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ABSTRACT. These notes contains the material that I presented to the CEA-EDF-INRIA summer school
about numerical optimal transport. All the methods presented hereafter rely on convex optimization,
so we start with a fairly basic introduction to convex analysis and optimization. Then, we present
the entropic regularization of the Kantorovich formulation and present the now well known Sinkhorn
algorithm, whose convergence is proven in continuous setting. Then, we present the linear convergence
rate of this algorithm with respect to the Hilbert metric. The second numerical method we present use
the dynamical formulation of optimal transport proposed by Benamou and Brenier which is solvable
via non-smooth convex optimization methods.

1. INTRODUCTION

These notes are based on [Cuturi and Peyré, 2019]. For the convergence of the Sinkhorn algo-
rithm, the proof is inspired by the proof in [Berman, 2017]. Most of the results on entropic regu-
larization can be found in [Cuturi and Peyré, 2019]. The last results on Sinkhorn divergence are
based on [Feydy et al., 2018]. For the numerical methods on the dynamical formulation, we rely on
[Benamou and Brenier, 2000, Cuturi and Peyré, 2019, Papadakis et al., 2014, Chizat et al., 2018].

2. A GLIMPSE AT CONVEX ANALYSIS AND OPTIMIZATION

In the following, we choose to consider the setting of Hilbert spaces instead of the more gen-
eral non-reflexive Banach spaces to benefit from the additional scalar product structure. However,
optimal transport needs the more general case to include the case of Radon measures.

2.1. Usual definitions.

Definition 1. Let C ⊂ E be a subset of the Banach space E, C is convex if for all x, y ∈ C, the
segment [x, y] is contained in C.

Of course the definition makes sense on a vector space but we need a topology on E for the
Hahn-Banach theorem.

Definition 2. A function f : E 7→ [−∞, ∞] is convex if its epigraph defined as

(2.1) epi( f ) def.
= {(x, y) : y ≥ f (x)} ⊂ E×R

is convex. The domain of f is dom( f ) def.
= {x : f (x) < +∞}.

The function f is said proper if there exists x0 ∈ E such that f (x0) < +∞ and if f never takes
the value −∞. If f is proper, the definition of convexity reduces to the usual definition f (tx + (1−
t)y) ≤ t f (x) + (1− t) f (y) for every couple x, y ∈ E and t ∈ [0, 1]. Last, f is said strictly convex if
the previous inequality is strict for t ∈]0, 1[.

We want the function to be defined on the completed real line [−∞, ∞] in order to include con-
straints in the optimization problem.

Definition 3. A function f : E→ R is said lower semi-continuous (lsc) if for every xn → x

(2.2) f (x) ≤ lim
n→∞

f (xn) .
1
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Example 1. Let C ⊂ E be a set. We denote by ιC : E 7→ R the indicator function of C defined as

(2.3) ιC(x) =

{
0 if x ∈ C ,
+∞ otherwise.

It convex iff C is convex, proper iff C is non-empty and lsc iff C is closed. This example is important in order
to formulate constraint optimization problems as unconstrained optimization. More precisely, we mean

(2.4) min
x∈C

f (x) = min
x∈C

f (x) + ιC(x) .

A direct consequence of the definition, we have the following fact,

Proposition 2 (Sup of convex function is convex). Let fi : E→ R be convex functions indexed by a set
I. Then, supi∈I fi is a convex function.

As a result of the Hahn-Banach theorem,

Proposition 3 (Closed + convex→ weakly closed). A closed (for the strong topology) convex set is also
closed for the weak topology (which differs in infinite dimension).

An important property that is constantly used and is a consequence of Hahn-Banach theorem is

Proposition 4. A convex lsc proper function is equal to the supremum of its affine minorants.

To get a more quantitative description of this affine minorant, we need the definition of convex
conjugate. Hereafter, we consider the case where E, E∗ is a dual pair. For instance, when E is a
Hilbert space or a finite dimensional space E = E∗. Optimal transport needs the more general case;
Indeed, if X is a compact domain in Rd, E = C(X, R) is a Banach space when endowed with the
sup norm and E∗ =M(X) is the set of Radon measures.

Definition 4 (Convex conjugate). Let f : E 7→ R be a function. The convex conjugate f ∗ : E∗ 7→ R

is defined as

(2.5) f ∗(p) = sup
x∈E
〈p, x〉 − f (x) .

Proposition 5. Let f : E 7→ R be a function, then f ∗∗ is the greatest lsc convex function below f . And, if
f is convex lsc proper, then f ∗∗ = f .

We now give the definition of the subgradient of a convex function which is the generalization
of the gradient.

Definition 5 (Subgradient). Let f : E→ R be a convex function and x ∈ E. The subgradient of f at
point x is the set of elements in E∗ defined by

(2.6) ∂ f (x) def.
= {p ∈ E∗ : f (y) ≥ f (x) + 〈p, y− x〉 for all y ∈ E} .

Remark 1. If f is continuous at point x0 then the subgradient at this point is non-empty, and also at every
point in the interior of dom( f ). The subdifferential can be empty at some points. In general, if E is a complete
Banach space and f is convex lsc and proper, the set of points where ∂ f is non-empty is dense in dom( f ).

Proposition 6. The definition of subgradient implies, exchanging the order of x, y in the inequality (2.6)
and adding the two inequalities

(2.7) 〈∂ f (x)− ∂ f (y), x− y〉 ≥ 0 ,

with a little abuse of notations since ∂ f (x) and ∂ f (y) denote any element in these sets.

Proposition 7 (Legendre-Fenchel identity). Let f be a convex function. Then, the three statements are
equivalent

• f (x) + f ∗(p) = 〈p, x〉 ,
• p ∈ ∂ f ∗(x),
• x ∈ ∂ f (p).
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Remark 2. If f and f ∗ are differentiable, then the Legendre-Fenchel identity simply says that∇ f ◦ ∇ f ∗ =
IdE∗ and ∇ f ∗ ◦ ∇ f = IdE, which is sometimes a useful property to manipulate optimality formulas.

Definition 6 (Strong convexity). Let λ > 0 be a positive real. A convex function f is λ strongly
convex if the function x 7→ f (x)− λ

2 ‖x‖2 is convex.

Proposition 8 (Strong convexity of f and smoothness of f ∗). A convex function f is λ strongly convex
iff f ∗ is C1 with Lipschitz gradient with constant 1/λ. Also, the subgradient satisfies

(2.8) 〈∇ f ∗(x)−∇ f ∗(y), x− y〉 ≥ λ‖∇ f ∗(x)−∇ f ∗(y)‖2 ,

∇ f is a co-coercive monotone operator.

Definition 7 (Gradient flow and (explicit) gradient descent). Let f : H 7→ R be a C1 function. The
gradient flow associated with f is

(2.9) ẋ = −∇ f (x) ,

with initial value x(0) = x0 ∈ H.
A time-discrete counterpart is constant step size gradient descent, for τ > 0,

(2.10) xk+1 = xk − τ∇ f (xk)

Proposition 9. If f is convex and C1 with Lipschitz gradient of constant L, then the explicit gradient
descent converges if τ < 2/L under the additional assumptions that f bounded below with bounded level
sets.

Proof. Only assuming f C1 with Lipschitz gradient of constant L, implies that

(2.11) f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ L/2‖y− x‖2 ,

and that the sequence of values f (xk) is decreasing since for y = xk+1 and y = xk, one has

f (xk+1) ≤ f (xk) + τ〈∇ f (xk),∇ f (xk)〉+ Lτ2/2‖∇ f (xk)‖2(2.12)

≤ τ(−1 + Lτ/2)‖∇ f (xk)‖2 .(2.13)

Therefore, if τ < 2/L, f (xk+1) < f (xk). If (xk)k∈N has an accumulation, which can be obtained
under mild assumptions on the function f (as mentioned for instance bounded level sets in Rd),
then this accumulation point is a critical point of f . If f is convex, it is a global minimum and the
sequence converges to this accumulation point since the map x 7→ x− τ∇ f (x) can be proven to be
a weak contraction and thus the distance to this accumulation point is decreasing. �

If the objective function f is not C1 with gradient L Lipschitz, it is possible to try to apply implicit
gradient descent instead of explicit which iterates xk+1 = xk − τ∇ f (xk).

Definition 8 (Implicit gradient descent and variational formulation). The implicit gradient scheme
with constant step size gradient descent, for τ > 0,

(2.14) xk+1 = xk − τ∇ f (xk+1) .

This time-discrete scheme has a variational formulation,

(2.15) xk+1 = arg min
1

2τ
‖x− xk‖2 + f (x) ,

which is uniquely defined if the function f is convex, proper and lsc (in this case, f has an affine
minorant and the minimized function is coercive).

Proposition 10. The so-called Moreau-Yosida regularization of f is fτ(y)
def.
= minx

1
2τ ‖x − y‖2 + f (x)

and it is C1 with 1/τ Lipschitz gradient. The explicit gradient scheme for fτ is the implicit gradient scheme
for f and consequently, the implicit gradient descent converges independently of the choice of τ.
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Definition 9. Let f be a convex function, proper and lsc. The proximal operator is defined as

(2.16) proxτ f (x) = arg min
y

1
2τ
‖x− y‖2 + f (x) .

As said above, proxτ f (x) is uniquely defined and satisfies

(2.17) proxτ f (x)− x + τ∂ f (x) 3 0 .

The notation (Id+τ∂ f )−1x = proxτ f (x) will be used.

In particular, if it is reasonably cheap to compute the proximal operator of f , then the implicit
gradient descent xk+1 = proxτ f (xk) can be used. Such functions are called simple. Therefore, it is
interesting to know that computing the proximal map of a function is as difficult as computing the
proximal map of its convex conjugate.

Proposition 11. Let f be a convex, proper and lsc function. Then, it holds

(2.18) x = proxτ f (x) + τ prox 1
τ f ∗(

1
τ

x) ,

known as Moreau’s identity.

Let us be interested in the following optimization problem,

(2.19) min
x

f (x) + g(x) ,

where f is simple function and g is a C1 function with L Lipschitz gradient. At a critical point x∗,
one has

(2.20) f (x) + g(x) ≤ f (x) + g(x∗) + 〈∇g(x∗), x− x∗〉+
L
2
‖x− x∗‖2 ,

and therefore, it is natural to minimize the right-hand side which gives the composition of a prox-
imal operator and a gradient step for g, since 〈∇g(x∗), x− x∗〉+ L

2 ‖x− x∗‖2 = 1
2‖

1
L∇g(x∗) + x−

x∗‖2,

(2.21) prox1/L f

We are now interested in the minimization problem

(2.22) min
x

f (Kx) + g(x) ,

where K is a bounded linear operator, f and g are convex, lsc and proper functions. In order to
present the primal-dual algorithms, we now compute the dual problem associated to (2.22).

min
x

max
p
〈p, Kx〉 − f ∗(p) + g(x) ≥ max

p
min

x
〈p, Kx〉 − f ∗(p) + g(x)(2.23)

≥ max
p
−g∗(−K∗p) + f ∗(p) ,(2.24)

Equality between the l.h.s and r.h.s. is satisfied under mild assumptions. In the case of non-reflexive
Banach space, we recall a useful theorem in convex analysis, the Fenchel-Rockafellar theorem. We
recall the notion of topologically paired spaces, E, E∗ if

Theorem 12 (Fenchel-Rockafellar). Let (E, E∗) and (F, F∗) be two topological dual pairs, L : E 7→ F be
a continuous linear map and denote L∗ : F∗ 7→ E∗ its adjoint. Let f : E 7→ R and g : F 7→ R be two proper,
convex and lower semicontinuous functions. Under the following condition if there exists x ∈ Dom( f ) such
that g is continuous at Ax, the following equality holds

(2.25) sup
x∈E
− f (−x)− g(Lx) = min

p∈F∗
f ∗(L∗p) + g∗(p) .

In case there exists a maximizer x ∈ E, then there exists p ∈ F∗ such that Lx ∈ ∂g∗(p) and L∗p ∈ ∂ f (−x).
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Note that the conclusion of the theorem has a dissymmetry, the minimum on the right-hand side
being attained. Let us give an example of application with standard optimal transport: We consider
a compact domain X ⊂ Rd, ρ1, ρ2 ∈ M1(X) two probability measures. On the space X × X, we
consider the space of nonnegative Radon measures.

3. ENTROPIC REGULARIZATION OF OPTIMAL TRANSPORT

The Kantorovich formulation of optimal transport aims at minimizing a linear function over the
simplex Sn,m of probability vectors on Rn×m defined by

(3.1) Sn,m = {πij ∈ Rn×m
+ :

n

∑
i=1

m

∑
j=1

πij = 1} .

Namely, denoting 〈·, ·〉 the L2 scalar product on Rn×m,

(3.2) OT(ρ1, ρ2) = min〈π(i, j), c(i, j)〉 such that ∑
j

πi,j = ρ1(i) and ∑
i

πi,j = ρ2(j)∀i, j .

This linear programming problem has complexity O(N3) which is clearly infeasible for large N, N
being max(n, m). Moreover, as a linear programming problem the resulting cost OT(ρ1, ρ2) is not
differentiable (everywhere) with respect to ρ1, ρ2.

Entropic regularization provides us with an approximation of optimal transport, with lower compu-
tational complexity and easy implementation.

Entropic regularization, in its continuous formulation, can actually be traced back to the seminal
work of Schrödinger in the 20’s, and has been rediscovered several times in different contexts.
We refer to the book [Cuturi and Peyré, 2019] in which many historical references are cited. This
section is motivated by the introduction of entropic regularization for the above mentioned reasons
by Cuturi in [Cuturi, 2013]. In this paper, entropy penalty is added, as done in linear programming

(3.3) min
π∈Π(ρ1,ρ2)

〈π(i, j), c(i, j)〉 − ε Ent(π) ,

where we denoted the set of admissible couplings by

(3.4) Π(ρ1, ρ2)
def.
= {π ∈ Sn,m : ∑

j
πi,j = ρ1(i) and ∑

i
πi,j = ρ2(j)∀i, j} .

and the Shannon entropy, which is a strictly concave function

(3.5) Ent(π)
def.
= −∑

i,j
πi,j(log(πi,j)− 1) .

Therefore, problem (3.3) is strictly convex and by compactness of the simplex, there exists a unique
solution. Due to the fact that x log(x) has infinite positive slope at 0, this minimizer satisfies that
πi,j > 0, and one can apply the first order optimality condition with constraints (KKT conditions),
forming the Lagrangian associated with the problem

(3.6) L(π, λ1, λ2) = 〈π(i, j), c(i, j)〉 − ε Ent(π)− 〈λ1(i), ∑
j

πi,j − ρ1(i)〉 − 〈λ2(j), ∑
i

πi,j − ρ2(i)〉 ,

and we obtain taking variations

(3.7) c(i, j) + ε log(πi,j)− λ1(i)− λ2(j) = 0 .

This implies that the unique optimal coupling for entropic regularization is of the form

(3.8) πij = eλ1(i)+λ2(j)−c(i,j) = D1e−c(i,j)D2 ,
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where D1, D2 denote the diagonal matrices formed by eλ1(i) and eλ2(j). In order to solve for λ1, λ2 or
equivalently, D1, D2, the marginal constraints give information on D1, D2. The problem now takes
a similar form to the matrix scaling problem,

Matrix Scaling Problem: Let A ∈ Rmn be a matrix with positive coefficients. Find D1, D2 two
positive diagonal matrices respectively in Rn2

and Rm2
, such that D1 AD2 is doubly stochastic, that is

sum along each row and each column is equal to 1.

First, solutions are non-unique since, if (D1, D2) is a solution, then so is (λD1, 1
λ D2) for every

positive real λ. This problem can be solved in a cheap way by a simple iterative algorithm, known
as Sinkhorn-Knopp algorithm, which simply alternates updating D1 and D2 in order to match the
marginal constraints. This algorithm takes the form, denoting by 1n the vector of size n filled with
the value 1. At iteration k, the algorithm consists in updating alternatively D1 and D2 via the
formula,

(3.9) Sinkhorn algorithm:

{
Dk

1 = 1n./(ADk−1
2 )

Dk
2 = 1m./(AT Dk

1) ,

where we denoted ./ the coordinatewise division. The convergence of this algorithm has been
proven by Sinkhorn and Knopp. In our case, the corresponding iterations would take the form

(3.10)

{
Dk

1 = ρ1./(e−c/εDk−1
2 )

Dk
2 = ρ2./([e−c/ε]T Dk

1) .

However, to recast entropic optimal transport as a particular instance of bistochastic matrix scal-
ing, one simply replaces e−c/ε with diag(ρ1)e−c/ε diag(ρ2). Interestingly, it is easy to modify the
variational formulation in order to obtain this matrix in the optimality equation and this motivates
the following definition,

Definition 10 (Discrete Entropic OT).

(3.11) OTε(ρ1, ρ2)
def.
= min

π∈Π(ρ1,ρ2)
〈π(i, j), c(i, j)〉+ ε KL(π | ρ1 ⊗ ρ2) ,

where KL(ρ | µ) is the Kullback-Leibler divergence, or relative entropy between ρ and µ and it is
defined in the discrete case as

(3.12) KL(ρ | µ) def.
= ∑

i
ρ(i) (log(ρ(i)/µ(i))− 1) .

The main point of defining entropic regularization using mutual information is to define the
problem on the whole space of measures, in particular containing discrete and continuous mea-
sures.

Remark 3. A few remarks are in order:
• The Kullback-Leibler entropy is jointly convex as we will see below.
• Note that the regularization term is known as mutual information between two random variables

X, Y of respective law ρ1, ρ2 and joint distribution π.
• Mutual information is not convex in all of its arguments but for instance in (π, ρ1) or (π, ρ2).
• The argmin of problems (3.11) and (3.3) are the same. The formulation (3.3) can be rewritten as

using the KL(π | 1⊗ 1) and a simple calculation show that the argmin is independent of the choice
of the measures α, β in KL(π | α⊗ β). Of course, the value of the minimization problem is changing.
• If the cost c is nonnegative, OTε is nonnegative since mutual information is nonnegative.

As expected, the behaviour w.r.t large and small values of ε can be characterised.
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Proposition 13 (Limit cases in ε). When ε goes to 0, the unique minimizer πε for OTε(α, β) converges to
the maximal entropy plan among the possible optimal transport plans for OT(α, β).

When ε goes to +∞, the unique minimizer πε converges to α⊗ β, i.e. the joint law encoding independence
of marginals.

Proof. We refer to the proof in [Cuturi and Peyré, 2019]. �

As is usual for an optimization problem, the nonuniqueness case is rare althgouh it obviously
happens in optimal transport: an example with sum of two Dirac masses can be easily built, for
instance the vertices of a square. A sufficient condition for uniqueness of the transport plan is the
case of Brenier’s theorem where one of the two marginals is assumed absolutely continuous w.r.t.
the Lebesgue measure. Nevertheless, the limit of the entropic plans converges to a unique solution
which can be considered intuitively as the most ”diffuse” solution.

3.1. Convergence of Sinkhorn algorithm in the continuous setting. As recalled in Fenchel-Rockafellar
theorem 12, the supremum of the dual problem might not be attained. However, in standard op-
timal transport, existence of optimal potential can be proven by standard compactness arguments.
In this paragraph, we show that similar arguments go through.

Coordinate ascent algorithm on a function of two variables f (x, y) can be informally written as

yn+1 = arg max
y

f (xn, y)(3.13)

xn+1 = arg max
x

f (x, yn+1) .(3.14)

Sinkhorn algorithm is a coordinate ascent on the dual problem, which can be formulated as

Proposition 14 (Dual Problem). The dual problem reads supu,v D(u, v) where u, v ∈ C0(X) and

(3.15) D(u, v) = 〈u(x), α(x)〉+ 〈v(y), β(y)〉 − ε〈α⊗ β, e
u(x)+v(y)−c(x,y)

ε − 1〉 .

It is strictly convex w.r.t. each argument u and v and strictly convex w.r.t. u(x) + v(y). It is also Fréchet
differentiable for the (C0, ‖ · ‖∞) topology. Last, D(u, v) = D(u + C, v− C) for every constant C ∈ R. If
a maximizer exists, it is unique up to this invariance.

Proof. The strict convexity and smoothness follows from the strict convexity and smoothness of the
exponential (the functional D is the sum of linear terms and an exponential term which is smooth
w.r.t. its arguments in the (C0, ‖ · ‖∞) topology). By strict convexity, uk+1 = arg minu D(u, vk)
and vk+1 = arg minv D(uk+1, v) are uniquely defined. The invariance is immediate to check and
the strict convexity in u(x) + v(y) gives that if two maximizers exist, (u1, v1) and (u2, v2) then,
u1(x) + v1(y) = u2(x) + v2(y) which implies u1(x)− u2(x) = v2(y)− v1(y) and the existence of C
such that (u1, v1) = (u2 + C, v2 − C) follows. �

Proposition 15 (Sinkhorn algorithm on dual potentials). The maximization of D(u, v) w.r.t. each vari-
able can be made explicit, and the Sinkhorn algorithm is defined as

uk+1(x) = −ε log
(∫

X
e

vk(y)−c(x,y)
ε dβ(y)

)
(=: Sβ(vk))(3.16)

vk+1(y) = −ε log
(∫

X
e

uk+1(x)−c(x,y)
ε dα(x)

)
(=: Sα(uk+1)) .(3.17)

Moreover, the following properties hold

• D(uk, vk) ≤ D(uk+1, vk) ≤ D(uk+1, vk+1),
• The continuity modulus of uk+1, vk+1 is bounded by that of c(x, y).
• If vk − c (resp. uk+1 − c) is bounded by M on the support of β, then so is uk+1 (resp. vk+1).
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Proof. We prove existence of maximizer by proving that there exists a critical point to the functional
coordinatewise. The first part of the proposition follows from writing the first-order necessary
condition, written as follows

(3.18) 1− eu(x)
∫

X
e

v(y)−c(x,y)
ε dβ(y) = 0 for x α a.e.

which gives the definition of Sβ(v) (and by symmetry, the same result on Sα holds). Therefore,
Sβ(v) is the unique maximizer of u 7→ D(u, v).

By definition of ascent on each coordinate, the sequence of inequalities is obtained directly.

For the second point, remark that the derivative of log(∑i exp(xi)) w.r.t. xj is
exp(xj)

∑i exp(xi)
bounded

by 1. Therefore, x 7→ log
∫

X e
c(x,y)−v(y)

ε dβ(y) is L-Lipschitz where L is the Lipschitz constant of c,
and the modulus of continuity of uk+1, vk+1 is thus bounded by that of c. The last point is a simple
bound on the iterates. �

Remark 4 (Link with standard optimal transport). The Sinkhorn algorithm computes iterates uk+1, vk+1
which are as smooth as its cost and the continuity modulus of the iterates is bounded. Thus, the situation
is close to the usual c-transform of optimal transport: starting from potentials u, v, one can replace v by u∗

while the dual value is non-decreasing. The c-transform being L-Lipschitz with a constant independent of
u, the maximization can thus be performed on the space of L-Lipschitz functions (which take the value 0 at
a given anchored point) which is compact by the Arzelà-Ascoli theorem. Therefore, proving the existence of
optimal potentials.

Proposition 16. The sequence (uk, vk) defined by the Sinkhorn algorithm converges in (C0(X), ‖ · ‖∞) to
the unique (up to a constant) couple of potentials (u, v) which maximize D.

Proof. First, shifting the potentials by an additive constant, one can replace the optimization set by
the couples (u, v) which have a uniformly bounded modulus of continuity and such that u(x0) = 0
for a given x0 ∈ X. The maximum of D is achieved at some couple (u∗, v∗) and this couple is
unique up to an additive constant as written in Proposition 14.

Then, since (uk+1, vk+1) are uniformly bounded and have uniformly bounded modulus of con-
tinuity, one can extract, by the Arzelà-Ascoli theorem, a converging subsequence in the corre-
sponding topology to (ũ, ṽ). By continuity of D and monotonicity of the sequence of values,
D(ũ, Sα(ũ)) ≤ D(Sβ ◦ Sα(ũ), Sα(ũ)) = D(ũ, Sα(ũ)), where S is the Sinkhorn iteration. Therefore,
the maximizer coordinatewise being unique, one has,

Sβ(ṽ) = ũ(3.19)

Sα(ũ) = ṽ .(3.20)

Formulas (3.19) (together with (3.19)) show that (ũ, ṽ) is a critical point of D, thus being the maxi-
mizer.

�

In fact, a particularly important property used in the convergence proof is that the log-sum-exp
function, also called log cumulant is 1-Lipschitz.

Proposition 17. The LSE function log
∫

exp is convex (but not strictly) and 1-Lipschitz. Also, one has, for
α a probability measure whose support is not a singleton,

(3.21) ‖Sα(u1)− Sα(u2)‖◦∞ ≤ κ‖u1 − u2‖◦∞
where κ < 1 and

(3.22) ‖ f ‖◦,∞
def.
= ‖ f −

∫
X

f (x)dα‖∞,α .

where the sup norm is taken w.r.t. α.
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Proof. The first part of the proposition is obvious and used in the proof of Proposition 15. More
precisely, the 1-Lipschitz property can be actually obtained by using

|Sα(u1)(x)− Sα(u2)(x)| =
∣∣∣∣∫ 1

0

d
dt

Sα(u2 + t(u1 − u2))dt
∣∣∣∣(3.23)

≤
∫ 1

0

∣∣∣∣∣∣
∫

X
(u1 − u2)

e
t(u1−u2)

ε∫
X e

t(u1−u2)
ε e

u2−c(x,·)
ε dα

e
u2−c(x,·)

ε dα

∣∣∣∣∣∣ dt(3.24)

≤ ‖u1 − u2‖∞ .(3.25)

The case of equality can happen if and only if u1 − u2 is α a.e. a constant. In such a case, u1 =
u2 + a, Sα(u1) = Sα(u2) + a. Therefore, it is natural to consider C0(X)/R, the space of continuous
functions up to an additive constant, which we endow with the norm defined in the proposition:

(3.26) ‖ f ‖◦,∞ = ‖ f −
∫

X
f (x)dα‖∞,α .

Note that such an approach only applies to measures α whose support is not restricted to a single
point (an obvious case for balanced optimal transport). Using the same arguments as above, one
has, for u1 6= u2

(3.27) ‖Sα(u1)− Sα(u2)‖◦,∞ ≤ ‖Sα(u1)− Sα(u2)‖∞ < ‖u1 − u2‖◦,∞
since the case of equality implies that u1 = u2. Refining the inequality above (3.23), one has

(3.28) |Sα(u1)(x)− Sα(u2)(x)| ≤ κ‖u1 − u2‖◦,∞ ,

where, κ is defined by optimization on the set

S def.
= { f of continuity modulus less than twice that of c, ‖ f ‖◦,∞ = ‖ f ‖∞}

of

(3.29) κ = sup
f∈S

sup
ν̃∈V

∫
X

f (x)/‖ f ‖∞ dν̃(x) ,

where V def.
= {ν̃ = 1

Z eV dα : V ∈ S} and Z is the normalizing constant to make ν̃ a probability
measure. The supremum is attained by compactness of S and is strictly less than 1 (otherwise it
should be constant α a.e. equal to 0 since ‖ f ‖◦,∞ = ‖ f ‖∞). �

Theorem 18 (Linear convergence of Sinkhorn). The sequence (uk, vk) linearly converges to (u∗, v∗) for
the sup norm up to translation ‖ · ‖◦∞.

Proof. The proof is a direct application of the previous property. Denote κ(α) and κ(β) the contrac-
tion constants of respectively Sα and Sβ, then,

(3.30) ‖Sβ ◦ Sα(u1)− Sβ ◦ Sα(u2)‖◦,∞ ≤ κ(α)κ(β)‖u1 − u2‖◦,∞ ,

therefore, the convergence is linear. �

Remark 5. The proof of the rate of convergence implies the proof of convergence. However, it is likely that
the arguments for the linear rate do not generalize in other situations such as unbalanced or multimarginal
optimal transport, whereas the existence part probably adapt to such cases.

The contraction constant κ is not explicit in Proposition 17 and we now give a quantitative esti-
mate.

Proposition 19. One has κ(α) ≤ 1− e−
2
ε L diam(α), if c is L−Lipschitz and diam(α) is the diameter of the

support of α.
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Proof. Consider g ∈ S and f a nonnegative function on X that will be detailed at the end, and
define ψg(t) =

∫
X g et f∫

X et f dα
dα. Then, by differentiation

(3.31) ψ′g(t) + ψ f (t)ψg(t) = ψ f g(t) ,

and therefore

(3.32) ψg(t) =
∫ t

0
ψ f g(s)e

−
∫ t

s ψ f (u)du ds .

Observe that, since f is nonnegative,

|ψ f g(t)| ≤ ‖g‖∞

∫ t

0
ψ f (s)e

−
∫ t

s ψ f (u)du ds

≤ ‖g‖∞

(
1− e−

∫ t
0 ψ f (u)du

)
where the last formula is obtained by direct integration. As remarked above, the Boltzmann mea-
sure does depend on f only up to an additive constant so that we will bound sup f − inf f . Last,
the term in Sα which appears in the Boltzmann measure is 1

ε (tu1 + (1− t)u2 − c(x, ·)) for which a
trivial bound is 2

ε L diam(α). �

Remark 6. An explicit contraction rate in the case of measures that have a non compact support (but under
other assumptions) could potentially be obtained using different norms and logarithmic Sobolev inequalities.

3.2. A glimpse at numerical implementation.

4. DYNAMICAL FORMULATION OF OPTIMAL TRANSPORT

4.1. An informal discussion on dynamic formulation. In this section, we introduce the Benamou-
Brenier formulation [Benamou and Brenier, 2000] of the Kantorovich problem. This formulation
applies to distances on length spaces or more generally which can be expressed as the minimization
of some Lagrangian. For instance, in the case M is a Riemannian manifold with a metric g, one can
consider the induced distance squared

(4.1) c(x, y) = inf
{∫ 1

0
gx(ẋ, ẋ)dt | x ∈ C1([0, 1], M) and (x(0), x(1)) = (x, y)

}
,

where ẋ denotes the time derivative of the path x. The Benamou-Brenier formulation consists
in writing a similar length minimizing problem, not on the base space M, but on the space of
probability measures P(M). We first rewrite the cost in the optimal transport functional on the
space of vector fields: that is, if ρ1 = (exp εu)∗(ρ0) where exp is the Riemannian exponential, that
is ρ1 is the pushforward of ρ0 by a small perturbation of identity by a vector field u defined on M,
and, assuming that the coupling is πε = (id, id+εu)∗ρ0, we get

(4.2) 〈πε, d(x, y)2〉 ' ε2
∫

M
‖v(x)‖2 dρ0(x) .

Thus, one should be able to rewrite the optimal transport problem as an optimal control problem
on the space of densities and where the control variable is a time dependent vector field,

(4.3) inf
ρ,v

∫ 1

0

∫
M
‖v(t, x)‖2 dρ(x)dt ,

under the continuity equation constraint ∂tρ(t, x) + div(ρ(t, x)v(t, x)) = 0 and time boundary con-
straints ρ(0) = ρ0, ρ(1) = ρ1. However, what is probably surprising is that we started from a con-
vex optimization problem which we turned into a non-convex one by introducing time. Benamou
and Brenier proposed a convex reformulation of the previous control problem in the following
form:

(4.4) inf
ρ,m

∫ 1

0

∫
M

‖m‖2

ρ
dρ(t, x)dt ,
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under the linear constraint ∂tρ(t, x) + div(m) = 0 and same time boundary constraints on ρ.
The proof that the Kantorovich and Benamou-Brenier formulations are equal can be found in
[Benamou and Brenier, 2000] and it is based on the convexity of the functional. This formulation
was introduced by Benamou and Brenier for numerical purposes. Indeed, one can apply convex
optimization algorithms to solve the formulation (4.4).

4.2. Gradient flows. Gradient flows with respect to the Wasserstein metric is now well-known in
the litterature. We briefly present it now since it is connected with convex optimization. Maybe the
most surprising fact in this section is the fact that one does not need the real Wasserstein metric (by
this, we mean to refer to the Kantorovich optimization problem) in order to compute the gradient
flows but instead, just the expansion in Formula (4.3). Indeed, consider a functional on the space
of densities denoted by F(ρ), then one may want to consider the vector field v that is acting on the
current density ρ while minimizing its kinetic energy and driving F downwards. In mathematical
terms,

(4.5) arg min
v

1
2

∫
M
‖v(t, x)‖2 dρ(x) + 〈 δF

δρ
(ρ),−div(ρv)〉 ,

where we informally denoted by δF
δρ the Fréchet derivative of F. Note that the previous definition

generalizes the gradient for a function f defined on Rd, ∇ f (x) = arg minw
1
2‖w‖2 − d fx(w). We

get now, v = ∇ δF
δρ (ρ) and thus

(4.6) ρ̇ = div
(

ρ∇ δF
δρ

(ρ)

)
.

The well-known case is the entropy F(ρ) =
∫

X ρ(x)(log(ρ(x)) − 1)dx for which δF
δρ (ρ) = log(ρ)

and so ρ̇ = ∆ρ. We underline again that we only used the first order expansion of the transport cost
by a velocity field in order to obtain this formal derivation of the so-called Wasserstein gradient
flows. One can now define implicit gradient scheme similar to definition 8 by replacing the Hilbert
norm with the Wasserstein distance, with τ a timestep parameter,

(4.7) ρk+1 = arg min
ρ

1
2τ

W2
2 (ρk, ρ) + F(ρ) .

Remark 7. Note again that one does not need the Wasserstein metric itself in order to get the convergence
of this gradient flow to its continuous limit. Every metric on the space of densities for which the underlying
metric tensor is the same than the Wasserstein distance would be suitable.
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