
IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

Hands on Contiki OS and

Cooja Simulator (Part I)
Dr. Simon Duquennoy

Swedish Institute of Computer Science (SICS)

simonduq@sics.se

Ing. Pietro Gonizzi

Wireless Ad-hoc Sensor Network

Laboratory(WASNLab), University of Parma

pietro.gonizzi@studenti.unipr.it

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy 2

Outline

- Contiki Overview

- Basics

- Programming your first application

- The Cooja simulator

- IPv6 Networking

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Goal of this Course

- Introduction to Contiki and the Cooja network simulator

‣ Help you to start writing Contiki applications

‣ Basis for further exploration

‣ No low level details

‣ Will not be able to cover everything on the slides

- Together with the notes, you should be able to continue

3

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Wireless Sensor Networks

- Consist of many embedded units called sensor nodes, motes etc.

‣ Sensors (and actuators)

‣ Small microcontroller

‣ Limited memory

‣ Radio for wireless communication

‣ Power source (often battery)

- Motes form networks and in a one hop or multi-hop fashion transport sensor data to base station

4

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Applications

- Classic WSN applications

‣ volcano monitoring

‣ wildlife monitoring

‣ tunnel monitoring and rescue

- …and many IoT-based applications

‣ Smart Parking

‣ Smart Lighting

‣ Smart Plants

‣ Smart Toys

‣ Building/Home Automation

5

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

WSN Operating Systems

‣ OS is interface between hardware and programmer

- Hides many details

‣ Contains drivers to radio and sensors, scheduling, network stacks, process & power

management

‣ Due to memory constraints and target (embedded) not as convenient as OS for PCs

- Limited user interaction

‣ TinyOS, Contiki, FreeRTOS, Mantis OS

6

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Contiki Overview

‣ Contiki – a dynamic operating system for networked embedded systems

- Main author and project leader: Adam Dunkels (Thingsquare, earlier SICS)

‣ Small memory footprint

- Event-driven kernel, multiple threading models on top

‣ Designed for portability

- Many platforms (Tmote Sky, Zolertia, RedBee etc.), several CPUs

- Code hosted on github

‣ Used in both academia and industry

- Contributors from Atmel, Cisco, Redwire LLC, SAP, SICS, Thingsquare, and others

7

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Contiki Overview

Basically, Contiki is:

‣ A scheduler (event handler)

- Loop that just takes the next event and processes it

- Nothing to do->goes to sleep (MCU low power mode)

‣ Set of services

- Networking, storage, timers, and others

8

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Contiki Programming Model: Protothreads

‣ The Contiki kernel is event-based

- invokes processes whenever something happens:

- sensor events, processes starting, exiting

‣ Protothreads provide sequential flow of control on top of an event-based kernel

- Easy to program

- Also comes with some limitations, discussed later

9

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Protothreads: Example

10

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Protothreads
‣ Single stack

- Low memory usage, like events

‣ Sequential flow of control

- No explicit state machines, just like threads

‣ Implemented using local continuations (a continuation is an abstract representation of the

control state of a program)

- When Set, capture the state of a function

- When resumed, resume the state and perform a jump

- Stack information across blocking calls must be manually stored and retrieved (e.g. static

variable). See issue with protothreads next

11

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Protothreads – Symplifying Event-driven Programming

12

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Protothreads-based Implementation

13

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Contiki Processes

Contiki processes are protothreads:

‣ PROCESS_THREAD defines a new process

‣ PROCESS_BEGIN() and PROCESS_END()

‣ PROCESS_WAIT_EVENT() or PROCESS_YIELD() wait for new event to be posted to process

‣ PROCESS_WAIT_EVENT_UNTIL(condition c) waits for an event to be posted with extra

condition, e.g.

- Button has been pressed

- Timer has expired

14

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Protocol stacks
Protocol stacks in Contiki:

‣uIP: world's smallest, fully compliant TCP/IP stack

- Both IPv4 and IPv6, 6LowPAN, routing RPL, TCP/UPD support

- Also higher layer protocols: HTTP, CoAP and many others

‣Rime stack: protocol stack consisting of simple primitives

‣MAC layers in Contiki:

- Carrier Sense Multiple Access (CSMA)

- NullMAC

‣Radio Duty-Cycling (RDC) layers

- ContikiMAC (default on Tmote Sky)

- NullRDC (duty cycle off)

- And others (less tested): LPP, X-MAC

15

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Cooja simulator
- COOJA: extensible Java-based network simulator for Contiki-based applications

- Cross-level: Java nodes, Contiki nodes (deployable code), emulated nodes (deployable

firmware, not necessarily contiki)

- MSPSim: sensor node emulator for MSP430-based nodes:

- Tmote Sky, Zolertia Z1, Wismote, etc.

- Enables cycle counting, debugging, power profiling etc.

- Integrated into COOJA or standalone

- COOJA +MSPSim

‣ Simulate the network, emulate every nodes’ firmware

‣ Also enables interoperability testing for MSP-based

platforms (e.g. IPv6 interop testing)

16

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Cooja features
‣ Network Visualizer

- mote type, grid, radio environment, radio traffic, etc.

- Enables changes to the TX/INT range

‣ Mote output

- serial output of the nodes (e.g. printf())

‣ Timeline

- radio activity of the nodes in real-time

- E.g., radio status, ongoing packets

‣ Radio messages

- capturing radio packets

- Useful for Wireshark analysis

17

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Programming your first app: Hello World

18

/* Declare the process */
PROCESS(hello_world_process, “Hello world”);
/* Make the process start when the module is loaded */
AUTOSTART_PROCESSES(&hello_world_process);

/* Define the process code */
PROCESS_THREAD(hello_world_process, ev, data) {
 PROCESS_BEGIN(); /* Must always come first */

 printf(“Hello, world!\n”); /* code goes here *

 PROCESS_END(); /* Must always come last */
}

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Makefile

CONTIKI_PROJECT = hello-world

all: $(CONTIKI_PROJECT)

UIP_CONF_IPV6=1

CONTIKI = /home/user/contiki

include $(CONTIKI)/Makefile.include

19

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Running Hello World
- native platform (your VM)

 cd contiki/examples/hello-world

 make hello-world.native

‣ After the compilation, start the program with

 ./hello-world.native

‣ The program prints “Hello, World” and finishes (appears to hang). Interrupt it by pressing Ctrl-C

- Tmote sky platform

‣ place Tmote in a USB and it will appear in the top of instant Contiki as “Future Technologies Device”. Click on name to
connect it to Instant Contiki.

 cd contiki/examples/hello-world

 make TARGET=sky hello-world.upload

‣ When the compilation is finished, the uploading procedure starts (LEDS blink like crazy).

‣ You can see the output of the program by logging into the node

 make login TARGET=sky

‣ Press the reboot button to see some output

20

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Contiki directories
‣ contiki/core

- System source code; includes (among others)

- net: rime, MACs, IP etc;

- sys: processes

‣ contiki/examples

- Lots of nice examples, see /ipv6 for examples with uIP stack

‣ contiki/apps

- System apps (telnet, shell, deluge), not your application code!

‣ contiki/platform

- Platform-specific code:

- platform/sky/contiki-sky-main.c

- platform/sky/contiki-conf.h

‣ contiki/cpu

- CPU-specific code: one subdirectory per CPU

‣ contiki/tools

- e.g. cooja, start with “ant run”

- tools/sky contains serialdump (start with “./serialdump-linux -b115200 /dev/ttyUSB0”) and other useful stuff

21

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Timers in Contiki

‣ struct timer

- Passive timer, only keeps track of its expiration time

‣ struct etimer

- Active timer, sends an event when it expires

‣ struct ctimer

- Active timer, calls a function when it expires

‣ struct rtimer

- Real-time timer, calls a function at an exact time. Reserved for OS internals

22

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Events and Processes

PROCESS_WAIT_EVENT();
Waits for an event to be posted to the process

PROCESS_WAIT_EVENT_UNTIL(condition c);
Waits for an event to be posted to the process, with an extra condition. Often used: wait until timer

has expired

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

PROCESS_POST(...) and PROCESS_POST_SYNCH(..)
Post (a)synchronous event to a process.
The other process usually waits with PROCESS_WAIT_EVENT_UNTIL(ev == EVENTNAME);

23

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Netstack

- By default, Contiki on Tmote sky uses ContikiMAC

24

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Measure Power Consumption with Energest

PROCESS_BEGIN();

 static struct etimer et;

 static unsigned long rx_start_time;

 ...

...

 rx_start_time = energest_type_time(ENERGEST_TYPE_LISTEN);

 lpm_start_time = energest_type_time(ENERGEST_TYPE_LPM);

 cpu_start_time = energest_type_time(ENERGEST_TYPE_CPU);

 tx_start_time = energest_type_time(ENERGEST_TYPE_TRANSMIT);

..

 printf("energy listen %lu tx %lu cpu %lu lpm %lu\n",

 energest_type_time(ENERGEST_TYPE_LISTEN) - rx_start_time, // in while loop

 energest_type_time(ENERGEST_TYPE_TRANSMIT) - tx_start_time,

 energest_type_time(ENERGEST_TYPE_CPU) - cpu_start_time,

 energest_type_time(ENERGEST_TYPE_LPM) - lpm_start_time);

 PROCESS_END();

}

25

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Measure Power Consumption with Energest

‣ Now we have the times a component was on, eg

- CPU on (“cpu”), CPU idle (“lpm”), Radio tx, Radio rx, Radio idle, Flash operations, etc

‣ Note: the cpu is always either on or idle, total runtime = “cpu” + “lpm”

‣ Can be used to estimate energy consumption

- Based on power draw (from datasheet or measured)

- Using other metrics, such as “duty cycle”, the portion of time with radio on

- Duty cycle = (tx+rx) / (cpu+idle)

26

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Measure Power Consumption with Energest

27

IoT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy Ing. Pietro Gonizzi, Dr. Simon Duquennoy

Pietro Gonizzi and Simon Duquennoy

Thank you

28

