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Lie group action, approximate invariance and 
Sub-Riemannian geometry in statistics  

At the interface of geometry, statistics, image analysis and medicine, computational anatomy aims at 
analyzing and modeling the biological variability of the organs shapes and their dynamics at the population 
level. The goal is to model the mean anatomy, its normal variation, its motion / evolution and to discover 
morphological differences between normal and pathological groups. Since shapes and deformations live 
in non-linear spaces, this requires a consistent statistical framework on manifolds and Lie groups, which 
has motivated the development of Geometric Statistics during the last decade (Pennec 2006, Pennec, 
Sommer, Fletcher 2019). To consolidate the mathematical bases of geometric statistics, it is now essential 
to explore geometric structures beyond the classical Riemannian framework. 

In computational anatomy, the deformable template theory considers statistics on groups of 
diffeomorphisms. These groups are endowed with a right-invariant metric in the large deformation 
diffeomorphic metric mapping (LDDMM) framework of Grenander, Miller, Trouvé and Younes. An 
alternative framework is based on the canonical symmetric bi-invariant Cartan-Schouten connection 
(Pennec and Arsigny 2012). This connection corresponds to the canonical symmetric structure of the Lie 
group and allows defining some affine statistical notions like the mean. In both Riemannian and Lie 
theoretic cases, we aim at establishing embedded spaces of approximations (flags) that iteratively allow 
the refined description of the data.  The goals of this Phd is to explore how sub-Riemannian and stratified 
Lie algebra structures can be aligned with statistical subspace decompositions.  

When a Lie group acts on a manifold, quotienting to obtain the shape space amounts to assuming that 
objects are completely equivalent under the action of all transformations. More realistically, we would like 

https://team.inria.fr/epione/
mailto:Xavier.pennec@inria.fr
http://www-sop.inria.fr/members/Xavier.Pennec/
mailto:sommer@di.ku.dk
http://image.diku.dk/sommer/


objects to be approximately equivalent under transformations weighted by a certain probability 
distribution that is not uniform. For instance, in the example of computational anatomy where 
diffeomorphisms act on images, the full invariance leads to consider only the topology of the image iso-
levels. However, very large deformations are much less probable than smaller ones, and extremely 
deformed images may actually represent different anatomies even if they share the same topology. Thus, 
we need to restrict to a smaller part of the group, or to penalize more the large deformations that are 
much less probable than smaller ones.  

A probability on deformations independent from the data is classically taken to be proportional to 
exp (|𝑣𝑣|2/2 ) where |v| is a norm on the Lie algebra of the group. This standard regularization criterion in 
image registration focuses on the most probable deformations and drastically reduces the search space 
while avoiding unrealistic local minima. Computing the optimal transformation between each pair of 
objects (pairwise registration) and taking the set of initial tangent vectors of these deformations gives a 
sample of the probability distribution in the Lie algebra. Thus, it seems natural to perform Principal 
Component Analysis (PCA) in order to reduce the distribution support to a small dimensional subspace Δ ∈
𝐼𝐼𝑖𝑖𝑖𝑖𝐺𝐺. PCA also gives a sub-Riemannian metric on this subspace. It is noticeable that the spatial 
discretization of velocity fields which is done in practice to implement diffeomorphic transformations  also 
lead to restrict to a subspace Δ ∈ 𝐼𝐼𝑖𝑖𝑖𝑖𝐺𝐺 of the full Lie algebra. 

The composition of several elements from Δ is performed to obtain the transformation when we consider 
a discrete number of steps to integrate the trajectory.  In such a sub-Riemannian geometric setting, the 
horizontal trajectories (that stay tangent to the distribution) actually reach a much higher dimensional 
space (Agrachev et al 2016): because linear subspaces are generically not closed under the Lie bracket, the 
k-jet of a horizontal curve (its Taylor expansion up to degree k) belongs to the flag of the distribution Δ 
defined recursively by Δk+1 = Δ𝑘𝑘 + [Δ,Δ𝑘𝑘] with Δ =  Δ1. The goal is to investigate how this flag interacts 
with the flag defined by PCA (Pennec 2018) or by the one defined by the discretization, so that statistics 
and discretization become consistent with this new structure. This structure will also be related to 
stochastic processes in the frame bundle proposed by (Sommer 2016, Sommer & Svane 2017, Sommer 
2019) to model anisotropic covariances on manifolds  
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