
Class 1: Lagrange mechanics
and first steps into numerical integration

Florence Bertails-Descoubes 1, Mélina Skouras 2, Mickaël Ly 3

2019, September 12 - ENS Lyon

1florence.descoubes@inria.fr
2melina.skouras@inria.fr
3mickael.ly@inria.fr



Introductory example

Example: the double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Questions
How to formulate the equations of motion of this object?

How to solve these equations in a “safe” way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class
I. Lagrange mechanics: how to formulate the equations of motion

II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered



Introductory example

Example: the double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Questions
How to formulate the equations of motion of this object?

How to solve these equations in a “safe” way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class
I. Lagrange mechanics: how to formulate the equations of motion

II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered



Introductory example

Example: the double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Questions
How to formulate the equations of motion of this object?

How to solve these equations in a “safe” way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class
I. Lagrange mechanics: how to formulate the equations of motion

II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered



Introductory example

Example: the double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Questions
How to formulate the equations of motion of this object?

How to solve these equations in a “safe” way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class
I. Lagrange mechanics: how to formulate the equations of motion

II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered



Introductory example

Example: the double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Questions
How to formulate the equations of motion of this object?

How to solve these equations in a “safe” way ?

Goal of this lecture: understand there are many possible choices and learn best practices

Outline of the class
I. Lagrange mechanics: how to formulate the equations of motion

II. Finite differences: how to solve the equations of motion

NB: Once these concepts are known, more complex systems can be considered



Bibliography

Keywords and bibliography

Part I: Lagrange mechanics
Analytical Mechanics
Landau and Lifshitz, Mechanics Vol 1; J. Fereira, Mécanique analytique

Calculus of Variations
J.-P. Bourguignon, Calcul variationnel (“Variational calculus”)

Part II: Finite differences
Numerical Analysis
G. Allaire, Analyse numérique et optimisation (“Numerical analysis and optimization”)

Energy conservation properties
E. Hairer et al., Geometric numerical integration



Lagrange mechanics

Part I: Lagrange mechanics



Lagrange mechanics

The simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using Newton’s second law

...using the principle of virtual work



Lagrange mechanics

The simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using Newton’s second law

...using the principle of virtual work



Lagrange mechanics

The simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using Newton’s second law

...using the principle of virtual work



Lagrange mechanics

The simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using Newton’s second law

...using the principle of virtual work



Lagrange mechanics

Generalized coordinates

Definition
Generalized coordinates, denoted qi , are n independent variables (functions of time)
which allow to characterize the configuration of a system possessing n degrees of
freedom. The generalized velocities of the system are defined by d

dt qi = q̇i .

Example: For the simple pendulum, we can take q = θ (n = 1).

Remark: A generalized velocity q̇i does not necessarily correspond to the velocity vM of
a given material point M. Reconstructing the configuration and the material velocities of
the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as
OM = ` er and its velocity vM as vM = `θ̇ eθ (in the basis (er , eθ) defined by θ).



Lagrange mechanics

Generalized coordinates

Definition
Generalized coordinates, denoted qi , are n independent variables (functions of time)
which allow to characterize the configuration of a system possessing n degrees of
freedom. The generalized velocities of the system are defined by d

dt qi = q̇i .

Example: For the simple pendulum, we can take q = θ (n = 1).

Remark: A generalized velocity q̇i does not necessarily correspond to the velocity vM of
a given material point M. Reconstructing the configuration and the material velocities of
the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as
OM = ` er and its velocity vM as vM = `θ̇ eθ (in the basis (er , eθ) defined by θ).



Lagrange mechanics

Generalized coordinates

Definition
Generalized coordinates, denoted qi , are n independent variables (functions of time)
which allow to characterize the configuration of a system possessing n degrees of
freedom. The generalized velocities of the system are defined by d

dt qi = q̇i .

Example: For the simple pendulum, we can take q = θ (n = 1).

Remark: A generalized velocity q̇i does not necessarily correspond to the velocity vM of
a given material point M. Reconstructing the configuration and the material velocities of
the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as
OM = ` er and its velocity vM as vM = `θ̇ eθ (in the basis (er , eθ) defined by θ).



Lagrange mechanics

Generalized coordinates

Definition
Generalized coordinates, denoted qi , are n independent variables (functions of time)
which allow to characterize the configuration of a system possessing n degrees of
freedom. The generalized velocities of the system are defined by d

dt qi = q̇i .

Example: For the simple pendulum, we can take q = θ (n = 1).

Remark: A generalized velocity q̇i does not necessarily correspond to the velocity vM of
a given material point M. Reconstructing the configuration and the material velocities of
the system corresponds to writing the kinematics of the system.

Example: For the simple pendulum, the position of the mass M can be computed as
OM = ` er and its velocity vM as vM = `θ̇ eθ (in the basis (er , eθ) defined by θ).



Lagrange mechanics

Equations of motion

Equations of motion
At instant t, having both the qi (t) and the q̇i (t) is necessary, and also sufficient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.

The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order differential
equations in the functions qi .

Question: how to find a systematic way to compute these equations?

Principle of virtual work (just derived previously)

Principle of least action: more general settings



Lagrange mechanics

Equations of motion

Equations of motion
At instant t, having both the qi (t) and the q̇i (t) is necessary, and also sufficient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.
The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order differential
equations in the functions qi .

Question: how to find a systematic way to compute these equations?

Principle of virtual work (just derived previously)

Principle of least action: more general settings



Lagrange mechanics

Equations of motion

Equations of motion
At instant t, having both the qi (t) and the q̇i (t) is necessary, and also sufficient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.
The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order differential
equations in the functions qi .

Question: how to find a systematic way to compute these equations?

Principle of virtual work (just derived previously)

Principle of least action: more general settings



Lagrange mechanics

Equations of motion

Equations of motion
At instant t, having both the qi (t) and the q̇i (t) is necessary, and also sufficient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.
The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order differential
equations in the functions qi .

Question: how to find a systematic way to compute these equations?

Principle of virtual work (just derived previously)

Principle of least action: more general settings



Lagrange mechanics

Equations of motion

Equations of motion
At instant t, having both the qi (t) and the q̇i (t) is necessary, and also sufficient, to
determine the accelerations q̈i (t) of the system at t, and thus predict the trajectory
qi (t+) forward in time, t+ > t.
The equations relating the qi and the q̇i to the accelerations q̈i are called the equations
of motion of the system. They take the form of n independent second-order differential
equations in the functions qi .

Question: how to find a systematic way to compute these equations?

Principle of virtual work (just derived previously)

Principle of least action: more general settings



Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d
dt q.

We consider a system subject to holonomic constraints and conservative forces. Let T be
the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.
L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy), with L a real differentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.



Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d
dt q.

We consider a system subject to holonomic constraints and conservative forces. Let T be
the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.

L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy), with L a real differentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.



Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d
dt q.

We consider a system subject to holonomic constraints and conservative forces. Let T be
the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.
L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy)

, with L a real differentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.



Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d
dt q.

We consider a system subject to holonomic constraints and conservative forces. Let T be
the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.
L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy), with L a real differentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.



Lagrange mechanics

General method: Least action principle

Let q = {q0, . . . , qi , . . . , qn−1} and q̇ = d
dt q.

We consider a system subject to holonomic constraints and conservative forces. Let T be
the kinetic energy of the system, and U its potential energy.

Principle of least action (Hamilton principle)

The actual trajectory q(t) followed by the system between two instants a and b > a
should be such that the action of the system,

S(q, q̇) =

∫ b

a

L(q(t), q̇(t), t)︸ ︷︷ ︸
T−U

dt,

is minimal.
L(q(t), q̇(t), t) = T (q(t), q̇(t), t)− U(q(t), t) is the Lagrangian of the system at
instant t (homogeneous to an energy), with L a real differentiable function

L : Rn × Rn × R −→ R
(x , u, t) 7−→ L(x , u, t),

Remark: S is a functional, as it takes as arguments the two functions q and q̇.



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous.

We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Euler-Lagrange equations
We assume L is differentiable, and that its partial derivatives Lxi = ∂L

∂xi
and Lui = ∂L

∂ui
are

continuous. We take the (misused) notation ∂L
∂qi

and ∂L
∂q̇i

to represent the two partial
derivatives of L evaluated at (q(t), q̇(t), t), i.e., such that ∂L

∂qi
= Lxi (q(t), q̇(t), t) and

∂L
∂q̇i

= Lui (q(t), q̇(t), t), respectively.

Theorem
A necessary condition for the action S to be minimal is that q satisfies for all t ∈ [a, b]
the so-called Euler-Lagrange equations,

∀i = 0..n,
d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0.

Exercise: proof!

Remark: These equations only give a necessary condition for the action to be minimal.
A trajectory q satisfying them actually corresponds to a stationary point of the action
(minimum, maximum or saddle point).

Remark: This is a variational principle (minimum condition on a functional). It can be
applied beyond dynamics, for instance to find object shapes with minimal weight, or to
compute shapes at static equilibrium (see Class 3).



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

Back to the simple pendulum

g

O

M

θ

`

Exercise
Write the equations of motion of the simple pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

The double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Exercise
Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

The double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Exercise
Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



Lagrange mechanics

The double pendulum

g

O

M1

θ0
`0

M2

θ1

`1

Exercise
Write the equations of motion of the double pendulum...

...using the Euler-Lagrange formalism



First steps into finite differences

Part II: Finite differences



First steps into finite differences

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration



First steps into finite differences

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration



First steps into finite differences

Back to the simple pendulum

g

O

M

θ

`

Computing the dynamics

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0

Nonlinear equation, no explicit solution

→ Recourse to numerical integration



First steps into finite differences

Cauchy problem
We consider the following first-order differential equation with initial value,{

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

where f is a function from Rp × R to Rp, p ≥ 1. Such a problem belongs to the class of
Cauchy problems. The unknown of the problem is the function x from [a, b] to Rp.

Exercise
Show that the simple pendulum equation of motion enters the formalism above.

g

O

M

θ

`

Equation of motion (reminder)

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0



First steps into finite differences

Cauchy problem
We consider the following first-order differential equation with initial value,{

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

where f is a function from Rp × R to Rp, p ≥ 1. Such a problem belongs to the class of
Cauchy problems. The unknown of the problem is the function x from [a, b] to Rp.

Exercise
Show that the simple pendulum equation of motion enters the formalism above.

g

O

M

θ

`

Equation of motion (reminder)

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0



First steps into finite differences

Cauchy problem
We consider the following first-order differential equation with initial value,{

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

where f is a function from Rp × R to Rp, p ≥ 1. Such a problem belongs to the class of
Cauchy problems. The unknown of the problem is the function x from [a, b] to Rp.

Exercise
Show that the simple pendulum equation of motion enters the formalism above.

g

O

M

θ

`

Equation of motion (reminder)

θ̈ +
g

`
sin θ = 0 with θ(0) = θ0 and θ̇(0) = λ0



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.

A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).

A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).

A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Existence and uniqueness of a solution

Definition
A function g : Rp → Rp is Lipschitz continuous if there exists a real constant K ≥ 0 such
that

∀(x , y) ∈ Rp, ‖g(y)− g(x)‖ ≤ K ‖y − x‖.

Remark:
K is called the Lipschitz constant. If K < 1, the function is said to be a contraction.
A Lipshitz continuous function is necessarily continuous (opposite is not true).
A differentiable function g is Lipshitz continuous on E if and only if its first
derivative is bounded (and supE‖g ′(x)‖ is the smallest Lipshitz constant).
A function g is called locally Lipschitz continuous if for every x in Rp there exists a
neighborhood U of x such that g restricted to U is Lipschitz continuous.

Cauchy-Lipshitz Theorem
Recall the Cauchy problem {

ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

If f is locally Lipschitz continuous with respect to its first variable x(t), then there exists
a unique solution x̄ to the Cauchy problem, and x̄ is C 1 continuous.



First steps into finite differences

Numerical scheme
Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).

→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

Definition
The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(k)) is the convergence error at tk .

Definition
The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.



First steps into finite differences

Numerical scheme
Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).
→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

Definition
The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(k)) is the convergence error at tk .

Definition
The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.



First steps into finite differences

Numerical scheme
Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).
→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

Definition
The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(k)) is the convergence error at tk .

Definition
The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.



First steps into finite differences

Numerical scheme
Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).
→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

Definition
The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(k)) is the convergence error at tk .

Definition
The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.



First steps into finite differences

Numerical scheme
Recall that the Cauchy problem

{
ẋ = f (x(t), t) t ∈ [a, b]
x(0) = x0

admits the unique solution x̄(t) for t ∈ [a, b] (under some regularity assumptions on f ).
In general, this solution has no explicit form, so we search for a numerical approximation
of x̄(t).
→ We subdivide the interval [a, b] in N segments of length h (h = the timestep), and we
aim at constructing a sequence of points x0, x1, · · · , xk , · · · , xN at discrete times
t0 + h, t0 + 2h, · · · , t0 + k h, · · · , t0 + n h, which approximate well the exact solution.

Definition
The numerical scheme is said to be convergent if

sup
k
‖ek‖ → 0 when h→ 0,

where ek = x̄k − xk (with x̄k = x̄(k)) is the convergence error at tk .

Definition
The numerical scheme is convergent of order m if there exists a constant C ≥ 0
(independent of h) such that supk ‖ek‖ ≤ C hm.

→ The greater m, the faster the method converges to the exact solution.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)

→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)

→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Single-step numerical scheme

Definition
A single-step numerical scheme is defined as the recurrence

x0 given xk+1 = xk + hΦ(xk , h, tk)

where Φ defines the type of numerical scheme used.

Examples
Explicit Euler: xk+1 = xk + hf (xk , tk)
→ Φ(xk , h, tk) = f (xk , tk)

Implicit Euler: xk+1 = xk + hf (xk+1, tk+1)
→ Φ defined implicitly (is well-defined if fx(x , t)y · y ≤ 0 ∀x , y ∈ Rp, ∀t ∈ [a, b])

Remark: Convergence is generally hard to prove directly. Instead, one usually prefers to
prove consistency + stability w.r.t. errors instead.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.

A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!

→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).

The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Consistency of a numerical scheme
Definition

We define Rk =
x̄k+1−x̄k

h
− Φ(x̄k , tk , h) as the consistency error of the scheme at tk .

Reminder: x̄k = x̄(tk) where x̄(t) is the exact solution.
A single-step numerical scheme is said to be consistent if

sup
k
‖Rk‖ → 0 when h→ 0.

The scheme is consistent of order m if there exists a constant C ≤ 0 (independent of h)
such that

‖Rk‖ ≤ C hm ∀k = 0, · · · ,N

Remark:
“Consistent” means that the scheme “converges” to the original Cauchy problem
when h→ 0. If the scheme is not consistent, it means that we are trying to find an
approximate solution to another problem!
→ Consistency is necessary to have convergence (but not sufficient...).
The order of convergence is directly related to the order of consistency of a
numerical scheme.

Exercise
Show that Explicit Euler is a consistent scheme of first order.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment,

i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h,

∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄,

sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖

≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.

Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)

If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Stability with respect to errors
We consider that at each time step, the computation of xk may be altered by a
perturbation εk on the increment, i.e., instead of computing the exact sequence xk as
previously, we compute x̃k such that

x̃0 = x0 + ε0 x̃k+1 = x̃k + h (Φ(x̃k , tk , h) + εk+1) .

Definition
The numerical scheme is stable with respect to errors if there exists a constant M > 0
and a constant ε̄ > 0 (both independent of h) such that

∀h, ∀εk < ε̄, sup
k
‖xk − x̃k‖ < M sup

k
‖εk‖ ≤ M ε̄

Remark:
Means that a perturbation on the initial condition and on the increment Φ only
yields a bounded perturbation on the numerical scheme, and so the scheme does not
amplify errors.
Stability w.r.t. errors is guaranteed when Φ satisfies some regularity properties
(Lipshitz continuous w.r.t. x)
If f is regular enough (Lipshitz continuous w.r.t. x), Explicit Euler is stable
w.r.t. errors.



First steps into finite differences

Convergence

Theorem
Convergence = consistency + stability



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.

→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Stability of the numerical solution

Exercise
Derive the Explicit Euler scheme for the simple scalar Cauchy problem

x(0) = x0 ẋ(t) = −λ x(t) ∀t ∈ [a, b] with λ > 0.

How does the approximate solution behaves for a fixed timestep h when the time interval
grows (b → +∞)?

Definition
A numerical scheme is said to be stable if there exists h∗ > 0 and R ≥ 0 such that

‖xk‖ ≤ R ∀k = 0, · · · ,N and ∀h ∈ [0, h∗[.

Moreover, the scheme is said to be inconditionally stable if h∗ = +∞.

Remark: Stability w.r.t. errors and stability (as defined above) are different notions of
stability. A scheme can be stable w.r.t. errors but unstable (in the sense above) for
certain timesteps.
→ To keep in mind: stability w.r.t. errors is useful for proving convergence. Stability as
defined above is useful when considering integration of systems on moderate or large
time intervals, or when using a large timestep (which is often useful in practice!).



First steps into finite differences

Explicit vs. Implicit Euler

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.

Exercise 1
Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.

Exercise 2
For the linearized pendulum problem, verify that Implicit Euler is inconditionally
stable.



First steps into finite differences

Explicit vs. Implicit Euler

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.

Exercise 1
Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.

Exercise 2
For the linearized pendulum problem, verify that Implicit Euler is inconditionally
stable.



First steps into finite differences

Explicit vs. Implicit Euler

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.

Exercise 1
Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.

Exercise 2
For the linearized pendulum problem, verify that Implicit Euler is inconditionally
stable.



First steps into finite differences

Explicit vs. Implicit Euler

Stability of Explicit Euler

Explicit Euler is conditionally stable.

Stability of Implicit Euler

Implicit Euler is inconditionally stable.

Exercise 1
Consider the linearized pendulum problem (valid for small angle θ),

θ̈ +
g

`
θ = 0 with θ(0) = θ0 and θ̇(0) = λ0,

and express the condition on the time step h for Explicit Euler to be stable.

Exercise 2
For the linearized pendulum problem, verify that Implicit Euler is inconditionally
stable.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.



First steps into finite differences

Conclusion

In a nutshell
A short tour on the important notions and properties of finite difference schemes

Take home message 1: convergence = consistence + stability w.r.t. errors

Take home message 2: the order of consistency gives the accuracy of the scheme.

Take home message 3: stability of the numerical solution is very important in
practice (see python practical this afternoon).

Going further
Many other important single-step schemes: Runge-Kutta schemes (better order of
convergence).

Multi-step schemes to yet improve accuracy while gaining efficiency...

Construction of “symplectic” schemes (mix of explicit/implicit): guarantee of energy
conservation during large time intervals (see python practical).

Solving of linear or nonlinear systems stemming from implicit or semi-implicit finite
differences (see python practical)
Linear system solves: LU, Cholesky, iterative methods... Nonlinear system solves: Newton, Broyden,...

References: G. Allaire, Analyse numérique et optimisation (“Numerical analysis and
optimization”), E. Hairer et al., Geometric numerical integration.


	Introductory example
	Bibliography
	Lagrange mechanics
	First steps into finite differences

