
Class on numerical mechanics:

From Lagrangian mechanics to simulation tools for computer graphics

Florence Bertails-Descoubes ¹, Thibaut Métivet ², Jean Jouve ³

2023, October 3 - Ensimag

・ロト・日本・モト・モート ヨー うへで

¹ florence.descoubes@inria.fr ² thibaut.metivet@inria.fr ³ jean.jouve@inria.fr

Motivation

Increasing need for effective mechanical simulators

Movie industry

Virtual prototyping

・ロト・日本・ヨト・ヨト・日・ つへぐ

Motivation

Increasing need for effective mechanical simulators

Requires the numerical modeling of objects with complex shapes and motion

Motivation

Increasing need for effective mechanical simulators

Requires the numerical modeling of objects with complex shapes and motion

→ Challenges: nonlinear and even nonsmooth regimes

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation

Increasing need for effective mechanical simulators

Requires the numerical modeling of objects with complex shapes and motion

→ Challenges: nonlinear and even nonsmooth regimes

Goal: design dedicated numerical models

Realism + robustness + efficiency + user control

Objectives of the course

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Objectives of the course

Discover important concepts and techniques behind simulation

- acquire some fundamentals of numerical mechanics at least for (articulated) rigid bodies
- get a sense of good practices for numerical modeling
- have the right pointers to go further by yourself... and at some point create your own impressive simulations!

Objectives of the course

Discover important concepts and techniques behind simulation

- acquire some fundamentals of numerical mechanics at least for (articulated) rigid bodies
- get a sense of good practices for numerical modeling
- have the right pointers to go further by yourself... and at some point create your own impressive simulations!

How we have built this course

- The kind of course we would have liked to have ourselves before our PhD!
- Not a review of recent research papers, but really a course on fundamentals
- A balanced mix between mechanics and numerics
- A balanced mix between theory and practice
- A selection of useful references to go beyond this course

Objectives of the course

Discover important concepts and techniques behind simulation

- acquire some fundamentals of numerical mechanics at least for (articulated) rigid bodies
- get a sense of good practices for numerical modeling
- have the right pointers to go further by yourself... and at some point create your own impressive simulations!

How we have built this course

- The kind of course we would have liked to have ourselves before our PhD!
- Not a review of recent research papers, but really a course on fundamentals
- A balanced mix between mechanics and numerics
- A balanced mix between theory and practice
- A selection of useful references to go beyond this course

Fourth time we deliver (partly) this course, second time in this form and for Ensimag \rightarrow feel free to give us feedback!!

Content of the course

Mechanics + Numerics

Content of the course

Mechanics + Numerics

- Topic 1: Lagrangian mechanics and finite differences
- Topic 2: 3D rigid bodies and integration on SO(3) groups
- Topic 3: Contact detection and acceleration structures
- Topic 4: Hertzian contact and penalisation methods
- Topic 5: Rigid frictional contact and nonsmooth optimisation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Content of the course

Mechanics + Numerics

- Topic 1: Lagrangian mechanics and finite differences
- Topic 2: 3D rigid bodies and integration on SO(3) groups
- Topic 3: Contact detection and acceleration structures
- Topic 4: Hertzian contact and penalisation methods
- Topic 5: Rigid frictional contact and nonsmooth optimisation

Teaching team

 Lecturers: Florence Bertails-Descoubes, Thibaut Métivet (Inria researchers) and Jean Jouve (PhD student, ENS Rennes) at Elan team: https://team.inria.fr/elan/

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Organisation

Schedule

• 36 hours in total, weekly, starting from now and ending on January 9 (exam)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Break: during Toussaint holidays (no class on October 31)

Organisation

Schedule

• 36 hours in total, weekly, starting from now and ending on January 9 (exam)

• Break: during Toussaint holidays (no class on October 31)

First slot

Alternately, lecture on mechanics or numerics + exercises

Organisation

Schedule

• 36 hours in total, weekly, starting from now and ending on January 9 (exam)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

• Break: during Toussaint holidays (no class on October 31)

First slot

Alternately, lecture on mechanics or numerics + exercises

Second slot

In general, practice on machine (python)

- First practicals: guided
- Other practicals: work on a personal project

Evaluation

Evaluation

A personal code project

• Goal: choose, implement and study one simulation scenario of your choice by applying and deepening one or several techniques learnt during classes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Should be done by pairs of students (18 students ightarrow 9 teams ?)
- Recommended programmation language: python
- Advice: choose your simulation scenario carefully
 - Not too simple, not too ambitious
 - Set incremental milestones over time
 - Split the work equally in the team

Evaluation

A personal code project

- Goal: choose, implement and study one simulation scenario of your choice by applying and deepening one or several techniques learnt during classes
- Should be done by pairs of students (18 students ightarrow 9 teams ?)
- Recommended programmation language: python
- Advice: choose your simulation scenario carefully
 - Not too simple, not too ambitious
 - Set incremental milestones over time
 - Split the work equally in the team

Evaluation

- Oral defence on January 9 (last course)
- Around 20 minutes per team in total (15 min pres + 5 min Q&A)
- Evaluation criteria:
 - Originality and difficulty of the chosen scenario
 - Success of the implementation, related to the difficulty of the chosen scenario
 - **Depth of analysis** of results (even in case of a failure), **mastery** of the topic
 - Project organisation and team management
 - Quality of the oral presentation and answers to questions

Let's start!