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Introductory example

Example: the double pendulum
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Questions

How to formulate the equations of motion of this object?

How to solve these equations in a �safe� way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class

I. Lagrange mechanics: how to formulate the equations of motion

II. Finite di�erences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered
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Lagrange mechanics

Generalized coordinates

De�nition

Generalized coordinates, denoted qi , are n independent variables (functions of time)
which allow to characterize the con�guration of a system possessing n degrees of
freedom. The generalized velocities of the system are de�ned by d

dt
qi = q̇i .

Example: For the simple pendulum, we can take q = θ (n = 1).

Remark: A generalized velocity q̇i does not necessarily correspond to the velocity vM of
a given material point M. Reconstructing the con�guration and the material velocities of
the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as
OM = ` er and its velocity vM as vM = `θ̇ eθ (in the basis (er , eθ) de�ned by θ).
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Lagrange mechanics

Equations of motion

Equations of motion

At instant t, having both the qi (t) and the q̇i (t) is necessary, and also su�cient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.

The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order di�erential
equations in the functions qi .

Question: how to �nd a systematic way to compute these equations?

Principle of virtual work (see next exercise)

Principle of least action: more general settings, beyond Newtonian dynamics!

→ Both principles lead to the so-called Euler-Lagrange equations
which take a speci�c form in Newtonian dynamics
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Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d

dt
q.

We consider a system subject to holonomic constraints (the qi are independent) and
conservative forces. Let T be the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.
L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy), with L a real di�erentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.
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Lagrange mechanics

Euler-Lagrange equations

We assume L is di�erentiable, and that its partial derivatives Lxi = ∂L
∂xi

and Lui = ∂L
∂ui

are

continuous.

We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial

derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L
∂qi

= Lxi (q(t), q̇(t), t) and
∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem

A necessary condition for the action S to be minimal is that q satis�es for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!
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Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to �nd object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 5).



Lagrange mechanics

Euler-Lagrange equations
We assume L is di�erentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial

derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L
∂qi

= Lxi (q(t), q̇(t), t) and
∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem

A necessary condition for the action S to be minimal is that q satis�es for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to �nd object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 5).



Lagrange mechanics

Euler-Lagrange equations
We assume L is di�erentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial

derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L
∂qi

= Lxi (q(t), q̇(t), t) and
∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem

A necessary condition for the action S to be minimal is that q satis�es for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to �nd object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 5).



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise

Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise

Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise

Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

White board 1/6



Lagrange mechanics

White board 2/6



Lagrange mechanics

White board 3/6



Lagrange mechanics

White board 4/6



Lagrange mechanics

White board 5/6



Lagrange mechanics

White board 6/6



Lagrange mechanics

The double pendulum

g

O

M1

θ1
`1

M2

θ2

`2

Exercise

Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

The double pendulum

g

O

M1

θ1
`1

M2

θ2

`2

Exercise

Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

The double pendulum

g

O

M1

θ1
`1

M2

θ2

`2

Exercise

Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

White board 1/6



Lagrange mechanics

White board 2/6



Lagrange mechanics

White board 3/6



Lagrange mechanics

White board 4/6



Lagrange mechanics

White board 5/6



Lagrange mechanics

White board 6/6



First steps into �nite di�erences

Part II: Finite di�erences
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Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration
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Cauchy problem

We consider the following �rst-order di�erential equation with initial value,{
ẋ = f (x(t), t) t ∈ [a, b]
x(a) = x0

where f is a continuous function from Rp × R to Rp, p ≥ 1. Such a problem belongs to
the class of Cauchy problems. The unknown of the problem is the function x from R to
Rp.
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Cauchy problem

Exercise

Show that the simple pendulum equation of motion enters the formalism above.

g
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θ

`

Equation of motion (reminder)

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0
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Existence and uniqueness of a solution

De�nition

A function g : Rp → Rp is Lipschitz continuous if there exists a constant K ≥ 0 such that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Exercise

Show that a Lipschitz continuous function is necessarily continuous.

Is the opposite true?
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De�nition

A function g : Rp → Rp is Lipschitz continuous if there exists a constant K ≥ 0 such that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:

K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
If K = 0, the function is necessarily constant.
A Lipschitz continuous function is necessarily continuous (opposite is not true).
A di�erentiable function g is Lipschitz continuous on E if and only if its �rst
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipschitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipschitz Theorem

Recall the Cauchy problem, with f continuous{
ẋ = f (x(t), t) t ∈ [a, b]
x(a) = x0

If f is locally Lipschitz continuous with respect to its �rst (state) variable x(t), then
there exists a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.
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Numerical scheme

Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(a) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).

→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

De�nition

The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(tk)) is the convergence error at tk .

De�nition

The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.
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Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)

→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)

→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Single-step numerical scheme

De�nition

A single-step numerical scheme is de�ned as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ de�nes the type of numerical scheme used.

Examples

Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ de�ned implicitly (is well-de�ned if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into �nite di�erences

Consistency of a numerical scheme
Recall that xk+1 = xk + hΦ(xk , h, tk), i.e.

xk+1−xk
h
− Φ(xk , tk , h) = 0.

De�nition

We de�ne Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:

�Consistent� means that the scheme �converges� to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to �nd an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not su�cient...).

The order of convergence is directly related to the order of consistency of a
numerical scheme.
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Consistency of a numerical scheme

Exercise

Show that Explicit Euler is a consistent scheme of �rst order.

Reminder: Explicit Euler: xk+1 = xk + hf (xk , tk)



First steps into �nite di�erences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment,

i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

De�nition

The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:

Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.

Easy criterion: stability w.r.t. errors is guaranteed when Φ satis�es some regularity
properties: typically, when Φ is Lipschitz continuous w.r.t. x .
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Other type of stability: Stability of the numerical solution (A-stability)

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(a) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behave for a �xed timestep h when the time interval
grows (b → +∞)?

De�nition

A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as de�ned above) are di�erent notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
de�ned above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).
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x(a) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behave for a �xed timestep h when the time interval
grows (b → +∞)?

De�nition

A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as de�ned above) are di�erent notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
de�ned above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into �nite di�erences

Other type of stability: Stability of the numerical solution (A-stability)

Exercise

Derive the Explicit Euler scheme for the simple scalar Cauchy problem
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Explicit vs. Implicit Euler

Exercise 1

Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.
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Explicit vs. Implicit Euler

Exercise 2

Same question for Implicit Euler.
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Explicit vs. Implicit Euler

In the general case:

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.
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Conclusion

In a nutshell

A short tour on the important notions and properties of �nite di�erence schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further

Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining e�ciency...

Construction of �symplectic� schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit �nite
di�erences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (�Numerical analysis and
optimization�), E. Hairer et al., Geometric numerical integration.
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