Class 1: Lagrange mechanics and first steps into numerical integration

Florence Bertails-Descoubes ¹, Mélina Skouras ², Mickaël Ly ³

2020, September 8 - ENS Lyon

・ロト・日本・ヨト・ヨト・日・ つへぐ

¹florence descoubes@inria fr

²melina.skouras@inria.fr

³mickael.ly@inria.fr

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

æ

Questions

- How to formulate the equations of motion of this object?
- How to solve these equations in a "safe" way ?

Questions

- How to formulate the equations of motion of this object?
- How to solve these equations in a "safe" way ?

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Goal of this lecture: understand there are many possible choices and learn best practices

Questions

- How to formulate the equations of motion of this object?
- How to solve these equations in a "safe" way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class

- I. Lagrange mechanics: how to formulate the equations of motion
- II. Finite differences: how to solve the equations of motion

Questions

- How to formulate the equations of motion of this object?
- How to solve these equations in a "safe" way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class

- I. Lagrange mechanics: how to formulate the equations of motion
- II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered

Keywords and bibliography

Part I: Lagrange mechanics

• Analytical Mechanics

Landau and Lifshitz, Mechanics Vol 1; J. Fereira, Mécanique analytique

• Calculus of Variations

J.-P. Bourguignon, Calcul variationnel ("Variational calculus")

Part II: Finite differences

- Numerical Analysis
 - G. Allaire, Analyse numérique et optimisation ("Numerical analysis and optimization")

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Energy conservation properties
 - E. Hairer et al., Geometric numerical integration

Part I: Lagrange mechanics

The simple pendulum

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The simple pendulum

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exercise

• Write the equations of motion of the simple pendulum...

The simple pendulum

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Exercise

- Write the equations of motion of the simple pendulum...
- ...using Newton's second law

White board 1/6

White board 2/6

White board 3/6

White board 4/6

White board 5/6

White board 6/6

The double pendulum

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

The double pendulum

Exercise

• Write the equations of motion of the double pendulum...

The double pendulum

Exercise

- Write the equations of motion of the double pendulum...
- ...using Newton's second law

White board 1/1

Definition

Generalized coordinates, denoted q_i , are *n* independent variables (functions of time) which allow to characterize the configuration of a system possessing *n* degrees of freedom. The generalized velocities of the system are defined by $\frac{d}{dt}q_i = \dot{q}_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Generalized coordinates, denoted q_i , are *n* independent variables (functions of time) which allow to characterize the configuration of a system possessing *n* degrees of freedom. The generalized velocities of the system are defined by $\frac{d}{dt}q_i = \dot{q}_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: For the simple pendulum, we can take $q = \theta$ (n = 1).

Definition

Generalized coordinates, denoted q_i , are *n* independent variables (functions of time) which allow to characterize the configuration of a system possessing *n* degrees of freedom. The generalized velocities of the system are defined by $\frac{d}{dt}q_i = \dot{q}_i$.

Example: For the simple pendulum, we can take $q = \theta$ (n = 1).

Remark: A generalized velocity \dot{q}_i does not necessarily correspond to the velocity \mathbf{v}_M of a given material point M. Reconstructing the configuration and the material velocities of the system corresponds to writing the kinematics of the system.

Definition

Generalized coordinates, denoted q_i , are *n* independent variables (functions of time) which allow to characterize the configuration of a system possessing *n* degrees of freedom. The generalized velocities of the system are defined by $\frac{d}{dt}q_i = \dot{q}_i$.

Example: For the simple pendulum, we can take $q = \theta$ (n = 1).

Remark: A generalized velocity \dot{q}_i does not necessarily correspond to the velocity \mathbf{v}_M of a given material point M. Reconstructing the configuration and the material velocities of the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as $OM = \ell e_r$ and its velocity v_M as $v_M = \ell \dot{\theta} e_{\theta}$ (in the basis (e_r, e_{θ}) defined by θ).

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

Question: how to find a systematic way to compute these equations?

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

Question: how to find a systematic way to compute these equations?

• Principle of virtual work (see next exercise)

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

Question: how to find a systematic way to compute these equations?

- Principle of virtual work (see next exercise)
- Principle of least action: more general settings, beyond Newtonian dynamics!

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

Question: how to find a systematic way to compute these equations?

- Principle of virtual work (see next exercise)
- Principle of least action: more general settings, beyond Newtonian dynamics!

ightarrow Both principles lead to the so-called Euler-Lagrange equations

Equations of motion

At instant t, having both the $q_i(t)$ and the $\dot{q}_i(t)$ is necessary, and also sufficient, to determine the accelerations $\ddot{q}_i(t)$ of the system at t, and thus predict the trajectory $q_i(t_+)$ forward in time, $t_+ > t$. The equations relating the q_i and the \dot{q}_i to the accelerations \ddot{q}_i are called the equations of motion of the system. They take the form of n independent second-order differential equations in the functions q_i .

Question: how to find a systematic way to compute these equations?

- Principle of virtual work (see next exercise)
- Principle of least action: more general settings, beyond Newtonian dynamics!
- \rightarrow Both principles lead to the so-called Euler-Lagrange equations which take a specific form in Newtonian dynamics

Back to the simple pendulum

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Back to the simple pendulum

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exercise

• Write the equations of motion of the simple pendulum...

Back to the simple pendulum

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Exercise

- Write the equations of motion of the simple pendulum...
- \bullet ...using the principle of virtual work

White board 1/6
White board 2/6

White board 3/6

White board 4/6

White board 5/6

White board 6/6

Let $q = \{q_0, \ldots, q_i, \ldots, q_{n-1}\}$ and $\dot{q} = \frac{\mathrm{d}}{\mathrm{d}t}q$.

We consider a system subject to holonomic constraints (the q_i are independent) and conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $q = \{q_0, \ldots, q_i, \ldots, q_{n-1}\}$ and $\dot{q} = \frac{d}{dt}q$. We consider a system subject to holonomic constraints (the q_i are independent) and conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a should be such that the action of the system,

$$S(q, \dot{q}) = \int_{a}^{b} \underbrace{\mathcal{L}(q(t), \dot{q}(t), t)}_{T-U} \mathrm{d}t,$$

is minimal.

Let $q = \{q_0, \ldots, q_i, \ldots, q_{n-1}\}$ and $\dot{q} = \frac{d}{dt}q$. We consider a system subject to holonomic constraints (the q_i are independent) and conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a should be such that the action of the system,

$$\mathcal{S}(q, \dot{q}) = \int_{a}^{b} \underbrace{\mathcal{L}(q(t), \dot{q}(t), t)}_{T-U} \mathrm{d}t,$$

is minimal. $\mathcal{L}(q(t), \dot{q}(t), t) = T(q(t), \dot{q}(t), t) - U(q(t), t)$ is the Lagrangian of the system at instant t (homogeneous to an energy)

Let $q = \{q_0, \ldots, q_i, \ldots, q_{n-1}\}$ and $\dot{q} = \frac{d}{dt}q$. We consider a system subject to holonomic constraints (the q_i are independent) and conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a should be such that the action of the system,

$$\mathcal{S}(q, \dot{q}) = \int_{a}^{b} \underbrace{\mathcal{L}(q(t), \dot{q}(t), t)}_{T-U} \mathrm{d}t,$$

is minimal.

 $\mathcal{L}(q(t), \dot{q}(t), t) = T(q(t), \dot{q}(t), t) - U(q(t), t)$ is the Lagrangian of the system at instant t (homogeneous to an energy), with \mathcal{L} a real differentiable function

$$\mathcal{L}: \left| \begin{array}{ccc} \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x, u, t) & \longmapsto & \mathcal{L}(x, u, t) \end{array} \right|$$

Let $q = \{q_0, \ldots, q_i, \ldots, q_{n-1}\}$ and $\dot{q} = \frac{d}{dt}q$. We consider a system subject to holonomic constraints (the q_i are independent) and conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a should be such that the action of the system,

$$\mathcal{S}(q, \dot{q}) = \int_{a}^{b} \underbrace{\mathcal{L}(q(t), \dot{q}(t), t)}_{T-U} \mathrm{d}t,$$

is minimal.

 $\mathcal{L}(q(t), \dot{q}(t), t) = T(q(t), \dot{q}(t), t) - U(q(t), t)$ is the Lagrangian of the system at instant t (homogeneous to an energy), with \mathcal{L} a real differentiable function

$$\mathcal{L}: \left| \begin{array}{ccc} \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x, u, t) & \longmapsto & \mathcal{L}(x, u, t) \end{array} \right|$$

Remark: S is a *functional*, as it takes as arguments the two functions q and \dot{q} .

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial q_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

Theorem

A necessary condition for the action S to be minimal is that q satisfies for all $t \in [a, b]$ the so-called Euler-Lagrange equations,

$$\forall i = 0..n, \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_i} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}_i} = 0.$$

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

Theorem

A necessary condition for the action S to be minimal is that q satisfies for all $t \in [a, b]$ the so-called Euler-Lagrange equations,

$$\forall i = 0..n, \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_i} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}_i} = 0.$$

Exercise: proof!

White board 1/6

White board 2/6

White board 3/6

White board 4/6

White board 5/6

White board 6/6

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial q_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

Theorem

A necessary condition for the action S to be minimal is that q satisfies for all $t \in [a, b]$ the so-called Euler-Lagrange equations,

$$\forall i = 0..n, \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_i} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}_i} = 0.$$

Exercise: proof!

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial q_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

Theorem

A necessary condition for the action S to be minimal is that q satisfies for all $t \in [a, b]$ the so-called Euler-Lagrange equations,

$$\forall i = 0..n, \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_i} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}_i} = 0.$$

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal. A trajectory *q* satisfying them actually corresponds to a stationary point of the action (minimum, maximum or saddle point).

We assume \mathcal{L} is differentiable, and that its partial derivatives $\mathcal{L}_{x_i} = \frac{\partial \mathcal{L}}{\partial x_i}$ and $\mathcal{L}_{u_i} = \frac{\partial \mathcal{L}}{\partial u_i}$ are continuous. We take the (misused) notation $\frac{\partial \mathcal{L}}{\partial q_i}$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ to represent the two partial derivatives of \mathcal{L} evaluated at $(q(t), \dot{q}(t), t)$, i.e., such that $\frac{\partial \mathcal{L}}{\partial q_i} = \mathcal{L}_{x_i}(q(t), \dot{q}(t), t)$ and $\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \mathcal{L}_{u_i}(q(t), \dot{q}(t), t)$, respectively.

Theorem

A necessary condition for the action S to be minimal is that q satisfies for all $t \in [a, b]$ the so-called Euler-Lagrange equations,

$$\forall i = 0..n, \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}_i} - \frac{\partial \mathcal{L}}{\partial \mathbf{q}_i} = 0.$$

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal. A trajectory *q* satisfying them actually corresponds to a stationary point of the action (minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be applied beyond dynamics, for instance to find object shapes with minimal weight, or to compute shapes at static equilibrium (see Class 5).

Back to the simple pendulum

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Back to the simple pendulum

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exercise

• Write the equations of motion of the simple pendulum...

Back to the simple pendulum

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exercise

- Write the equations of motion of the simple pendulum...
- ...using the Euler-Lagrange formalism

White board 1/6

White board 2/6

White board 3/6

White board 4/6

White board 5/6

White board 6/6

The double pendulum

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

The double pendulum

Exercise

• Write the equations of motion of the double pendulum...

The double pendulum

Exercise

- Write the equations of motion of the double pendulum...
- ...using the Euler-Lagrange formalism

White board 1/6
White board 2/6

White board 3/6

White board 4/6

White board 5/6

White board 6/6

Part II: Finite differences

Back to the simple pendulum

Computing the dynamics

$$\ddot{ heta}+rac{g}{\ell}\sin heta=0\qquad ext{with } heta(0)= heta_0 ext{ and }\dot{ heta}(0)=\lambda_0$$

Back to the simple pendulum

Computing the dynamics

$$\ddot{ heta}+rac{g}{\ell}\sin heta=0$$
 with $heta(0)= heta_0$ and $\dot{ heta}(0)=\lambda_0$

• Nonlinear equation, no explicit solution

Back to the simple pendulum

Computing the dynamics

$$\ddot{ heta}+rac{g}{\ell}\sin heta=0\qquad$$
 with $heta(0)= heta_0$ and $\dot{ heta}(0)=\lambda_0$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

э

- Nonlinear equation, no explicit solution
- $\bullet \rightarrow$ Recourse to numerical integration

Cauchy problem

We consider the following first-order differential equation with initial value,

$$\begin{cases} \dot{x} = f(x(t), t) & t \in [a, b] \\ x(a) = x_0 \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト ・ シュマ

Cauchy problem

We consider the following first-order differential equation with initial value,

$$\begin{cases} \dot{x} = f(x(t), t) & t \in [a, b] \\ x(a) = x_0 \end{cases}$$

where f is a continuous function from $\mathbb{R}^p \times \mathbb{R}$ to \mathbb{R}^p , $p \ge 1$. Such a problem belongs to the class of Cauchy problems. The unknown of the problem is the function x from \mathbb{R} to \mathbb{R}^p .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cauchy problem

Exercise

Show that the simple pendulum equation of motion enters the formalism above.

Equation of motion (reminder)

$$\ddot{ heta}+rac{g}{\ell}\sin heta=0$$
 with $heta(0)= heta_0$ and $\dot{ heta}(0)=\lambda_0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A function $g: \mathbb{R}^{p} \to \mathbb{R}^{p}$ is Lipschitz continuous if there exists a constant $K \geq 0$ such that

 $orall (x,y)\in \mathbb{R}^{p}, \|g(y)-g(x)\|\leq K\,\|y-x\|.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Exercise

- Show that a Lipschitz continuous function is necessarily continuous.
- Is the opposite true?

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

 $\forall (x,y) \in \mathbb{R}^p, \|g(y) - g(x)\| \leq K \|y - x\|.$

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Remark:

• K is called the Lipschitz constant.

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Remark:

• K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.

Definition

A function $g:\mathbb{R}^{p} o\mathbb{R}^{p}$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Remark:

• K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Remark:

• K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• A Lipschitz continuous function is necessarily continuous (opposite is not true).

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

$$\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$$

Remark:

• K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.

- A Lipschitz continuous function is necessarily continuous (opposite is not true).
- A differentiable function g is Lipschitz continuous on E if and only if its first derivative is bounded (and $\sup_E ||g'(x)||$ is the smallest Lipschitz constant).

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

 $\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$

Remark:

- K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.
- A Lipschitz continuous function is necessarily continuous (opposite is not true).
- A differentiable function g is Lipschitz continuous on E if and only if its first derivative is bounded (and $\sup_E ||g'(x)||$ is the smallest Lipschitz constant).
- A function g is called locally Lipschitz continuous if for every x in \mathbb{R}^p there exists a neighborhood U of x such that g restricted to U is Lipschitz continuous.

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

 $\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$

Remark:

- K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.
- A Lipschitz continuous function is necessarily continuous (opposite is not true).
- A differentiable function g is Lipschitz continuous on E if and only if its first derivative is bounded (and $\sup_E ||g'(x)||$ is the smallest Lipschitz constant).
- A function g is called locally Lipschitz continuous if for every x in \mathbb{R}^{p} there exists a neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipschitz Theorem

Recall the Cauchy problem, with f continuous

$$\begin{cases} \dot{x} = f(x(t), t) & t \in [a, b] \\ x(a) = x_0 \end{cases}$$

Definition

A function $g:\mathbb{R}^p o\mathbb{R}^p$ is Lipschitz continuous if there exists a constant $K\geq 0$ such that

 $\forall (x,y) \in \mathbb{R}^{p}, \|g(y) - g(x)\| \leq K \|y - x\|.$

Remark:

- K is called the Lipschitz constant. If K < 1, the function is said to be a contraction. If K = 0, the function is necessarily constant.
- A Lipschitz continuous function is necessarily continuous (opposite is not true).
- A differentiable function g is Lipschitz continuous on E if and only if its first derivative is bounded (and $\sup_E ||g'(x)||$ is the smallest Lipschitz constant).
- A function g is called locally Lipschitz continuous if for every x in \mathbb{R}^{p} there exists a neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipschitz Theorem

Recall the Cauchy problem, with f continuous

$$\begin{cases} \dot{x} = f(x(t), t) & t \in [a, b] \\ x(a) = x_0 \end{cases}$$

If f is locally Lipschitz continuous with respect to its first (state) variable x(t), then there exists a unique solution \bar{x} to the Cauchy problem, and \bar{x} is C^1 continuous.

Recall that the Cauchy problem $\left\{ \right.$

$$\begin{cases} \dot{x} = f(x(t), t) & t \in [a, b] \\ x(a) = x_0 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

admits the unique solution $\bar{x}(t)$ for $t \in [a, b]$ (under some regularity assumptions on f). In general, this solution has no explicit form, so we search for a numerical approximation of $\bar{x}(t)$.

Recall that the Cauchy problem $\left\{ \begin{array}{ll} \dot{x}=f(x(t),t) & t\in[a,b] \\ x(a)=x_0 \end{array} \right.$

admits the unique solution $\bar{x}(t)$ for $t \in [a, b]$ (under some regularity assumptions on f). In general, this solution has no explicit form, so we search for a numerical approximation of $\bar{x}(t)$.

 \rightarrow We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we aim at constructing a sequence of points $x_0, x_1, \dots, x_k, \dots, x_N$ at discrete times $t_0 + h, t_0 + 2h, \dots, t_0 + kh, \dots, t_0 + nh$, which approximate well the exact solution.

Recall that the Cauchy problem $\begin{cases} x \\ x \end{cases}$

$$\left\{ egin{array}{ll} \dot{x} = f(x(t),t) & t \in [a,b] \ x(a) = x_0 \end{array}
ight.$$

admits the unique solution $\bar{x}(t)$ for $t \in [a, b]$ (under some regularity assumptions on f). In general, this solution has no explicit form, so we search for a numerical approximation of $\bar{x}(t)$.

 \rightarrow We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we aim at constructing a sequence of points $x_0, x_1, \dots, x_k, \dots, x_N$ at discrete times $t_0 + h, t_0 + 2h, \dots, t_0 + kh, \dots, t_0 + nh$, which approximate well the exact solution.

Definition

The numerical scheme is said to be convergent if

$$\sup_k \|e_k\| \to 0 \quad \text{ when } h \to 0,$$

where $e_k = \bar{x}_k - x_k$ (with $\bar{x}_k = \bar{x}(t_k)$) is the convergence error at t_k .

Recall that the Cauchy problem $\left\{ \right.$

$$\left\{ egin{array}{ll} \dot{x} = f(x(t),t) & t \in [a,b] \ x(a) = x_0 \end{array}
ight.$$

admits the unique solution $\bar{x}(t)$ for $t \in [a, b]$ (under some regularity assumptions on f). In general, this solution has no explicit form, so we search for a numerical approximation of $\bar{x}(t)$.

 \rightarrow We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we aim at constructing a sequence of points $x_0, x_1, \dots, x_k, \dots, x_N$ at discrete times $t_0 + h, t_0 + 2h, \dots, t_0 + kh, \dots, t_0 + nh$, which approximate well the exact solution.

Definition

The numerical scheme is said to be convergent if

$$\sup_k \|e_k\| \to 0 \quad \text{ when } h \to 0,$$

where $e_k = \bar{x}_k - x_k$ (with $\bar{x}_k = \bar{x}(t_k)$) is the convergence error at t_k .

Definition

The numerical scheme is convergent of order m if there exists a constant $C \ge 0$ (independent of h) such that $\sup_k ||e_k|| \le C h^m$.

Recall that the Cauchy problem $\begin{cases} x \\ x \end{cases}$

$$\left\{ egin{array}{ll} \dot{x} = f(x(t),t) & t \in [a,b] \ x(a) = x_0 \end{array}
ight.$$

admits the unique solution $\bar{x}(t)$ for $t \in [a, b]$ (under some regularity assumptions on f). In general, this solution has no explicit form, so we search for a numerical approximation of $\bar{x}(t)$.

 \rightarrow We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we aim at constructing a sequence of points $x_0, x_1, \dots, x_k, \dots, x_N$ at discrete times $t_0 + h, t_0 + 2h, \dots, t_0 + kh, \dots, t_0 + nh$, which approximate well the exact solution.

Definition

The numerical scheme is said to be convergent if

$$\sup_k \|e_k\| \to 0 \quad \text{ when } h \to 0,$$

where $e_k = \bar{x}_k - x_k$ (with $\bar{x}_k = \bar{x}(t_k)$) is the convergence error at t_k .

Definition

The numerical scheme is convergent of order m if there exists a constant $C \ge 0$ (independent of h) such that $\sup_k ||e_k|| \le C h^m$.

 \rightarrow The greater *m*, the faster the method converges to the exact solution.

Definition

A single-step numerical scheme is defined as the recurrence

 x_0 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where Φ defines the type of numerical scheme used.

Definition

A single-step numerical scheme is defined as the recurrence

$$x_0$$
 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

where Φ defines the type of numerical scheme used.

Examples

• Explicit Euler: $x_{k+1} = x_k + hf(x_k, t_k)$

Definition

A single-step numerical scheme is defined as the recurrence

$$x_0$$
 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where Φ defines the type of numerical scheme used.

Examples

• Explicit Euler:
$$x_{k+1} = x_k + hf(x_k, t_k)$$

 $\rightarrow \Phi(x_k, h, t_k) = f(x_k, t_k)$

Definition

A single-step numerical scheme is defined as the recurrence

$$x_0$$
 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

where Φ defines the type of numerical scheme used.

Examples

• Explicit Euler:
$$x_{k+1} = x_k + hf(x_k, t_k)$$

 $\rightarrow \Phi(x_k, h, t_k) = f(x_k, t_k)$

• Implicit Euler: $x_{k+1} = x_k + hf(x_{k+1}, t_{k+1})$

Definition

A single-step numerical scheme is defined as the recurrence

$$x_0$$
 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

where Φ defines the type of numerical scheme used.

Examples

- Explicit Euler: $x_{k+1} = x_k + hf(x_k, t_k)$ $\rightarrow \Phi(x_k, h, t_k) = f(x_k, t_k)$
- Implicit Euler: $x_{k+1} = x_k + hf(x_{k+1}, t_{k+1})$ $\rightarrow \Phi$ defined implicitly (is well-defined if $f_x(x, t)y \cdot y \leq 0 \quad \forall x, y \in \mathbb{R}^p, \forall t \in [a, b]$)

Definition

A single-step numerical scheme is defined as the recurrence

$$x_0$$
 given $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$

where Φ defines the type of numerical scheme used.

Examples

• Explicit Euler:
$$x_{k+1} = x_k + hf(x_k, t_k)$$

 $\rightarrow \Phi(x_k, h, t_k) = f(x_k, t_k)$

• Implicit Euler: $x_{k+1} = x_k + hf(x_{k+1}, t_{k+1})$ $\rightarrow \Phi$ defined implicitly (is well-defined if $f_x(x, t)y \cdot y \leq 0 \quad \forall x, y \in \mathbb{R}^p, \forall t \in [a, b]$)

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to prove consistency + stability w.r.t. errors instead.

Consistency of a numerical scheme

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1} - x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution.

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| o 0$ when h o 0.

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| \to 0 \quad \text{ when } h \to 0.$

The scheme is consistent of order m if there exists a constant $C \leq 0$ (independent of h) such that

$$|R_k|| \leq C h^m \quad \forall k = 0, \cdots, N$$

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| \to 0 \quad \text{ when } h \to 0.$

The scheme is consistent of order m if there exists a constant $C \leq 0$ (independent of h) such that

$$\|R_k\| \leq C h^m \quad \forall k = 0, \cdots, N$$

Remark:

• "Consistent" means that the scheme "converges" to the original Cauchy problem when $h \rightarrow 0$. If the scheme is not consistent, it means that we are trying to find an approximate solution to another problem!

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| \to 0 \quad \text{ when } h \to 0.$

The scheme is consistent of order m if there exists a constant $C \leq 0$ (independent of h) such that

$$\|R_k\| \leq C h^m \quad \forall k = 0, \cdots, N$$

Remark:

• "Consistent" means that the scheme "converges" to the original Cauchy problem when $h \rightarrow 0$. If the scheme is not consistent, it means that we are trying to find an approximate solution to another problem!

 \rightarrow Consistency is necessary to have convergence (but not sufficient...).

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| \to 0 \quad \text{ when } h \to 0.$

The scheme is consistent of order m if there exists a constant $C \leq 0$ (independent of h) such that

$$\|R_k\| \leq C h^m \quad \forall k = 0, \cdots, N$$

Remark:

• "Consistent" means that the scheme "converges" to the original Cauchy problem when $h \rightarrow 0$. If the scheme is not consistent, it means that we are trying to find an approximate solution to another problem!

 \rightarrow Consistency is necessary to have convergence (but not sufficient...).

• The order of convergence is directly related to the order of consistency of a numerical scheme.

Recall that $x_{k+1} = x_k + h\Phi(x_k, h, t_k)$, i.e. $\frac{x_{k+1}-x_k}{h} - \Phi(x_k, t_k, h) = 0$.

Definition

We define $R_k = \frac{\bar{x}_{k+1} - \bar{x}_k}{h} - \Phi(\bar{x}_k, t_k, h)$ as the consistency error of the scheme at t_k . Reminder: $\bar{x}_k = \bar{x}(t_k)$ where $\bar{x}(t)$ is the exact solution. A single-step numerical scheme is said to be consistent if

 $\sup_k \|R_k\| \to 0 \quad \text{ when } h \to 0.$

The scheme is consistent of order m if there exists a constant $C \leq 0$ (independent of h) such that

$$\|R_k\| \leq C h^m \quad \forall k = 0, \cdots, N$$

Remark:

• "Consistent" means that the scheme "converges" to the original Cauchy problem when $h \rightarrow 0$. If the scheme is not consistent, it means that we are trying to find an approximate solution to another problem!

 \rightarrow Consistency is necessary to have convergence (but not sufficient...).

• The order of convergence is directly related to the order of consistency of a numerical scheme.

Exercise

Show that Explicit Euler is a consistent scheme of first order.

Reminder: Explicit Euler:

$$\mathbf{x_{k+1}} = \mathbf{x_k} + hf(\mathbf{x_k}, \mathbf{t_k})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment,

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$\tilde{x}_0 = x_0 + \varepsilon_0$$
 $\tilde{x}_{k+1} = \tilde{x}_k + h(\Phi(\tilde{x}_k, t_k, h) + \varepsilon_{k+1}).$

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}
ight)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{\varepsilon} > 0$ (both independent of h) such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 $\forall h$,

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}
ight)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{\varepsilon} > 0$ (both independent of h) such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 $\forall h, \forall \varepsilon_k < \overline{\varepsilon},$

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}
ight)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{\varepsilon} > 0$ (both independent of h) such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$\forall h, \forall \varepsilon_k < \bar{\varepsilon}, \quad \sup_k \|x_k - \tilde{x}_k\| < M \sup_k \|\varepsilon_k\|$$

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}
ight)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{\varepsilon} > 0$ (both independent of h) such that

$$\forall h, \forall \varepsilon_k < \bar{\varepsilon}, \quad \sup_k \|x_k - \tilde{x}_k\| < M \sup_k \|\varepsilon_k\| \le M \, \bar{\varepsilon}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}\right)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{\varepsilon} > 0$ (both independent of h) such that

$$\forall h, \forall \varepsilon_k < \bar{\varepsilon}, \quad \sup_k \|x_k - \tilde{x}_k\| < M \sup_k \|\varepsilon_k\| \le M \bar{\varepsilon}$$

Remark:

 Means that a perturbation on the initial condition and on the increment Φ only yields a bounded perturbation on the numerical scheme, and so the scheme does not amplify errors.

We consider that at each time step, the computation of x_k may be altered by a perturbation ε_k on the increment, i.e., instead of computing the exact sequence x_k as previously, we compute \tilde{x}_k such that

$$ilde{x}_0 = x_0 + arepsilon_0 \qquad ilde{x}_{k+1} = ilde{x}_k + h\left(\Phi(ilde{x}_k, t_k, h) + arepsilon_{k+1}
ight)$$

Definition

The numerical scheme is stable with respect to errors if there exists a constant M > 0and a constant $\bar{e} > 0$ (both independent of h) such that

$$\forall h, \forall \varepsilon_k < \bar{\varepsilon}, \quad \sup_k \|x_k - \tilde{x}_k\| < M \sup_k \|\varepsilon_k\| \le M \, \bar{\varepsilon}$$

Remark:

- Means that a perturbation on the initial condition and on the increment Φ only yields a bounded perturbation on the numerical scheme, and so the scheme does not amplify errors.
- Easy criterion: stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties: typically, when Φ is Lipschitz continuous w.r.t. x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Convergence

Theorem

Convergence = *consistency* + *stability*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence

Theorem

Convergence = *consistency* + *stability*

Exercise

Show that Explicit Euler is a convergent scheme.

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

How does the approximate solution behave for a fixed timestep h when the time interval grows $(b \rightarrow +\infty)$?

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

How does the approximate solution behave for a fixed timestep h when the time interval grows $(b \to +\infty)$?

Definition

A numerical scheme is said to be stable if there exists $h^* > 0$ and $R \ge 0$ such that

$$||x_k|| \leq R \quad \forall k = 0, \cdots, N \quad \text{and } \forall h \in [0, h^*[.$$

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

How does the approximate solution behave for a fixed timestep h when the time interval grows $(b \rightarrow +\infty)$?

Definition

A numerical scheme is said to be stable if there exists $h^* > 0$ and $R \geq 0$ such that

$$||x_k|| \leq R \quad \forall k = 0, \cdots, N \quad \text{and } \forall h \in [0, h^*[.$$

Moreover, the scheme is said to be inconditionally stable if $h^* = +\infty$.

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

How does the approximate solution behave for a fixed timestep h when the time interval grows $(b \rightarrow +\infty)$?

Definition

A numerical scheme is said to be stable if there exists $h^* > 0$ and $R \geq 0$ such that

$$||x_k|| \leq R \quad \forall k = 0, \cdots, N \quad \text{and } \forall h \in [0, h^*[.$$

Moreover, the scheme is said to be inconditionally stable if $h^* = +\infty$.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for certain timesteps.

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

$$x(a) = x_0$$
 $\dot{x}(t) = -\lambda x(t)$ $\forall t \in [a, b]$ with $\lambda > 0$.

How does the approximate solution behave for a fixed timestep h when the time interval grows $(b \rightarrow +\infty)$?

Definition

A numerical scheme is said to be stable if there exists $h^* > 0$ and $R \geq 0$ such that

$$\|x_k\| \leq R \quad \forall k = 0, \cdots, N \quad \text{and } \forall h \in [0, h^*[.$$

Moreover, the scheme is said to be inconditionally stable if $h^* = +\infty$.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for certain timesteps.

 \rightarrow To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as defined above is useful when considering integration of systems on moderate or large time intervals, or when using a large timestep (which is often useful in practice!).

Explicit vs. Implicit Euler

Exercise 1

Consider the linearized pendulum problem (valid for small angle θ),

$$\ddot{ heta}+rac{{m {\cal g}}}{\ell} heta=0\qquad$$
 with $heta(0)= heta_0$ and $\dot{ heta}(0)=\lambda_0,$

and express the condition on the time step h for Explicit Euler to be stable.

Explicit vs. Implicit Euler

Exercise 2

Same question for Implicit Euler.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Explicit vs. Implicit Euler

In the general case:

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Explicit vs. Implicit Euler

In the general case:

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.

In a nutshell

• A short tour on the important notions and properties of finite difference schemes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In a nutshell

• A short tour on the important notions and properties of finite difference schemes

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

• Take home message 1: convergence = consistence + stability w.r.t. errors

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

• Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.
- Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

Going further

• Many other important single-step schemes: Runge-Kutta schemes (better order of convergence).

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.
- Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

Going further

- Many other important single-step schemes: Runge-Kutta schemes (better order of convergence).
- Multi-step schemes to yet improve accuracy while gaining efficiency...
Conclusion

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.
- Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

Going further

- Many other important single-step schemes: Runge-Kutta schemes (better order of convergence).
- Multi-step schemes to yet improve accuracy while gaining efficiency...
- Construction of "symplectic" schemes (mix of explicit/implicit): guarantee of energy conservation during large time intervals (see python practical).

Conclusion

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.
- Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

Going further

- Many other important single-step schemes: Runge-Kutta schemes (better order of convergence).
- Multi-step schemes to yet improve accuracy while gaining efficiency...
- Construction of "symplectic" schemes (mix of explicit/implicit): guarantee of energy conservation during large time intervals (see python practical).
- Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite differences (see python practical)

Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

Conclusion

In a nutshell

- A short tour on the important notions and properties of finite difference schemes
- Take home message 1: convergence = consistence + stability w.r.t. errors
- Take home message 2: the order of consistency gives the accuracy of the scheme.
- Take home message 3: stability of the numerical solution is very important in practice (see python practical this afternoon).

Going further

- Many other important single-step schemes: Runge-Kutta schemes (better order of convergence).
- Multi-step schemes to yet improve accuracy while gaining efficiency...
- Construction of "symplectic" schemes (mix of explicit/implicit): guarantee of energy conservation during large time intervals (see python practical).
- Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite differences (see python practical)

Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

• References: G. Allaire, Analyse numérique et optimisation ("Numerical analysis and optimization"), E. Hairer et al., Geometric numerical integration.