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Outline

= Contiki Overview

= Basics

= Programming your first application
= The Cooja simulator

= IPv6 Networking
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Goal of this Course

= Introduction to Contiki and the Cooja network simulator
» Help you to start writing Contiki applications
»  Basis for further exploration
» No low level detalls
> WIll not be able to cover everything on the slides

= Together with the notes, you should be able to continue
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Wireless Sensor Networks

= Consist of many embedded units called sensor nodes, motes etc.
> Sensors (and actuators) fag
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= Motes form networks and in a one hop or multi-hop fashion transport sensor data to base station
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Applications

= Classic WSN applications
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> volcano monitoring R L

> wildlife monitoring

> tunnel monitoring and rescue

= ...and many loT-based applications
»  Smart Parking
»  Smart Lighting
»  Smart Plants
> Smart Toys

»  Building/Home Automation
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WSN Operating Systems

»  OS is Interface between hardware and programmer
= Hides many details

»  Contains drivers to radio and sensors, scheduling, network stacks, process & power
management

»  Due to memory constraints and target (embedded) not as convenient as OS for PCs
= Limited user interaction

»  TinyOS, Contiki, FreeRTOS, Mantis OS
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Contiki Overview

»  Contiki — a dynamic operating system for networked embedded systems
= Main author and project leader. Adam Dunkels (Thingsquare, earlier SICS)
»  Small memory footprint
= Event-driven kernel, multiple threading models on top
»  Designed for portabllity
= Many platforms (Tmote Sky, Zolertia, RedBee etc.), several CPUs
= Code hosted on github
» Used In both academia and industry

= Contributors from Atmel, Cisco, Redwire LLC, SAP, SICS, Thingsqguare, and others
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Contiki Overview

Basically, Contiki Is;
» A scheduler (event handler)
= Loop that just takes the next event and processes it
= Nothing to do->goes to sleep (MCU low power mode)
»  Set of services

= Networking, storage, timers, and others
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Contiki Programming Model: Protothreads

»  The Contiki kernel Is event-based
= Invokes processes whenever something happens:

= sensor events, processes starting, exiting

» Protothreads provide sequential flow of control on top of an event-based kernel
= Easy to program

= Also comes with some limitations, discussed later
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Protothreads: Example

int a_protothread(struct pt *pt) {
PT_BEGIN(pt),

h-f,__ﬁ,,.f_
PT_WAIT _UNTIL(pt, conditionl); ¥ + .

if(something) {

PT_WAIT_UNTIL(pt, condition2); mki-almaiﬂai

}
PT_END(pt});
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Protothreads

» Single stack
= Low memory usage, like events
»  Sequential flow of control
= No explicit state machines, just like threads

» Implemented using local continuations (a continuation is an abstract representation of the
control state of a program)

= When Set, capture the state of a function
= When resumed, resume the state and perform a jump

= Stack information across blocking calls must be manually stored and retrieved (e.g. static
variable). See issue with protothreads next
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Protothreads — Symplifying Event-driven Programming

¢ 1. Turn radio on.
e L 2. Waituntilt=t 0+t _awake.
' Ll 3. If communication has not

.;mmu ation left.. completed, wait until it has
Radio on ‘—v— completed or t =1 _0 +1_awake +

| | [ wall _max.

4. Turn the radio off. Wait until ¢ =
Radio off g [ O+t awake +1 _slegp. =~
[ 5. Repeat from step 1.

No blocking wait!

Problem: with events, we cannot implement this as a five-step program!
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Protothreads-bpased Implementation

int protothread(struct pt *pt) {
PT_BEGIN(pt);

[ . while(1) {
o WAl mag ; radio_on();
’ rai-'-a]-ze e sleep timer = t_awake;
PT_WAIT_UNTIL(pt, expired(timer));
Commumication left. .. timer = t_E]_EE!FI;
Radic on - b] if(!'comm_complete()) {
walt timer = t walt max;
PT_WAIT_UNTIL(pt, comm_complete()
Radio off —— . || expired({wait_timer));
}
[ radio off();
PT_WAIT_UNTIL(pt, expired(timer));

}
PT_END(pt);

}

* Code uses structured programming (if and while), mechanisms
evident from code

—s Protothreads make Contiki code nice
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Contikl Processes

Contiki processes are protothreads:
» PROCESS THREAD defines a new process

»  PROCESS BEGIN() and PROCESS END()

» PROCESS WAIT EVENT() or PROCESS YIELD() walt for new event to be posted to process

»  PROCESS WAIT _EVENT UNTIL(condition c) walts for an event to be posted with extra
condition, e.g.

= Button has been pressed

= Timer has expired
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Protocol stacks

Protocol stacks in Contiki:
»ulP: world's smallest, fully compliant TCP/IP stack
=  Both IPv4 and IPv6, 6LowPAN, routing RPL, TCP/UPD support
=  Also higher layer protocols: HTTP, CoAP and many others
» Rime stack: protocol stack consisting of simple primitives
» MAC layers in Contiki:
=  Carrier Sense Multiple Access (CSMA)
- NullMAC
» Radio Duty-Cycling (RDC) layers
=  ContikiIMAC (default on Tmote Sky)
= NullRDC (duty cycle off)

= And others (less tested): LPP, X-MAC
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Cooja simulator

COQOJA: extensible Java-based network simulator for Contiki-based applications

= Cross-level: Java nodes, Contiki nodes (deployable code), emulated nodes (deployable

firmware, not necessarily contiki)
MSPSim: sensor node emulator for MSP430-based nodes:
= Tmote Sky, Zolertia Z1, Wismote, etc.
= Enables cycle counting, debugging, power profiling etc.
= Integrated into COOJA or standalone
COOJA +MSPSIim
Simulate the network, emulate every nodes’ firmware

Also enables interoperabillity testing for MSP-based
platforms (e.g. IPv6 interop testing)

«[= Applications Places System & == USA |2 ¥ 7:29AM L user |1
|| My simulation - Cooja: The Contiki Network Simulator =
File §imu|ationIooI5 Settings Help

O)x) | 6N BE=E

Disturber mote...
Import Java mote...
Cooja mote...

Enter notes here

MicaZ mote...
Time: 00 EXP430F3438 mote...
Speed: | Wismote mote...
£1 mote... "1 IV
|
X =10 X
l—’l ESE mote... Ul—*”*—*'
File Edi
Time ms | Mote | Message
" 8]=1[E3

File Edit Wiew Zoom Ewents Motes
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Cooja features

»  Network Visualizer

= mote type, grid, radio environment, radio traffic, etc.

= Enables changes to the TX/INT range

»  Mote output

ote | Message
- - ID:1 Startin r rocess’
_— 695 ID:1  Hello, world
Se rI a O u u O e n O eS e rI n 1175 ID:3 PRime started with address 0.18.116.3.0,3.3.3
. . 1185 ID:3  MAC 00:12:74:032:00:03:03:03 Contiki 2.6 starte Node 1d 1s set to 3
1193 ID:3 ontiki rate 8 Hz, radio channel 26
1209 ID:3 55 TeB0: 0000 0000: 0000 0212: 7403 0003 0303

»  Timeline

= radio activity of the nodes in real-time

= E.g., radio status, ongoing packets

» Radio messages
= capturing radio packets

= Useful for Wireshark analysis

) =8l

Mote out put Eaﬁ

Filter:

ad

File Edit View Zoom Ewvents Motes

1
2 ]
3

L) l=JEix
File Edit Analyzer Payload
Time | Fram | To | Data
B3I 3 - (ST ST 13 WSUSUOL T L S
G313 3 Gd: Ox41C8FECD ABFFFFOZ Q3030003 74120041 80000000, | .
G317 3 Gd: Ox41CEFECD ABFFFFOZ Q030320003 74120041 S0000000, |
G320 3 Gd: Ox41C8FECD ABFFFFOZ Q030320003 74120041 0000000, |
G323 3 G4 Ox41CEFECD ABFFFFOZ Q032020003 74120041 S0000000, | .
G326 3 Gd: Ox41C8FECD ABFFFFOZ Q030320003 74120041 0000000, |
G329 3 G4: Ox41CEFECD ABFFFFOZ Q03030003 74120041 S0000000, ., -
5333 3 Gd: Ox41C8FECD ABFFFFOZ 0320320003 74120041 S0000000, ., |¥
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Programming your first app: Hello World

[* Declare the process */

PROCESS(hello_world process, “Hello world”);

[* Make the process start when the module is loaded */
AUTOSTART PROCESSES(&hello_world process);

[* Define the process code */
PROCESS THREAD(hello_world process, ev, data) {
PROCESS BEGIN(); [* Must always come first */

printf(“Hello, world!\n’); /* code goes here *

PROCESS END(); [* Must always come last */
}
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Makefile

CONTIKI _PROJECT = hello-world

all: $(CONTIKI_PROJECT)

UIP_CONF_IPV6=1

CONTIKI = /home/user/contiki

include $(CONTIKI)/Makefile.include
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Running Hello World

= native platform (your VM)
cd contiki/examples/hello-world
make hello-world.native

v

After the compilation, start the program with
/hello-world.native

v

The program prints “Hello, World” and finishes (appears to hang). Interrupt it by pressing Ctrl-C

=  Tmote sky platform

place Tmote in a USB and it will appear in the top of instant Contiki as “Future Technologies Device”. Click on name to
connect it to Instant Contiki.

cd contiki/examples/hello-world
make TARGET=sky hello-world.upload

v

v

When the compilation is finished, the uploading procedure starts (LEDS blink like crazy).
You can see the output of the program by logging into the node
make login TARGET=sky

v

v

Press the reboot button to see some output
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Contiki directories

g contiki/core
= System source code; includes (among others)
= net: rime, MACs, IP eftc;
= SYS: processes
g contiki/examples
= Lots of nice examples, see /ipv6 for examples with ulP stack
g contiki/apps
= System apps (telnet, shell, deluge), not your application code!
g contiki/platform
= Platform-specific code:
= platform/sky/contiki-sky-main.c
= platform/sky/contiki-conf.h
g contiki/cpu
= CPU-specific code: one subdirectory per CPU
g contiki/tools
= e.g. cooja, start with “ant run”

= tools/sky contains serialdump (start with “./serialdump-linux -b115200 /dev/ttyUSB0"”) and other useful stuff
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Timers in Contikl

> struct timer
= Passive timer, only keeps track of its expiration time
> struct etimer
= Active timer, sends an event when It expires
> struct ctimer
= Active timer, calls a function when it expires
> struct rtimer

= Real-time timer, calls a function at an exact time. Reserved for OS internals
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Events and Processes

PROCESS WAIT EVENT();
Waits for an event to be posted to the process

PROCESS WAIT_EVENT _UNTIL(condition c);

Waiths for an e\éent to be posted to the process, with an extra condition. Often used: wait until timer
as expire

PROCESS WAIT EVENT_UNTIL(etimer_expired(&timer));

PROCESS POST(...) and PROCESS POST _SYNCH(..)
Post (a)synchronous event to a process.

The other process usually waits with PROCESS  WAIT_EVENT_UNTIL(ev == EVENTNAME);
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Netstack

= By default, Contiki on Tmote sky uses ContikiMAC

Networking Rime, SICSLoWPAN

MAC CSMA, NULLMAC

RDC | Framer ContikiMAC, NULLRDC, etc.
Radio CC2420

Framcr: 802.15.4, NULL

2 functions: create, parse
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Measure Power Consumption with Energest

PROCESS

BEGIN();

static struct etimer et;
static unsigned long rx_start_time;

rx_start_time = energest_type time(ENERGEST TYPE_LISTEN);
Ipm_start_time = energest_type time(ENERGEST TYPE LPM);
cpu_start_time = energest_type time(ENERGEST_TYPE_ CPU);
tx_start_time = energest_type time(ENERGEST_TYPE_TRANSMIT);

printf(“energy listen %lu tx %lu cpu %lu Ipm %Ilu\n",
PE_LISTEN) - rx_start_time, // in while loop

energest_ty
energest_ty
energest_ty
energest_ty

ne_time(ENE
ne_time(ENE
ne_time(ENE

ne_time(ENE

PROCESS END():

¥

RGES
RGES
RGES

1Y
- TY
- TY

RGES

- TY

OE T
OE C

OE L

RANSMIT) - tx_start_time,
PU) - cpu_start_time,

PM) - Ipm_start_time);
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Measure Power Consumption with Energest

» Now we have the times a component was on, eg

= CPUon (“cpu”), CPU idle (“lpm?”), Radio tx, Radio rx, Radio idle, Flash operations, etc
» Note: the cpu is always either on or idle, total runtime = “cpu” + “lpm”
» Can be used to estimate energy consumption

= Based on power draw (from datasheet or measured)

= Using other metrics, such as “duty cycle”, the portion of time with radio on

= Duty cycle = (tx+rx) / (cpu+idle)
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Measure Power Consumption with Energest

Current draw
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Figure 4: Measuring communication energy expenditure with Powertrace: the radio duty cycling layer maintains
energy capsules for wake-ups, transmissions, and receptions. In the figure, capsules for wake-up and transmissions are
shown. The transmission capsule 1s split across two activities: the first transmission attempt at 40 ms, which sensed
another transmission 1n the ether and backed off, and the retransmission at 100 ms.
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Thank you
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