
Class on numerical mechanics:

From Lagrangian mechanics to simulation tools for computer graphics

Practicals

Florence Bertails-Descoubes 1, Thibaut Métivet 2, Jean Jouve 3

2023, October 3 - Ensimag

1�orence.descoubes@inria.fr
2thibaut.metivet@inria.fr
3jean.jouve@inria.fr

Instructions

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration

Instructions

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration

Instructions

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration

Framework

Framework

You may have already installed the proposed code base
(https://gitlab.inria.fr/elan-public-code/pyglviewer), but you can use
your own

In Python3 for the prototyping of the numerical methods + OpenGL for the
visualization

There is the base code to work on rods and meshes, and to render them, but feel
free to modify or to add your own stu�

https://gitlab.inria.fr/elan-public-code/pyglviewer

Framework

Framework

You may have already installed the proposed code base
(https://gitlab.inria.fr/elan-public-code/pyglviewer), but you can use
your own

In Python3 for the prototyping of the numerical methods + OpenGL for the
visualization

There is the base code to work on rods and meshes, and to render them, but feel
free to modify or to add your own stu�

https://gitlab.inria.fr/elan-public-code/pyglviewer

Framework

Framework

You may have already installed the proposed code base
(https://gitlab.inria.fr/elan-public-code/pyglviewer), but you can use
your own

In Python3 for the prototyping of the numerical methods + OpenGL for the
visualization

There is the base code to work on rods and meshes, and to render them, but feel
free to modify or to add your own stu�

https://gitlab.inria.fr/elan-public-code/pyglviewer

Framework

Framework

The structure for a test case should enable you to easily add your own (see the �les
main.py and scenes.py).
For instance, to animate a mesh:

Create the object

myMesh = Mesh2D(positions , colours)

Create the dynamic system

myDn = MyDynamicSystem(myMesh) # See the class DummyDynamicSystem e.g.

Add it to the viewer

At each frame, the viewer will call its method ’step’

viewer.addDynamicSystem(myDn)

Add the rendered object

myMeshRenderable = Mesh2DRenderable(myMesh)

viewer.addRenderable(myMeshRenderable)

then run python3 main.py.

Framework

Framework

The structure for a test case should enable you to easily add your own (see the �les
main.py and scenes.py).
For instance, to animate a mesh:

Create the object

myMesh = Mesh2D(positions , colours)

Create the dynamic system

myDn = MyDynamicSystem(myMesh) # See the class DummyDynamicSystem e.g.

Add it to the viewer

At each frame, the viewer will call its method ’step’

viewer.addDynamicSystem(myDn)

Add the rendered object

myMeshRenderable = Mesh2DRenderable(myMesh)

viewer.addRenderable(myMeshRenderable)

then run python3 main.py.

Framework

Framework

The structure for a test case should enable you to easily add your own (see the �les
main.py and scenes.py).
For instance, to animate a mesh:

Create the object

myMesh = Mesh2D(positions , colours)

Create the dynamic system

myDn = MyDynamicSystem(myMesh) # See the class DummyDynamicSystem e.g.

Add it to the viewer

At each frame, the viewer will call its method ’step’

viewer.addDynamicSystem(myDn)

Add the rendered object

myMeshRenderable = Mesh2DRenderable(myMesh)

viewer.addRenderable(myMeshRenderable)

then run python3 main.py.

Framework

Framework

The structure for a test case should enable you to easily add your own (see the �les
main.py and scenes.py).
For instance, to animate a mesh:

Create the object

myMesh = Mesh2D(positions , colours)

Create the dynamic system

myDn = MyDynamicSystem(myMesh) # See the class DummyDynamicSystem e.g.

Add it to the viewer

At each frame, the viewer will call its method ’step’

viewer.addDynamicSystem(myDn)

Add the rendered object

myMeshRenderable = Mesh2DRenderable(myMesh)

viewer.addRenderable(myMeshRenderable)

then run python3 main.py.

Practical 1

Practical 1 - part 1:
Finite di�erences (explicit Euler scheme)

Practical 1

Exercise 1: Simple pendulum

g

O

M

θ

l

During the class, you derived the equation for a
simple pendulum.

Now it is time to see it move !

To simulate the pendulum, you will discretize in time

the equation of motion using the simple explicit Euler
scheme.

Practical 1

Exercise 1: Simple pendulum

g

O

M

θ

l

During the class, you derived the equation for a
simple pendulum.

Now it is time to see it move !
To simulate the pendulum, you will discretize in time

the equation of motion using the simple explicit Euler
scheme.

Practical 1

Exercise 1: Simple pendulum

g

O

M

θ

l

Goals of this practical:

Get familiar with the code;

Have a quickly working simulator, to serve as a
basis for your future project;

Study and analyse various integration schemes
(if enough time).

Practical 1

More: analysis

More

Practical 1

Explicit vs. Implicit Euler

Exercise 1

Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.

Practical 1

Explicit vs. Implicit Euler

Exercise 2

Same question for Implicit Euler.

	Instructions
	Framework
	Practical 1

