ag (a material property) to each tet. Records 4 and 5 of the \noboite" output �le (see

Annex) have been designed in this purpose.

First, an integer value is given to each mesh element (record 6). Second, a triangular

face is associated with each sub-region (record 5). Therefore, the responsability of the

user is to establish the correspondence between the above integer value and its own

system of sub-domain characterization.

What to do ? Pick a given face (for instance that characterizing the sub-domain

with number 1, i.e., the �rst face triple in record 5. Find where it is, then retrieve your

own number (for example 3) or system of sub-domain de�nition. Then all the tets with

the given sub-domain number (here 1) must be considered as subjected to the treatment

related to your own number (here 3) or any equivalent way as de�ned in your sub-region

de�nition system.

Remark : Clearly, when SUBNUMBER = 1, all this task is obvious and not really

useful. This is why records 4; 5 and 6 are organized as previously described (see the

above corresponding note).

Remark : When SUBNUMBER > 1 or in case of holes, see parameter OPTION

described in Section 8. This value must be appropriately related to what is expected.

5

5 Errors

At the time the GHS3D has completed an execution, three cases can be encountered :

� a xxx.noboite(b) �le exists : the resulting mesh is correct,

� a xxx.boite(b) �le exists : the algorithm has failed during the boundary regeneration

phase,

� no output �le has been created : the data (surface mesh) is not correct (the

boundary is self-intersecting in various ways or the initial set of points contains,

at least, two points which have been found identical).

More precisely, the reasons for which the algorithm failed have been catalogued as

follows :

� the surface mesh contains \facets" other than edge, triangle or quadrilateral,

� the surface is self-intersecting (at least, a surface edge intersects a surface facet,

an edge intersects another edge or a facet intersects another facet),

� the surface mesh includes hole(s) so that the domain is not properly de�ned,

� at least, two given points are identical or judged too close,

� the memory size is not su�cient,

� the boundary regeneration is not achieved (mostly due to the case where the

surface quality is too poor or when incompatible size face occurs for two faces that

are very close).

Section 10 lists the di�erent possible errors that can be encountered and gives a

coarse indication regarding the type of the detected error.

Remark : Most of the failures of the mesh generation algorithm are due to rather

bad surface mesh (in terms of element aspect ratios). To prevent this type of failures,

it is advised to input nice surface mesh (noticing at the same time that such a demand

is quite natural for �nite element computing since the tet quality is strongly related to

the surface facet quality).

6

6 Technical description of the algorithm

In this section are indications about the general scheme of the method together with

some remarks about how to include GHS3D in an host package.

6.1 Flowchart of the algorithm

In brief, the mesh generation algorithm is of a Delaunay type. The general scheme of

the method is given by :

� reading of the two input data �les,

� insertion process of the given points (by means of a constrained Delaunay type

method),

� boundary surface regeneration (basically by repeated face-edge swapping and var-

ious other techniques including the insertion of a few Steiner points),

� creation of the �eld points (based on the distribution of the surface vertices),

� insertion process of the �eld points (using a constrained Delaunay type method),

� optimization (by relocating the �eld points or by means of topological operators),

� writing of the output �les.

Technical details as well as algorithms used in the mesh generation procedure can

be found in a list of references provided in the bibliography section of this document.

6.2 Including GHS3D as an algorithm

Actually, the software package GHS3D consists of about 240 subroutines and, roughly

speaking, is organized in three main groups.

� INPUT : is related to the input data reading (the two input �les),

� ALGO : is related to the mesh generation algorithm,

� OUTPUT : is devoted to writing the resulting mesh and the corresponding step-

sizes onto two �les.

It is thus possible to extract the second step in order to include the mesh generation

algorithm in a given software package (thus taking bene�t from the current background

available while reducing the CPU cost).

Note also the subroutine PRIERR in which are the print orders. See also the sub-

routines LIRNBO and ECRNBO designed for reading and writing a \noboite" type

�le.

7

7 Application examples

7.1 Goal

The aim of the method is to construct an isotropic mesh consisting of tetrahedral ele-

ments (tet in short) enjoying the best possible quality (the optimum being the regular

(\equilateral") element). Thus, the expected resulting mesh must include a maximum of

well shaped elements and, on the other hand, must have as worst element(s) that (those)

possessing a bad shaped surface face. This demonstrates how the surface mesh quality

is a crucial factor. When the mesh generation process is completed, an histogram helps

the user to appreciate the mesh quality. This histogram reports the number of elements

falling into various ranges of quality.

The quality function retained in GHS3D is de�ned, for tet K, as follows :

Q

K

= �

h

max

�

K

; (1)

where h

max

is the element diameter, i.e., its longest edge while �

K

is the inradius of

element K. Notice that this value varies between 1 to1 and that the more Q

K

is close

to 1, the best is tet K. Indeed, Q

K

measures the so-called degradation of element K.

7.2 Programming language and supported computers

The software is written in F77 (one routine being in C).

Basically, the software has been developed using HP workstations. Nevertheless,

a lot of di�erent types of workstations and mainframes have been used to validate the

software. Among them are SUN, Silicon Graphics, DEC alpha, IBM 6000, Cray C90, ...,

as well as various PC's.

A main program, in C, namely ghs3d, is available. Options are possible including

-h [-formatted|-f] -m k -o opt -p print PrefixFile

by typing -h, information is provided about the meaning of the various options that are

available.

7.3 Memory requirement

About 100 integer values are required to process one point, thus it is possible to assign

the memory space which is expected. A typical memory space needed for up to 600 000

elements is about 16 000 000 words meaning about 64 MegaBytes (32 bits architecture).

The main program, written in C, allows the dynamic memory allocation. The default

value is 16 000 000 words for the memory size. According to the expected size of the

mesh, it is possible to change this value by adding on the command line (in Unix system)

the desired value in million of words. Thus typing

ghs3d -m 10

stands for the allocation of 10 millions words (where ghs3d is the name of the main),

while

ghs3d

stands for the default value.

8

7.4 Cpu time expected

The CPU time expected for creating a mesh (including i/o) is a function of di�erent

parametres including, in particular, the size (the volume) of the domain and the quality

of the surface mesh. It is reasonable to expect (using a modern workstation) a CPU

time (including I/O) of :

� few seconds to create a mesh of one to several thousands elements,

� about one minute for roughly one million elements.

Note that a 50 million tet mesh has been successfully constructed (using a 64 bits

version of GHS3D. The CPU time is then impeded by some cache arguments.

7.5 More about quality concerns

The main concern of GHS3D is to construct good quality elements. To this end, the

quality function is that previously de�ned. On the other hand, various other properties

are emphatised (since Version 3.0).

Delaunay criterion. While internally based on a Delaunay type method (for point

connection), the mesh generator does not guarantee that the resulting mesh is fully

Delaunay. In this way, non Delaunay surface mesh can be handled with success. Nev-

ertheless, most of the tet inside the mesh are Delaunay tets apart in regions where the

input surface mesh is not suitable to guarantee such property. However, the current

release includes an algorithm that favor this property.

Self-centered elements. Elements opposite a boundary face have received a special

treatment that aims to make them self-centered (a tet is self-centered when its circum-

center falls inside it). This property is of interest, in speci�c, when a �nite volume

method is used furthermore.

7.6 Application examples

The GHS3D automatic mesh generator has been tested on more than 500 signi�cant

examples resulting in meshes ranging from 4 elements to more than 10 million elements.

Two of them are depicted in the following �gure, while Tables 1 and 2 report the cost

(in terms of cpu time) to process these two cases and larger ones. Table 1 recall the

previous versions capabilities while Table 2 refers to the current release (the CPUs are

those obtained using a HP9000-C3600 (PA8600-552Mhz)).

In the �rst two tables, ne is the number of elements, np is the number of vertices, t

denotes the CPU time in sec. (including i/o) while v indicates the number of elements

created within one minute. Del is the percentage of e�ort used in the Delaunay part of

the mesh generation algorithm (i.e., Del corresponds to the insertion of both the given

points and the bulk points created inside the given domain).

9

O
X Y

Z

Figure 1: Mesh example in solid mechanics (courtesy of SDRC, Cincinatti, OH). Mesh

example in CFD (courtesy of Dassault-Aviation).

Figure 2: Mesh example in biomedicine (courtesy of Low Temp. Lab., Helsinki Univ.).

Mesh example im microelectronics (EEC Magic Feat IST project).

- np ne t (in sec., HP 9000) v Del

Example 1 1 014 3 601 1.54 140 000 17

V2.0 1 077 3 986 0.84 284 000 16

Example 2 36 252 191 279 29.39 390 000 49

V2.0 29 630 151 457 15.60 582 000 53

Example 3 62 495 369 304 58.93 376 000 44

V2.0 22 871 131 668 13.40 590 000 39

Example 4 (V2.0) 110 292 614 691 64.60 571 000 53

Example 5 (V2.0) 269 993 1 562 489 182.51 513 000 48

Table 1: GHS3D: Cpu requirements, V1.0 (HP 9000/735) and V2.0 (HP 9000/780).

10

- np ne t (in sec., HP 9000) v Del

Example 1 1 040 3 751 0.45 500 000 14

Example 2 15 293 85 764 3.86 1 300 000 22

Example 3 25 689 127 404 5.07 1 500 000 31

Example 4 79 764 430 033 18.30 1 400 000 38

Example 5 157 261 879 173 43.83 1 200 000 40

Example 6 337 945 1 951 845 97.67 1 200 000 37

Table 2: GHS3D: Cpu requirements, V3.0 HP 9000/C3600.

- np ne t (in sec., HP 9000) v

Example 1 1 050 3 804 0.17 1 300 000

Example 2 15 509 86 93 4 1.45 3 600 000

Example 3 25 984 129 060 2.81 2 700 000

Example 4 80 278 432 815 8.49 3 000 000

Example 5 158 500 885 914 26.36 2 000 000

Example 6 540 356 2 931 116 161.47 1 100 000

Table 3: GHS3D as an optimizer : Cpu requirements, V3.0 HP 9000/C3600.

The third table demonstrates how GHS3D can be used as an optimizer. Note, in this

case, that the CPU includes the i/o which can be time consuming (based on the size of

the mesh under optimization).

Version V3.0, Table 2, bene�ts from various improvements leading to better quality

meshes with less nodes and rather less CPU requirements (while biased by the change of

computer, this point has been demonstrated using again some old machines in principle

out of service).

Remark : The above statistics (mostly for t) are strongly dependent on the computer

where the program runs. Nevertheless, computers of various computer-makers with

almost similar capabilities lead to similar characteristics.

11

7.7 A typical output

../ghs3d

PRINT (0 10(advised) -10) ?

10

-- GHS3D (INRIA) Release V2.0

-- FILE BASENAME ?

bielletest

%% bielletest.points FOUND

%% bielletest.faces FOUND

** points AND faces

OPTION ? : 0 ==> STANDARD

-1 , -2 , -3 , -4 , -5 , - 6 , -7 ==>

NOPO, - optim, before integrity, sd 1, all sd, boundary , private

0

-- READING THE DATA

-- READING THE POINT FILE bielletest.points

OPERATION COMPLETED

-- READING THE FACE FILE bielletest.faces

OPERATION COMPLETED

NUMBER OF GIVEN VERTICES 758

NUMBER OF GIVEN TRIANGLES 1512

-- DATA READING COMPLETED

-- SURFACE MESH QUALITY 1512

WORST ELEMENT QUALITY 11.32872

BEST ELEMENT QUALITY 1.00757

WORST ELEMENT 220 226 308

HISTOGRAM

1 < Q < 2 81% 1231

2 < Q < 3 14% 222

3 < Q < 4 2% 43

4 < Q < 5 0% 8

5 < Q < 6 0% 2

6 < Q < 7 0% 0

7 < Q < 8 0% 2

8 < Q < 9 0% 0

9 < Q < 10 0% 0

10. < Q < 100. 0% 4

** TARGET VALUE 8.30351

&&&

MODULE GHS3D-INRIA : V2.0

&&&

MAXIMUM NUMBER OF POINTS 149177

MAXIMUM NUMBER OF ELEMENTS 596708

-- PHASE 1 : SPECIFIED POINTS

-- PHASE 1 COMPLETED

-- PHASE 2 : BOUNDARY REGENERATION

-- MISSING FACES 136 AMONG 1512

-- MISSING EDGES 69 AMONG 2268

-- MISSING EDGES 4 AMONG 7

-- MISSING EDGES 2 MISSING FACES 4

-- MISSING EDGES 2 MISSING FACES 4

-- MISSING EDGES 0 MISSING FACES 0

-- PHASE 2 COMPLETED

-- PHASE 3 : FIELD POINTS

-- 34 POINTS PROPOSED 0 POINTS DISCARDED

-- 222 POINTS PROPOSED 1 POINTS DISCARDED

-- 48 POINTS PROPOSED 0 POINTS DISCARDED

-- 6 POINTS PROPOSED 0 POINTS DISCARDED

-- PHASE 3 COMPLETED

-- PHASE 4 : OPTIMIZATION

-- PHASE 4 COMPLETED

-- RESULTING MESH QUALITY 3986

WORST ELEMENT QUALITY 11.06646

BEST ELEMENT QUALITY 1.04676

WORST ELEMENT 466 501 502 462

HISTOGRAM

1 < Q < 2 78% 3124

2 < Q < 3 16% 668

3 < Q < 4 2% 114

4 < Q < 5 1% 41

5 < Q < 6 0% 12

6 < Q < 7 0% 12

7 < Q < 8 0% 3

8 < Q < 9 0% 6

9 < Q < 10 0% 4

10. < Q < 100. 0% 2

** NUMBER OF ELEMENTS WORSE THAN TARGET VALUE 7

&&

END OF MODULE GHS3D-INRIA

&&

-- WRITING THE OUTPUT FILE

NUMBER OF GIVEN VERTICES 758

NUMBER OF CREATED VERTICES 319

TOTAL NUMBER OF VERTICES 1077

NUMBER OF TETRAHEDRA 3986

NUMBER OF SUB-DOMAINS 1

-- WRITING COMPLETED (6 RECORDS) bielletest.noboiteb

-- WRITING COMPLETED (2 RECORDS) bielletest.bb

TOTAL CPU .9800000000000001 SEC.

244040 ELEMENTS (265733) WITHIN A MN. FOR bielletest

&&

MODULE GHS3D-INRIA : V3.0

&&

........

-- RESULTING MESH QUALITY 3751

WORST ELEMENT QUALITY 9.15487

BEST ELEMENT QUALITY 1.06492

WORST ELEMENT 308 655 226 220

|------ HISTOGRAM ------|

1. < Q < 2. 77% 2873

2. < Q < 3. 19% 718

3. < Q < 4. 2% 79

4. < Q < 5. 1% 38

5. < Q < 6. 1% 23

6. < Q < 7. 0% 13

7. < Q < 8. 0% 1

8. < Q < 9. 0% 4

9. < Q < 10. 0% 2

** NUMBER OF ELEMENTS WORSE THAN TARGET VALUE 3

&&

END OF MODULE GHS3D-INRIA

&&

-- WRITING THE OUTPUT FILES

NUMBER OF GIVEN VERTICES 758

NUMBER OF CREATED VERTICES 282

TOTAL NUMBER OF VERTICES 1040

NUMBER OF TETRAHEDRA 3751

NUMBER OF SUB-DOMAINS 1

-- WRITING COMPLETED (6 RECORDS) bielle.noboiteb

-- WRITING COMPLETED (2 RECORDS) bielle.bb

TOTAL CPU .57000 SEC.

394842 ELEMENTS (432807) WITHIN A MN. FOR bielletest

12

8 Options and physical description

This section concerns the possible options and the way in which the physics can be

associated with the resulting mesh.

8.1 Options

The mesh generation algorithm is fully automatic, no particular options or values are

required to run the program.

Depending on the installation, the sole available options concern the printout rate

and the selection of such or such type of output.

The printout rate (verbosity), namely PRINT , is de�ned as follows :

� PRINT = 0: Minimum rate,

� PRINT = 10: Reasonable rate (advised),

� PRINT = -10: Maximal rate (not advised, except for debugging purpose).

The output is de�ned by the so called OPTION as follows:

� OPTION 0 : standard case, a xxx.noboite �le is created as output,

� OPTION -1: a NOPO �le is created in addition (NOPO is the mesh data struc-

ture of software package Modulef

4

),

� OPTION -2: (private) output before processing the optimization phase,

� OPTION -3: (private) output at the time the given points have been inserted, a

xxx.boite �le contains the mesh of an enclosing box of the domain,

� OPTION -4 and OPTION -5: cases where the domain includes several connected

components (see below),

� OPTION -6: (private) output after the boundary regeneration phase, a xxx.noboite

�le is created,

� OPTION -7: (private) output after the boundary regeneration phase, a xxx.boite

�le is created.

8.2 Entering the physics

By itself, the mesh generation algorithm does not consider the physical attributes in-

cluded in the xxx.points �le as well as in the xxx.faces �le. Thus, the xxx.noboite �le

does not contain these information. To obtain the latter, a post-processing is needed

based on the fact that the numbering of the initial points is not a�ected by the mesh

generation process. This post-processing is in charge of associating the physics with

4

Available only on request.

13

the points, edges, faces and elements in the mesh in such a way as to make the desired

computation possible.

As default option, it is assuming that the domain to be meshed is of one of the

following types :

� a domain with one connected component (one material),

� a domain with one connected component but having one or several holes.

In these cases, the output �le will contains exactly the domain so-de�ned. In the case

where several connected components exist and such or such must be retained, OPTION

must be �xed as follows:

� OPTION -4: component number 1 is selected (the component de�ned as compo-

nent number one is that immediately encountered when starting from the outside

of the whole domain (in case of ambiguous situations, this option is not advised).

� OPTION -5: all the connected components are selected, in particular, possible

holes and sub-domains are not considered as distinct

5

.

Figure 3: From top to bottom, from left to right : i) one region, ii) one region including

one hole, iii) one region with two holes and iv) three sub-domains and two holes.

5

An easy to write program is then necessary to identify the elements in such or such component, see

also Section 4.2.

14

9 Di�usion

There are roughly two possibilities to obtain the GHS3D software package One entry point

could be INRIA (in connection with Dist�ene), the other is Dist�ene, a commercial former

subsidiary of INRIA.

9.1 From Dist�ene

Dist�ene (the former Simulog-Technologies) is in charge of licensing the mesh generation

algorithm. Several possibilities are available including the license of the algorithm as

itself or the license of SIMAIL, a powerful mesh generation software including the GHS3D

algorithm as an option. Simulog-Technologies o�ers a series of services connected to the

software including integration, portage, maintenance, hot line, etc.

� Dist�ene S.A.S.

� Pôle Teratec - BARD-1, Domaine du Grand Ru�e

� 91680 Bruy�eres le Chatel

� FRANCE

Fax number : (33) 1 69 26 62 30 (attention Mark Loriot or Laurent Ann�e)

Fax number : 01 69 26 90 33 (attention Mark Loriot or Laurent Ann�e)

E-mail : mark.loriot@distene.com or Laurent.Anne@distene.com

9.2 From INRIA

INRIA (in connection with Dist�ene) has the license of di�using the GHS3D algorithm

under some conditions. The address is as follows:

� Relations Industrielles

� INRIA, domaine de Voluceau

� Rocquencourt

� BP 105, 78153 Le Chesnay Cedex

� FRANCE

E-mail : paul-louis.george@inria.fr

Fax number : (33) 1 3963 5882 (attention Paul Louis George)

or could be : (33) 1 3963 5034 (attention Dominique Begis)

10 List of errors

Warnings, errors or causes of failure are identi�ed and detailed in the following. Diag-

nostics are provided corresponding mainly to

� the correctness of the surface mesh serving as input data,

� the lack of computer memory,

15

� others.

The list of available diagnostics is as follows :

� ERR 0000 : The surface mesh includes a facet of type type other than edge, triangle or

quadrilateral. Table list gives the vertices of this facet. This facet type is not supported.

** Subdivide this facet into an available type facet.

� ERR 0001 : Not enough memory allocation for the facet table. There are nf facets while

the table is nfmax long. ** Modify the memory resource allocation.

� ERR 0002 : Not enough memory, there are np points and npmax points have been allo-

cated. ** Modify the memory resource allocation.

� ERR 0003 : Not enough memory, there are ne elements and nemax elements have been

allocated. ** Modify the memory resource allocation.

� ERR 0004 : Facet number j with vertices list is not considered.

� ERR 0005 : end of �le.

� ERR 0006 : failure when reading the �le.

� ERR 0007 : the metric �le is inadequate (dimension other than 3).

� ERR 0008 : the metric �le is inadequate (values not per vertices).

� ERR 0009 : the metric �le contains more than one �eld.

� ERR 0010 : the number of values in the metric �le is incompatible with the expected

value (the number of mesh vertices).

� ERR 0012, LIRNBO, ndsd, ndsdmax.

Too much sub-domains (more than ndsdmax).

� ERR 0022 : incompatible data (see also ERR 3122).

� ERR 1000 : Facet (f1; f2; f3) appears more than once in the input surface mesh (warning).

� ERR 1001 : Edge (e1; e2) appears more than once in the input surface mesh (warning).

� ERR 2000 : Not enough available memory (stop).

� ERR 2002 : n initial points cannot be inserted (stop). ** The surface mesh is probably

very bad in terms of quality or the input list of points is wrong (see also the following

ERR).

� ERR 2003 : Vertex v1 and vertex v2 are too close or coincident (stop).

� ERR 2004 : Vertex v1 and vertex v2 are too close or coincident (warning).

� ERR 2012 : Vertex v1 cannot be inserted (warning).

� ERR 2014 : There is at least two points whose distance is dist, i.e., judged coincident

(stop).

� ERR 2103 : Vertex v1 and vertex v2 are too close or coincident (warning).

16

� ERR 3000 : The surface mesh regeneration step has failed. A xxx.boite �le is created

(stop). ** Try again with this �le as input or modify (optimize, subdivide, etc.) the

surface mesh.

� ERR 3009 : Constrained edge (e1; e2) cannot be enforced (warning).

� ERR 3019 : Constrained facet (f1; f2; f3) cannot be enforced (warning).

� ERR 3029 : Number of missing facets (warning).

� ERR 3100 : No guess to start the de�nition of the connected component(s) (stop).

� ERR 3101 : The surface mesh includes at least one hole. The domain is not well de�ned

(warning). ** Check your surface mesh.

� ERR 3102 : Impossible to de�ne a component (stop). Are respectively reported the num-

ber of external tet, internal tet, unclassi�ed tet and the number of connected components.

� ERR 3103 : The surface edge (e1; e2) intersects another surface edge (e3; e4) (stop). **

Check your surface mesh.

� ERR 3104 : The surface edge (e1; e2) intersects the surface facet (f1; f2; f3) (stop). **

Check your surface mesh.

� ERR 3105 : One boundary point (say p1) lies within a surface facet (f1; f2; f3) (stop).

** Check your surface mesh.

� ERR 3106 : One surface edge (say e1; e2) intersects a surface facet (f1; f2; f3) (stop). **

Check your surface mesh.

� ERR 3107 : One boundary point (say p1) lies within a surface edge (e1; e2) (stop). **

Check your surface mesh.

� ERR 3108 : Insu�cient memory resources detected due to a bad quality surface mesh

leading to too much swaps. (stop). ** Check the surface mesh. Improve its quality

and/or allocate more memory size.

� ERR 3109 : Edge (e1; e2) is unique (�.e., bounds a hole in the surface) (warning).

� ERR 3122 : Presumably, the surface mesh is not compatible with the domain under

treatment (warning). ** Check that you are doing what you really think.

� ERR 3123 : the number of sub-domains (materials) exceeds the allocated limit (1024).

� ERR 3209 : The surface mesh includes at least one hole. Thus there is no domain properly

de�ned (stop). ** Check the surface mesh and suppress the hole(s).

� ERR 3300 : Statistics.

� ERR 3400 : Statistics.

� ERR 3500 : Warning, it is dramatically tedious to enforce the boundary items (warning).

** Check the surface mesh. Improve its quality.

� ERR 4000 : Not enough memory at this time, n evertheless, the program continues (warn-

ing). ** The expected mesh will be correct but not really as large as required.

� ERR 4002 : see above error code.

� ERR 8000 : Unknown facet type.

17

� ERR 8001, f1; f2; f3.

Facet (f1; f2; f3) appears more than once in the surface mesh.

� ERR 8002, e1; e2.

Edge (e1; e2) appears more than once in the surface mesh.

� ERR 9000 : A too small volume element is detected. Are reported the index of the

element, its four vertex indices, its volume and the tolerance threshold value (warning).

� ERR 9001 : There exist at least a null or negative volume element. The resulting mesh

will be inappropriate (warning).

� ERR 9002 : There exist n null or negative volume element. The resulting mesh will be

inappropriate (warning).

� ERR 9003 : A too small volume element is detected. A facet is judged degenerated, its

minimum edge length is reported (warning).

� ERR 9100 : see above ERR 9000.

� ERR 9101, t, list, Q.

The aspect ratio of element t with vertices list is Q. This element is suspected to be very

bad shaped or wrong.

� ERR 9102 : A too bad quality facet is detected. This facet is judged degenerated, its

index, its three vertex indices together with its quality value are reported (warning).

� ERR 9112 : A too bad quality facet is detected. This facet is judged degenerated, its

index, its three vertex indices together with its inradius are reported (warning).

� ERR 9122 : see above ERR 3122.

� ERR 9999 : Bug symptom, contact the hot-line.

18

11 Coming soon

Right now, the GHS3D software is widely used in various types of calculations (automo-

tive, aerospace, mechanical engineering, etc.) by numerous end-users. It is also included

in some major commercial software packages. This allows for concrete experiences and

ideas of improvement in all aspects of the program.

Adaptive versions are in development including the so-called GAMHIC3D software

that concerns the construction of isotropic adaptive tet meshes based on a metric size

(de�ned by a background mesh). Anisotropic problems are also considered and an

anisotropic version (unnamed at this time) is expected in the coming future.

References

[1] P.L. George, F. Hecht, E. Saltel, Fully automatic mesh generator for 3d domains of

any shape, Impact of Comp. in Sci. and Eng., 2, pp 187-218, 1990.

[2] P.L. George, G�en�eration automatique de maillages. Applications aux m�ethodes d'�el�ements

�nis, RMA 16, Masson, Paris, 1991. Also as Automatic mesh generation. Applications to

�nite element methods, Wiley, 1991.

[3] P.L. George, F. Hecht, E. Saltel, Automatic mesh generator with speci�ed boundary,

Comp. Meth. in Appl. Mech. and Eng., vol 92, pp. 269-288, 1991.

[4] P.L. George, F. Hecht, M. G. Vallet, Creation of internal points in Voronoi's type

method, Control and adaptation, Adv. in Eng. Soft., 13, n

o

5/6, pp. 303-313, 1991.

[5] P.L. George, F. Hermeline, Delaunay's mesh of a convex polyhedron in dimension d.

Application to arbitrary polyhedra, Int. Jour. Num. Meth. Eng., vol 33, pp. 975-995, 1992.

[6] E. Briere de l'Isle, P.L. George, Optimization of tetrahedral meshes, IMA Volumes

in Mathematics and its Applications, ed. I. Babuska, W.D. Henshaw, J.E. Oliger, J.E.

Flaherty, J.E. Hopcroft and T. Tezduyar, vol 75, pp. 97-128, 1995.

[7] H. Borouchaki, F. Hecht, E. Saltel, P.L. George, Reasonably e�cient Delaunay

based mesh generator in 3 dimensions, in 4th International Meshing Roundtable, Albu-

querque, New Mexico, pp. 3-14, 1995.

[8] P.L. George, Improvement on Delaunay based 3D automatic mesh generator, Finite

Elements in Analysis and Design, vol 25(3-4), pp. 297-317, 1996.

[9] P.L. George et H. Borouchaki, Triangulation de Delaunay et maillage. Applications

aux �el�ements �nis, Herm�es, Paris, 1997. In english, Delaunay triangulation and meshing.

Applications to Finite Elements, Herm�es, 1998.

[10] P.J. Frey et P.L. George, Maillages. Applications aux �el�ements �nis, Herm�es, Paris,

1999. In english, Mesh Generation, Herm�es Science Publication, 2000.

19

