Deterministic Networking for the Industrial IoT

- Monitoring the Snow Melt Process in the Sierra Nevada
- Monitoring Frost Events for a Peach Orchard in Mendoza

Keoma Brun-Laguna, Thomas Watteyne, Pascale Minet
EVA team - (brand new!) Inria-Paris & REALMS associate team
https://kbl.netlib.re/blog/

RESCOM days, Inria-Lille, 13 January 2016
(Long-term) Goal of my Research

• Study the limits of TSCH networks
 • Can we achieve Control Loop?
 • Network tuning impact on Energy Consumption?

• We need connectivity information
 • Fit-IoT Lab
 • Real deployments
EVA Research Team
Wireless Networking for Evolving & Adaptive Applications

Paul M.
Pascale M.
Thomas W.
Jonathan M.
Tengfei C.
M. Vučinić
Keoma B-L.

and many more!
REALMS Associate Team

Prof. Steven Glaser
Prof., Systems Eng.
UC Berkeley

Prof. Branko Kerkez
Assist. Prof., Systems
U. Michigan
Goal

Monitor the Snow Melt Process in the Sierra Nevada Using Reliable Low-power Wireless Mesh Networks
So, why snow?
<table>
<thead>
<tr>
<th>Name</th>
<th>Operational Since</th>
<th>Elevation (m)</th>
<th># Devices (Managers/NeoMotes/Repeaters)</th>
<th># Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>2013</td>
<td>2269</td>
<td>37 (1/10/27)</td>
<td>70</td>
</tr>
<tr>
<td>Bear Trap</td>
<td>2013</td>
<td>1518</td>
<td>38 (1/10/27)</td>
<td>70</td>
</tr>
<tr>
<td>Caples Lake</td>
<td>2013</td>
<td>2437</td>
<td>37 (1/11/25)</td>
<td>79</td>
</tr>
<tr>
<td>Dolly Rice</td>
<td>2014</td>
<td>1980</td>
<td>11 (1/10/0)</td>
<td>70</td>
</tr>
<tr>
<td>Duncan Peak</td>
<td>2013</td>
<td>2907</td>
<td>42 (1/11/30)</td>
<td>78</td>
</tr>
<tr>
<td>Echo Peak</td>
<td>2013</td>
<td>2478</td>
<td>54 (1/10/43)</td>
<td>71</td>
</tr>
<tr>
<td>Mount Lincoln</td>
<td>2013</td>
<td>2477</td>
<td>36 (1/11/24)</td>
<td>78</td>
</tr>
<tr>
<td>Onion Creek</td>
<td>2013</td>
<td>1891</td>
<td>11 (1/10/0)</td>
<td>72</td>
</tr>
<tr>
<td>Owens Camp</td>
<td>2014</td>
<td>1586</td>
<td>24 (1/11/12)</td>
<td>77</td>
</tr>
<tr>
<td>Robbs Saddle</td>
<td>2013</td>
<td>1812</td>
<td>33 (1/10/22)</td>
<td>70</td>
</tr>
<tr>
<td>Schniders</td>
<td>2013</td>
<td>2673</td>
<td>38 (1/10/27)</td>
<td>70</td>
</tr>
<tr>
<td>Talbot Camp</td>
<td>2014</td>
<td>1738</td>
<td>11 (1/10/0)</td>
<td>70</td>
</tr>
<tr>
<td>Van Vleck</td>
<td>2013</td>
<td>2069</td>
<td>38 (1/10/27)</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>414 (11/134/264)</td>
<td></td>
<td>945</td>
</tr>
</tbody>
</table>
My contribution

Object-based end-to-end data and connectivity data management solution

Application-level objects:
- 1 object == 1 sensor reading or statistic
- multiple objects per packet
- Protected by object security
PEACH SticAmSud
PrEcision Agriculture through Climate research
STIC Am-Sud
PrEcision Agriculture through Climate researchH, 2016-2019

Prof. Diego Dujovne
UDP

Gustavo Mercado
UTN

Equipe EV A - Keoma Brun-Laguna
Goal

Monitor the Weather and predict Frost Events
Thank you

- Study the limits of TSCH networks
 - Can we achieve Control Loop?
 - Network tuning impact on Energy Consumption?

- We need connectivity information
 - FiT-IoT Lab
 - Real deployment (Sierra Nevada and Mendoza orchards)