INLAD IC.T SICS

Hands on Contiki OS and
Cooja Simulator (Part |)

Ing. Pletro Gonizzi Dr. Simon Duquennoy
Wireless Ad-hoc Sensor Network Swedish Institute of Computer Science (SICS)
Laboratory(WASNLab), University of Parma simondug@sics.se

pietro.gonizzi@studenti.unipr.it

@ DIPARTIMENTO
. e DI INGEGNERIA ﬁ IP 7
UNIVERSITA DEGLI STUDI DI PARMA DIT®" DELL' INFORMAZIONE SEVERT FRATEVORK

RRRRRRRRR

loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lericli, Italy

SWEDISH

T RS

Outline

= Contiki Overview

= Basics

= Programming your first application
= The Cooja simulator

= IPv6 Networking

2 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Goal of this Course

= Introduction to Contiki and the Cooja network simulator
» Help you to start writing Contiki applications
» Basis for further exploration
» No low level detalls
> WIll not be able to cover everything on the slides

= Together with the notes, you should be able to continue

3 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Wireless Sensor Networks

= Consist of many embedded units called sensor nodes, motes etc.
> Sensors (and actuators) fag
: - . ""“\"?.::_' | US ?;st:ftttt?;tton |
> Small microcontroller oo T N
HEDs — SRS <1711 humidity / temp
. . & seriaf _ Sl ZOR . © pin expanswn |
» Limited memory N, . Bl
. . . . Tl MSP4C(’>EOIE1O g']l)1«\ D e e %, e O
> Radio for wireless communication STM2Pe0 fesh AN RN R
ot ' PIFA Antenna
> Power source (often battery) IFEEpOR B e
= Motes form networks and in a one hop or multi-hop fashion transport sensor data to base station
4 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

CLACHE ICT IRl

Applications

= Classic WSN applications

“t;m'dmceandamsmm

aks e depos saew M)

> volcano monitoring R L

> wildlife monitoring

> tunnel monitoring and rescue

= ...and many loT-based applications
» Smart Parking
» Smart Lighting
» Smart Plants
> Smart Toys

» Building/Home Automation

5 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

WSN Operating Systems

» OS is Interface between hardware and programmer
= Hides many details

» Contains drivers to radio and sensors, scheduling, network stacks, process & power
management

» Due to memory constraints and target (embedded) not as convenient as OS for PCs
= Limited user interaction

» TinyOS, Contiki, FreeRTOS, Mantis OS

6 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Contiki Overview

» Contiki — a dynamic operating system for networked embedded systems
= Main author and project leader. Adam Dunkels (Thingsquare, earlier SICS)
» Small memory footprint
= Event-driven kernel, multiple threading models on top
» Designed for portabllity
= Many platforms (Tmote Sky, Zolertia, RedBee etc.), several CPUs
= Code hosted on github
» Used In both academia and industry

= Contributors from Atmel, Cisco, Redwire LLC, SAP, SICS, Thingsqguare, and others

7 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Contiki Overview

Basically, Contiki Is;
» A scheduler (event handler)
= Loop that just takes the next event and processes it
= Nothing to do->goes to sleep (MCU low power mode)
» Set of services

= Networking, storage, timers, and others

8 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

INLAD IC.T SICS

Contiki Programming Model: Protothreads

» The Contiki kernel Is event-based
= Invokes processes whenever something happens:

= sensor events, processes starting, exiting

» Protothreads provide sequential flow of control on top of an event-based kernel
= Easy to program

= Also comes with some limitations, discussed later

9 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

CLACHE ICT IRl

Protothreads: Example

int a_protothread(struct pt *pt) {
PT_BEGIN(pt),

h-f,__ﬁ,,.f_
PT_WAIT _UNTIL(pt, conditionl); ¥ + .

if(something) {

PT_WAIT_UNTIL(pt, condition2); mki-almaiﬂai

}
PT_END(pt});

10 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Protothreads

» Single stack
= Low memory usage, like events
» Sequential flow of control
= No explicit state machines, just like threads

» Implemented using local continuations (a continuation is an abstract representation of the
control state of a program)

= When Set, capture the state of a function
= When resumed, resume the state and perform a jump

= Stack information across blocking calls must be manually stored and retrieved (e.g. static
variable). See issue with protothreads next

11 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

INCACE |CT S

Protothreads — Symplifying Event-driven Programming

¢ 1. Turn radio on.
e L 2. Waituntilt=t 0+t _awake.
' Ll 3. If communication has not

.;mmu ation left.. completed, wait until it has
Radio on ‘—v— completed or t =1 _0 +1_awake +

| | [wall _max.

4. Turn the radio off. Wait until ¢ =
Radio off g [O+t awake +1 _slegp. =~
[5. Repeat from step 1.

No blocking wait!

Problem: with events, we cannot implement this as a five-step program!

12 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

INCACE |CT S

Protothreads-bpased Implementation

int protothread(struct pt *pt) {
PT_BEGIN(pt);

[. while(1) {
o WAl mag ; radio_on();
’ rai-'-a]-ze e sleep timer = t_awake;
PT_WAIT_UNTIL(pt, expired(timer));
Commumication left. .. timer = t_E]_EE!FI;
Radic on - b] if(!'comm_complete()) {
walt timer = t walt max;
PT_WAIT_UNTIL(pt, comm_complete()
Radio off —— . || expired({wait_timer));
}
[radio off();
PT_WAIT_UNTIL(pt, expired(timer));

}
PT_END(pt);

}

* Code uses structured programming (if and while), mechanisms
evident from code

—s Protothreads make Contiki code nice

13 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Contikl Processes

Contiki processes are protothreads:
» PROCESS THREAD defines a new process

» PROCESS BEGIN() and PROCESS END()

» PROCESS WAIT EVENT() or PROCESS YIELD() walt for new event to be posted to process

» PROCESS WAIT _EVENT UNTIL(condition c) walts for an event to be posted with extra
condition, e.g.

= Button has been pressed

= Timer has expired

14 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Protocol stacks

Protocol stacks in Contiki:
»ulP: world's smallest, fully compliant TCP/IP stack
= Both IPv4 and IPv6, 6LowPAN, routing RPL, TCP/UPD support
= Also higher layer protocols: HTTP, CoAP and many others
» Rime stack: protocol stack consisting of simple primitives
» MAC layers in Contiki:
= Carrier Sense Multiple Access (CSMA)
- NullMAC
» Radio Duty-Cycling (RDC) layers
= ContikiIMAC (default on Tmote Sky)
= NullRDC (duty cycle off)

= And others (less tested): LPP, X-MAC

15 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Cooja simulator

COQOJA: extensible Java-based network simulator for Contiki-based applications

= Cross-level: Java nodes, Contiki nodes (deployable code), emulated nodes (deployable

firmware, not necessarily contiki)
MSPSim: sensor node emulator for MSP430-based nodes:
= Tmote Sky, Zolertia Z1, Wismote, etc.
= Enables cycle counting, debugging, power profiling etc.
= Integrated into COOJA or standalone
COOJA +MSPSIim
Simulate the network, emulate every nodes’ firmware

Also enables interoperabillity testing for MSP-based
platforms (e.g. IPv6 interop testing)

«[= Applications Places System & == USA |2 ¥ 7:29AM L user |1
|| My simulation - Cooja: The Contiki Network Simulator =
File §imu|ationIooI5 Settings Help

O)x) | 6N BE=E

Disturber mote...
Import Java mote...
Cooja mote...

Enter notes here

MicaZ mote...
Time: 00 EXP430F3438 mote...
Speed: | Wismote mote...
£1 mote... "1 IV
|
X =10 X
l—’l ESE mote... Ul—*”*—*'
File Edi
Time ms | Mote | Message
" 8]=1[E3

File Edit Wiew Zoom Ewents Motes

16

Ing. Pietro Gonizzi, Dr. Simon Duguennoy

loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lericli, Italy

SWEDISH

T RS

Cooja features

» Network Visualizer

= mote type, grid, radio environment, radio traffic, etc.

= Enables changes to the TX/INT range

» Mote output

ote | Message
- - ID:1 Startin r rocess’
_— 695 ID:1 Hello, world
Se rI a O u u O e n O eS e rI n 1175 ID:3 PRime started with address 0.18.116.3.0,3.3.3
. . 1185 ID:3 MAC 00:12:74:032:00:03:03:03 Contiki 2.6 starte Node 1d 1s set to 3
1193 ID:3 ontiki rate 8 Hz, radio channel 26
1209 ID:3 55 TeB0: 0000 0000: 0000 0212: 7403 0003 0303

» Timeline

= radio activity of the nodes in real-time

= E.g., radio status, ongoing packets

» Radio messages
= capturing radio packets

= Useful for Wireshark analysis

) =8l

Mote out put Eaﬁ

Filter:

ad

File Edit View Zoom Ewvents Motes

1
2]
3

L) l=JEix
File Edit Analyzer Payload
Time | Fram | To | Data
B3I 3 - (ST ST 13 WSUSUOL T L S
G313 3 Gd: Ox41C8FECD ABFFFFOZ Q3030003 74120041 80000000, | .
G317 3 Gd: Ox41CEFECD ABFFFFOZ Q030320003 74120041 S0000000, |
G320 3 Gd: Ox41C8FECD ABFFFFOZ Q030320003 74120041 0000000, |
G323 3 G4 Ox41CEFECD ABFFFFOZ Q032020003 74120041 S0000000, | .
G326 3 Gd: Ox41C8FECD ABFFFFOZ Q030320003 74120041 0000000, |
G329 3 G4: Ox41CEFECD ABFFFFOZ Q03030003 74120041 S0000000, ., -
5333 3 Gd: Ox41C8FECD ABFFFFOZ 0320320003 74120041 S0000000, ., |¥

17

Ing. Pietro Gonizzi, Dr. Simon Duguennoy

loT & Smart Cities Ph.D.

School 2013 - September 16th - 21st, 2013 - Lericli, Italy

INCACE |CT S

Programming your first app: Hello World

[* Declare the process */

PROCESS(hello_world process, “Hello world”);

[* Make the process start when the module is loaded */
AUTOSTART PROCESSES(&hello_world process);

[* Define the process code */
PROCESS THREAD(hello_world process, ev, data) {
PROCESS BEGIN(); [* Must always come first */

printf(“Hello, world!\n’); /* code goes here *

PROCESS END(); [* Must always come last */
}

18 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Makefile

CONTIKI _PROJECT = hello-world

all: $(CONTIKI_PROJECT)

UIP_CONF_IPV6=1

CONTIKI = /home/user/contiki

include $(CONTIKI)/Makefile.include

19 Ing. Pietro Gonizzi, Dr. Simon Duquennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Running Hello World

= native platform (your VM)
cd contiki/examples/hello-world
make hello-world.native

v

After the compilation, start the program with
/hello-world.native

v

The program prints “Hello, World” and finishes (appears to hang). Interrupt it by pressing Ctrl-C

= Tmote sky platform

place Tmote in a USB and it will appear in the top of instant Contiki as “Future Technologies Device”. Click on name to
connect it to Instant Contiki.

cd contiki/examples/hello-world
make TARGET=sky hello-world.upload

v

v

When the compilation is finished, the uploading procedure starts (LEDS blink like crazy).
You can see the output of the program by logging into the node
make login TARGET=sky

v

v

Press the reboot button to see some output

20 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Contiki directories

g contiki/core
= System source code; includes (among others)
= net: rime, MACs, IP eftc;
= SYS: processes
g contiki/examples
= Lots of nice examples, see /ipv6 for examples with ulP stack
g contiki/apps
= System apps (telnet, shell, deluge), not your application code!
g contiki/platform
= Platform-specific code:
= platform/sky/contiki-sky-main.c
= platform/sky/contiki-conf.h
g contiki/cpu
= CPU-specific code: one subdirectory per CPU
g contiki/tools
= e.g. cooja, start with “ant run”

= tools/sky contains serialdump (start with “./serialdump-linux -b115200 /dev/ttyUSB0"”) and other useful stuff

21 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Timers in Contikl

> struct timer
= Passive timer, only keeps track of its expiration time
> struct etimer
= Active timer, sends an event when It expires
> struct ctimer
= Active timer, calls a function when it expires
> struct rtimer

= Real-time timer, calls a function at an exact time. Reserved for OS internals

22 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Events and Processes

PROCESS WAIT EVENT();
Waits for an event to be posted to the process

PROCESS WAIT_EVENT _UNTIL(condition c);

Waiths for an e\éent to be posted to the process, with an extra condition. Often used: wait until timer
as expire

PROCESS WAIT EVENT_UNTIL(etimer_expired(&timer));

PROCESS POST(...) and PROCESS POST _SYNCH(..)
Post (a)synchronous event to a process.

The other process usually waits with PROCESS WAIT_EVENT_UNTIL(ev == EVENTNAME);

23 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Netstack

= By default, Contiki on Tmote sky uses ContikiMAC

Networking Rime, SICSLoWPAN

MAC CSMA, NULLMAC

RDC | Framer ContikiMAC, NULLRDC, etc.
Radio CC2420

Framcr: 802.15.4, NULL

2 functions: create, parse

24 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

f -

SICS

Measure Power Consumption with Energest

PROCESS

BEGIN();

static struct etimer et;
static unsigned long rx_start_time;

rx_start_time = energest_type time(ENERGEST TYPE_LISTEN);
Ipm_start_time = energest_type time(ENERGEST TYPE LPM);
cpu_start_time = energest_type time(ENERGEST_TYPE_ CPU);
tx_start_time = energest_type time(ENERGEST_TYPE_TRANSMIT);

printf(“energy listen %lu tx %lu cpu %lu Ipm %Ilu\n",
PE_LISTEN) - rx_start_time, // in while loop

energest_ty
energest_ty
energest_ty
energest_ty

ne_time(ENE
ne_time(ENE
ne_time(ENE

ne_time(ENE

PROCESS END():

¥

RGES
RGES
RGES

1Y
- TY
- TY

RGES

- TY

OE T
OE C

OE L

RANSMIT) - tx_start_time,
PU) - cpu_start_time,

PM) - Ipm_start_time);

25 Ing. Pietro Gonizzi, Dr. Simon Duguennoy

loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lericli, Italy

SWEDISH

SHICT RS

Measure Power Consumption with Energest

» Now we have the times a component was on, eg

= CPUon (“cpu”), CPU idle (“lpm?”), Radio tx, Radio rx, Radio idle, Flash operations, etc
» Note: the cpu is always either on or idle, total runtime = “cpu” + “lpm”
» Can be used to estimate energy consumption

= Based on power draw (from datasheet or measured)

= Using other metrics, such as “duty cycle”, the portion of time with radio on

= Duty cycle = (tx+rx) / (cpu+idle)

26 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

T RS

Measure Power Consumption with Energest

Current draw

.--""WH-FJ'I. '
I \
I 1‘\
1 ! I I-:'.. i .lﬂ"-\\ ;
Lt —— T L e e —
Activities . . Transénission attempt : ; : :
Wake-up ! Retransmit Wake—up
Power states : ' : ' '
Radio transmission f P A v s , ,
Radio listen S oo 00 B ® 09! oo
CPU active | o J=F e — ==
CPU sleep _ _ ' . I —
| Energy capsules 5 : : : an
i Wake—up capsule — P . e —
i - i OO0 O B & |
. Transmission capsule - . I
AR e . T | Time (ms)
| | | | |
0 30 100 150 200

Figure 4: Measuring communication energy expenditure with Powertrace: the radio duty cycling layer maintains
energy capsules for wake-ups, transmissions, and receptions. In the figure, capsules for wake-up and transmissions are
shown. The transmission capsule 1s split across two activities: the first transmission attempt at 40 ms, which sensed
another transmission 1n the ether and backed off, and the retransmission at 100 ms.

27 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

SWEDISH

CLACHE ICT IRl

Thank you

28 Ing. Pietro Gonizzi, Dr. Simon Duguennoy loT & Smart Cities Ph.D. School 2013 - September 16th - 21st, 2013 - Lerici, Italy

