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Abstract
Differentiation is the process whereby a cell acquires a specific phenotype, by dif-
ferential gene expression as a function of time. This is thought to result from the
dynamical functioning of an underlying Gene Regulatory Network (GRN). The pre-
cise path from the stochastic GRN behavior to the resulting cell state is still an open
question. In this work we propose to reduce a stochastic model of gene expression,
where a cell is represented by a vector in a continuous space of gene expression,
to a discrete coarse-grained model on a limited number of cell types. We develop
analytical results and numerical tools to perform this reduction for a specific model
characterizing the evolution of a cell by a system of piecewise deterministic Markov
processes (PDMP). Solving a spectral problem, we find the explicit variational form
of the rate function associated to a large deviations principle, for any number of genes.
The resulting Lagrangian dynamics allows us to define a deterministic limit of which
the basins of attraction can be identified to cellular types. In this context the quasipo-
tential, describing the transitions between these basins in the weak noise limit, can be
defined as the unique solution of an Hamilton–Jacobi equation under a particular con-
straint. We develop a numerical method for approximating the coarse-grained model
parameters, and show its accuracy for a symmetric toggle-switch network. We deduce
from the reduced model an approximation of the stationary distribution of the PDMP
system, which appears as a Beta mixture. Altogether those results establish a rigorous
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frame for connecting GRN behavior to the resulting cellular behavior, including the
calculation of the probability of jumps between cell types.

Keywords Single cell · Gene regulation network · Energetic landscape · Piecewise
deterministic Markov processes · Large deviations ·Metastability

Mathematics Subject Classification 92C42 · 60J25 · 60F10

1 Introduction

Differentiation is the processwhereby a cell acquires a specific phenotype, by differen-
tial gene expression as a function of time. Measuring how gene expression changes as
differentiation proceeds is therefore of essence to understand this process. Advances in
measurement technologies now allow to obtain gene expression levels at the single cell
level. It offers a much more accurate view than population-based measurements, that
has been obscured by mean population-based averaging (Mar 2019; Coskun et al.
2016). It has been established that there is a high cell-to-cell variability in gene
expression, and that this variability has to be taken into account when investigating
a differentiation process at the single-cell level (Moris and Arias 2017; Mohammed
et al. 2017; Antolovic et al. 2017; Semrau et al. 2017; Mojtahedi et al. 2016; Richard
et al. 2016; Moussy et al. 2017; Guillemin et al. 2019; Stumpf et al. 2017).

A popular vision of the cellular evolution during differentiation, introduced by
Waddington in Waddington (1957), is to compare cells to marbles following prob-
abilistic trajectories, as they roll through a developmental landscape of ridges and
valleys. These trajectories are represented in the gene expression space: a cell can be
described by a vector, each coordinate of which represents the expression of a gene
(Huang and Ingber 2007; Moris et al. 2016). Thus, the state of a cell is characterized
by its position in the gene expression space, i.e its specific level for all of its expressed
genes. This landscape is often considered to be shaped by the underlying gene regula-
tory network (GRN), the behavior of which can be influenced by many factors, such
as proliferation or cell-to-cell communication.

Theoretically, the number of states a cell can take is equal to the number of possible
combination of protein quantities associated to each gene. This number is potentially
huge (Braun 2015). But metastability seems inherent to cell differentiation processes,
as evidenced by limited number of existing cellular phenotypes (Morris 2019; Bizzarri
et al. 2018), providing a rationale for dimension reduction approaches (Moon et al.
2018). Indeed, since (Kauffman 2004) and (Huang et al. 2005), many authors have
identified cell types with the basins of attraction of a dynamical system modeling the
differentiation process, although the very concept of “cell type” has to be interrogated
in the era of single-cell omics (Clevers et al. 2017).

Adapting this identification for characterizingmetastability in the case of stochastic
models of gene expressionhas been studiedmostly in the context of stochastic diffusion
processes (Wang et al. 2010, 2011; Zhou et al. 2012), but also for stochastic hybrid
systems (Lin and Galla 2016). In the weak noise limit, a natural development of this
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Fig. 1 Simplified two-states
model of gene expression
(Herbach et al. 2017; Peccoud
and Ycart 1995) (colour figure
online)

analysis consists in describing the transitions between different macrostates within the
large deviations framework (Lv et al. 2014; Bressloff 2014).

We are going to apply this strategy for a piecewise-deterministic Markov process
(PDMP) describing GRN dynamics within a single cell, introduced in Herbach et al.
(2017), which corresponds accurately to the non-Gaussian distribution of single-cell
gene expression data. Using the work of Bressloff and Faugeras (2017), the novelty of
this article is to provide analytical results for characterizing the metastable behavior
of the model for any number of genes, and to combine them with a numerical analysis
for performing the reduction of the model in a coarse-grained discrete process on cell
types. We detail the model in Sect. 2, and we present in Sect. 3 how the reduction of
this model in a continuous-time Markov chain on cell types allows to characterize the
notion of metastability. For an arbitrary network, we provide in Sect. 4.1 a numerical
method for approximating each transition rate of this coarse-grainedmodel, depending
on the probability of a rare event. In Sect. 4.2,we show that this probability is linked to a
large deviations principle. The main contribution of this article is to derive in Sect. 5.1
the explicit variational form of the rate function associated to a Large deviations
principle (LDP) for this model. We discuss in Secs. 5.2 and 5.3 the conditions for
which a unique quasipotential exists and allows to describe transitions between basins.
We replace in Sect. 5.4 these results in the context of studying metastability. Finally,
we apply in Sect. 6 the general results to a toggle-switch network. We also discuss in
Sect. 7.1 some notions of energy associated to the LDP and we propose in Sect. 7.2 a
non-Gaussian mixture model for approximating proteins distribution.

2 Model description

The model which is used throughout this article is based on a hybrid version of the
well-established two-state model of gene expression (Ko 1991; Peccoud and Ycart
1995). A gene is described by the state of the promoter, which can be {on, off }. If
the state of the promoter is on, mRNAs are transcripted and translated into proteins,
which are considered to be produced at a rate s. If the state of the promoter is off ,
only degradation of proteins occurs at a rate d (see Fig. 1). kon and koff denote the
exponential rates of transition between the states on and off . This model is a reduction
of a mechanistic model including both mRNA and proteins, which is described in
“Appendix A”.
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Neglecting themolecular noise associated to proteins quantity, we obtain the hybrid
model:

{
E(t) : 0 kon−→ 1, 1

koff−−→ 0,

P ′(t) = sE(t)− dP(t).

where E(t) denotes the promoter state, P(t) denotes the protein concentration at time
t , and we identify the state off with 0, the state on with 1.

The key idea for studying a GRN is to embed this two-states model into a network.
Denoting the number of genes by n, the vector (E, P) describing the process is then
of dimension 2n. The jump rates for each gene i are expressed in terms of two specific
functions kon,i and koff ,i . To take into account the interactions between the genes, we
consider that for all i = 1, . . . , n, kon,i is a function which depends on the full vector
P via the GRN, represented by a matrix � of size n. We assume that kon,i is upper
and lower bounded by a positive constant for all i . The function is chosen such that if
gene i activates gene j , then ∂Pi kon, j ≥ 0. For the sake of simplicity, we consider that
koff ,i does not depend on the protein level.

We introduce a typical time scale k̄ for the rates of promoters activation kon,i , and a
typical time scale d̄ for the rates of proteins degradation. Then, we define the scaling
factor ε = d̄

k̄
which characterizes the difference in dynamics between two processes:

1. gene bursting dynamics and 2. protein dynamics. It is generally considered that
promoter switches are fast with respect to protein dynamics, i.e that ε � 1, at least for
eukaryotes (Suter et al. 2011). Driven by biological considerations, we will consider
values of ε smaller than 1/5 (see “Appendix A”).

We then rescale the time of the process by d̄. We also rescale the quantities kon,i

and koff ,i by k̄, and di by d̄ , for any gene i , in order to simplify the notations. Finally,
the parameters si can be removed by a simple rescaling of the protein concentration Pi
for every gene by its equilibrium value when Ei = 1 (see Herbach et al. 2017 for more
details). We obtain a reduced dimensionless PDMP system modeling the expression
of n genes in a single cell:

∀i = 1, . . . , n :
⎧⎨
⎩Ei (t) : 0

kon,i (X(t))
ε−−−−−→ 1, 1

koff ,i
ε−−−→ 0,

X ′i (t) = di (Ei (t)− Xi (t)).
(1)

Here, X describes the protein vector in the renormalized gene expression space � :=
(0, 1)n and E describes the promoters state, in PE := {0, 1}n . We will refer to this
model, that we will use throughout this article, as the PDMP system.

As card(PE ) = 2n , we can write the joint probability density u(t, e, x) of (Et , Xt )

as a 2n-dimensional vector u(t, x) = (ue(t, x))e∈PE ∈ R
2n . The master equation on

u can be written:

∂u

∂t
(t, x)+

n∑
i=1

∂

∂xi
(Fi (x)u(t, x)) = 1

ε

n∑
i=1

Ki (x)u(t, x). (2)
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For all i = 1, . . . , n, for all x ∈ �, Fi (x) and Ki (x) are matrices of size 2n . Each Fi
is diagonal, and the term on a line associated to a promoter state e corresponds to the
drift of gene i : di (ei−xi ). Ki is not diagonal: each state e is coupled with every state e’
such that only the coordinate ei changes in e, from 1 to 0 or conversely. Each of these
matrices can be expressed as a tensorial product of (n − 1) two-dimensional identity
matrices with a two-dimensional matrix corresponding to the operator associated to
an isolated gene:

• Fi (x) = I2⊗· · ·⊗ F (i)(x)︸ ︷︷ ︸
i th position

⊗ · · ·⊗ I2 • Ki (x) = I2⊗· · ·⊗ K (i)(x)︸ ︷︷ ︸
i th position

⊗ · · ·⊗ I2,

• F (i)(x) =
(−di xi 0

0 di (1− xi )

)
• K (i)(x) =

(−kon,i (x) koff ,i (x)
kon,i (x) −koff ,i (x)

)
.

We detail in Appendix B the case of n = 2 for a better understanding of this tensorial
expression.

3 Model reduction in the small noise limit

3.1 Deterministic approximation

The model (1) describes the promoter state of every gene i at every time as a Bernoulli
random variable. We use the biological fact that promoter switches are frequent com-
pared to protein dynamic, i.e ε < 1 with the previous notations. When ε � 1, we can
approximate the conditional distribution of the promoters knowing proteins, ρ, by its
quasistationary approximation ρ:

∀i = 1, . . . , n, ∀x ∈ � : ρi (x) 	 ρi (x) =
kon,i (x)

koff ,i + kon,i (x)
, (3)

which is derived from the stationary distribution of theMarkov chain on the promoters

states, defined for a given value of the protein vector X = x by the matrix
n∑

i=1
Ki (x)

(see Papanicolaou 1975; Newby and Keener 2011).
Thus, the PDMP model (1) can be coarsely approximated by a system of ordinary

differential equations:

∀i = 1, . . . , n : ẋi (t) = di

(
kon,i (x(t))

koff ,i + kon,i (x(t))
− xi (t)

)
. (4)

Intuitively, these trajectories correspond to the mean behaviour of a cell in the weak
noise limit, i.e when promoters jumpmuch faster than proteins concentration changes.
More precisely, a random path Xε

t converges in probability to a trajectory φt solution
of the system (4), when ε → 0 (Faggionato et al. 2009). The diffusion limit, which
keeps a residual noise scaled by

√
ε, can also be rigorously derived from the PDMP

system (Pakdaman et al. 2012), which is detailed in “Appendix C.1”.
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Fig. 2 Comparison between the average on 100 simulated trajectories with ε = 1/7 (a), ε = 1/30 (b)
and the trajectories generated by the deterministic system (c) for a single pathway network: gene 1 −→
gene 2 −→ gene 3

In the sequel, we assume that every limit set of a trajectory solution of the system
(4) as t → +∞ is reduced to a single equilibrium point, described by one of the
solutions of:

∀i = 1, . . . , n : kon,i (x)

kof f ,i + kon,i (x)
− xi = 0. (5)

Note that the condition above strongly depends on the interaction functions
{kon,i }i=1,...,n . Alternatively speaking, in this work we rule out the existence of attrac-
tive limit cycles or more complicated orbits. We also assume that the closure of the
basins of attraction which are associated to the stable equilibria of the system (5)
covers the gene expression space �.

Without noise, the fate of a cell trajectory is fully characterized by its initial state
x0. Generically, it converges to the attractor of the basin of attraction it belongs to,
which is a single point by assumption. However, noise can modify the deterministic
trajectories in at least twoways. First, in short times, a stochastic trajectory can deviate
significantly from the deterministic one. In the case of a single, global, attractor, the
deterministic systemgenerally allows to retrieve the global dynamics of the process, i.e
the equilibrium and the order of convergence between the different genes, for realistic
ε (see Fig. 2).

Second, in long times, stochastic dynamics can even push the trajectory out of
the basin of attraction of one equilibrium state to another one, changing radically the
fate of the cell. These transitions cannot be catched by the deterministic limit, and

happen on a time scale which is expected to be of the order of e
C
ε (owing to a Large

deviations principle studied below), whereC is an unknown constant depending on the
basins. In Fig. 3a, we illustrate this situation for a toggle-switch network of two genes.
We observe possible transitions between three basins of attraction. Two examples
of random paths, the stochastic evolution of promoters and proteins along time, are
represented in Fig. 3b, c for different values of ε. All the details on the interaction
functions and the parameters used for this network can be found respectively in the
“Appendices D and E”.
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Fig. 3 a Phase portrait of the deterministic approximation for a symmetric toggle-switch with strong
inhibition: two genes which activate themselves and inhibit each other. b Example of a stochastic trajectory
generated by the toggle-switch, for ε = 1/7. c Example of a stochastic trajectory generated by the toggle-
switch, for ε = 1/30

3.2 Metastability

When the parameter ε is small, transitions from one basin of attraction to another are
rare events: in fact the mean escape time from each basin is much larger than the time
required to reach a local equilibrium (quasi-stationary state) in the basin.

Adopting the paradigm of metastability mentioned in the introduction, we identify
each cell type to a basin of attraction associated to a stable equilibrium of the determin-
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istic system (4). In this point of view, a cell type corresponds to ametastable sub-region
of the gene expression space. It also corresponds to the notion of macrostate used in
the theory of Markov State Models which has been recently applied to a discrete cell
differentiation model in Chu et al. (2017). Provided we can describe accurately the
rates of transition between the basins on the long run, the process can then be coarsely
reduced to a new discrete process on the cell types.

More precisely, let m be the number of stable equilibrium points of the system
(4), called attractors. We denote Z the set of the m basins of attraction associated to
these m attractors, that we order arbitrarily: Z = {Z1, · · · , Zm}. The attractors are
denoted by (Xeq,Zi )Zi∈Z . Each attractor is associated to a unique basin of attraction.
By assumption, the closure of these m basins, Z = {Z1, · · · , Zm}, covers the gene
expression space �. To obtain an explicit characterization of the metastable behavior,
we are going to build a discrete process Ẑ ε, with values in Z . From a random path Xε

t

of the PDMP system such that Xε
0 ∈ Z , we define a discrete process Ẑ ε describing

the cell types:

∀l ∈ N : Ẑ ε
l =

m∑
i=1

Zi1{Xε
τl
∈Zi },

where (τ ε
l )l∈N is a sequence of stopping times defined by:

τ ε
0 = 0, ∀l ∈ N

∗ : τ ε
l = inf{t ≥ τ ε

l−1 | Xε
t ∈ Z \ Ẑ ε

l−1}. Note that Ẑ ε
l are the

successive metastable states, and that τ ε
l are the successive times of transition between

them. From the convergence of any random path to a solution of the deterministic
system (4) , that we mentioned in Sect. 3.1, we know that for every basin Zi such that
Ẑl = Zi , whatever is the point on the boundary of Zi which has been first attained,
Xε
t reaches any small neighborhood of the attractor Xeq,Zi of Zi before leaving the

basin, with probability converging to 1 as ε → 0. In addition, for any basin Z j , the
probability P(Ẑl+1 = Z j ) is asymptotically independent of the value of Xε

τl
, and is

then asymptotically determined by the value of Ẑl . In other words, Ẑ ε converges to
a Markov chain when ε → 0. We refer to Kurtz and Swanson (2019) to go further
in the analysis of the coupling between the processes Ẑ ε and Xε for general Markov
processes.

For small ε, it is natural to approximate the distribution of the exit time from a basin
by an exponential distribution. The in silico distribution represented in Fig. 4 suggests
that this assumption seems accurate for the toggle-switch network, even for a realistic
value of ε. Note, however, that the exponential approximation slightly overestimates
the probability that the exit times are small.

To completely characterize the coarse-grained resulting process, it remains to com-
pute the transition rates {aε

i j }i, j of the time-continuous Markov chain on the basins,

that we define for all pair of basins (Zi , Z j ) ∈ Z2, i = j , by:

aε
i j =

P(Ẑ ε
1 = Z j | Ẑ ε

0 = Zi )

E(τ ε
1 | Ẑ ε

0 = Zi )
, (6)
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Fig. 4 Comparison between the distribution of the exit time from a basin, obtained with a Monte-Carlo
method, and the exponential law with appropriate expected value, for ε = 1/7. We represent the two
densities in normal scale (on the left-hand side) and in logarithmic scale (on the right-hand side) to observe
that the exponential law overestimates the probability that the exit times are small

where E(τ ε
1 | Ẑ ε

0 = Zi ) is called the Mean First Exit Time of exit from Zi . This
Markov process with discrete state space Z represents accurately, when ε is small
enough, the main dynamics of the metastable system in the weak noise limit (Freidlin
and Wentzell 2012). This reduced model is fully described by m2 transition rates:
when the number of genes n is large, it is significantly smaller than the n2 parameters
characterizing the GRN model (see “Appendix D”).

This collection of transition rates are characterized by rare events: when ε � 1 or
when the number of genes is large, it would be too expensive to compute them with a
crude Monte-Carlo method. We are then going to present a method for approximating
these transition rates from probabilities of some rare events. We will detail afterwards
how these probabilities can be computed either by an efficient numerical method or
an analytical approximation.

4 Computing the transition rates

4.1 Transition rates from probabilities of rare events

In this Section,we approximate each transition rate between any pair of basins (Zi ,Z j ),
j = i in terms of the probability that a random path realizes a certain rare event in the
weak noise limit.

Let us consider two small parameters r , R such that 0 < r < R. We denote γZi
the r -neighborhood of Xeq,Zi , and 
Zi its R-neighborhood. For a random path Xε

t of
the PDMP system starting in x0 ∈ ∂
Zi , we denote the probability of reaching a basin
Z j , j = i before any other basin Zk , k = i, j , and before entering in γZi :
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pε
i j (x0) = Px0

(
T ε
Z j

< T ε

γZi ∪{Z\{Zi∪Z j }}

)
, (7)

where T ε
A = inf{t ≥ 0 | Xε

t ∈ A} is the hitting time of a set A ⊂ �.
The method developed in Cérou et al. (2011) aims to show how it is possible, from

the knowledge of the probability (7), to approximate the transition rate aε
i j presented

in (6). Briefly, it consists in cutting a transition path into two pieces, a piece going
from Xeq,Zi to ∂
Zi and another reaching Z j from ∂
Zi : the transition rates ai j can be
then approximated by the reverse of the mean number of attempts of reaching Z j from

Zi before entering in γZi , which is close to the inverse of the rare event probability
given by (7) when x0 ∈ ∂
Zi , multiplied by the average time of each excursion, that
we denote T

ε

Zi ,Zi . We obtain:

aε
i j 	

pε
i j (x0)

T
ε

Zi ,Zi

. (8)

It is worth noticing that to be rigorous, this method need to redefine the neighborhoods
γZi and 
Zi by substituting to the squared euclidean distance a new function based
on the probability of reaching the (unknown) boundary: ∀x, y ∈ Zi , || x − y ||2←|
pε
i j (x)− pε

i j (y) |. The details are provided in “Appendix F”.

We observe that the average time T
ε

Zi ,Zi can be easily computed by a crude Monte-
Carlo method: indeed, the trajectories entering in γZi are not rare. It thus only remains
to explain the last ingredient for the approximation of the transition rates, which is
how to estimate the probabilities of the form (7).

4.2 Computing probabilities of the form (7)

A powerful method for computing probabilities of rare events like (7), is given by
splitting algorithms. We decide to adapt the Adaptative Multilevel Splitting Algo-
rithm (AMS) described in Bréhier et al. (2016) to the PDMP system: all the details
concerning this algorithm can be found in Appendix G. In Sect. 6, we will verify that
the probabilities given by the AMS algorithm are consistent with the ones obtained
by a crude Monte-Carlo method for the toggle-switch network.

However, estimating the probability (7) becomes hard when both the number of
genes of interest increases and ε decreases. Indeed, the AMS algorithm allows to
compute probabilities much smaller than the ones we expect for biologically relevant
parameters (ε ≈ 0.1), but the needed number of samples grows at least with a polyno-
mial factor in ε−1. If the number of genes considered is large, these simulations can
make the algorithm impossible to run in a reasonable time. A precise analysis of the
scalability of this method for the PDMP system is beyond the scope of this article, but
we have been able to get consistent results on a laptop in time less than one hour for a
network of 5 genes, with ε > 1/15. The resulting probabilities were of order 5.10−3.

In order to overcome this problem, we are now going to develop an analytical
approach for approximating these probabilities, by means of optimal trajectories exit-
ing each basin of attraction. The later can be computed within the context of Large
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deviations. As we will see in Sect. 6, this approach is complementary to the AMS
algorithm, and consistent with it.

4.2.1 Large deviations setting

In this section, we derive a variational principle for approximating the transition prob-
ability (7) introduced in Sect. 4.1. A powerful methodology for rigorously deriving a
variational principle for optimal paths is Large deviations theory. It has been developed
extensivelywithin the context of StochasticDifferential Equations (SDE) (Freidlin and
Wentzell 2012; Dembod et al. 1996). For the sake of simplicity, we present here only
an heuristic version. There exists a Large deviations principle (LDP) for a stochastic
process with value in� if for all x0 ∈ � there exists a lower semi-continuous function
definedon the set of continuous trajectories from [0, T ] to�, JT : C0T (Rn)→ [0,∞],
such that for all set of trajectories A ⊂ C0T (Rn):

−ε ln
(
P

ε
x0(X

ε
t ∈ A)

) →
ε→0

min
φ∈A JT (φ). (9)

The function JT is called the rate function of the process in [0, T ], and the quantity
JT (φ) is called the cost of the trajectory φ over [0, T ].

The particular application of this theory to stochastic hybrid systems has been
developed in detail in Kifer (2009) and Faggionato et al. (2009). We now present
consequences of results developed in Bressloff and Faugeras (2017).

Definition 1 The Hamiltonian is the function H : � × R
n �→ R, such that for all

(x, p) ∈ �×R
n , H(x, p) is the unique eigenvalue associated to a nonnegative right-

eigenvector ζ(x, p) ∈ R
2n , (which is unique up to a normalization), of the following

spectral problem:

M(x, p)ζ(x, p) = H(x, p)ζ(x, p), (10)

where the matrix M(x, p) ∈ M2n ,2n (R) is defined by:

M(x, p) =
n∑

i=1
(Ki (x)+ pi Fi (x)) . (11)

We remark that thematrixM(x, p)has off-diagonal nonnegative coefficients.More-
over, the positivity of the functions kon,i makes M irreducible (the matrix allows
transition between any pair (e, e′) ∈ P2

E after at most n steps). Thereby, the Perron
Frobenius Theorem may be applied, and it justifies the existence and uniqueness of
H(x, p). Moreover, from a general property of Perron eigenvalues when the variable
p appears only on the diagonal of the matrix, H is known to be convex (Cohen 1981).

The following result is a direct consequence of theoretical results of Bressloff and
Faugeras (2017) applied to the PDMP system (1).

Theorem 1 Let us denote �v(x) =
n⊗

i=1
[−di xi , di (1− xi )] and �̊v(x) its interior.
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TheFenchel-Legendre transform of theHamiltonian H is well-defined and satisfies:
∀x ∈ �, ∀v ∈ �̊v(x),

L(x, v) = sup
p∈Rn

(〈p, v〉 − H(x, p)) .

Moreover, the PDMP system (1) satisfies a LDP, and the associated rate function has
the form of a classical action: the cost of any piecewise differentiable trajectory φt in
C0T (Rn) satisfying for all t ∈ [0, T ), φ̇(t) ∈ �̊v(φ(t)), can be expressed as

JT (φ) =
∫ T

0
L(φ(t), φ̇(t))dt . (12)

The function L is called the Lagrangian of the PDMP system.
We are now going to show how in certain cases, trajectories which minimize the

quantity (12) between two sets in � can be defined with the help of solutions of an
Hamilton–Jacobi equation with Hamiltonian H .

4.2.2 WKB approximation and Hamilton–Jacobi equation

The Hamiltonian defined in (10) also appears in the WKB (Wentzell, Kramer, Bril-
louin) approximation of the master equation (Newby and Keener 2011; Bressloff and
Faugeras 2017). This approximation consists in injecting in the master equation (2)
of the PDMP system, a solution of the form:

∀e ∈ PE , ue(x, t) = πe(x, t)e
− S(x,t)

ε , (13)

where e−
S(·,t)

ε then denotes the marginal distribution on proteins of the distribution u
at time t , and πe(x, t) is a probability vector denoting the conditional distribution of
the promoters knowing that proteins are fixed to X = x at t . The expression (13) is
justified under the assumption that the density ue is positive at all times.

Under the regularity assumptions S ∈ C1(�×R
+, R) andπ ∈ (C1(�× R

+, R)
)2n

,
we can perform a Taylor expansion in ε of the functions S and πe, for any e ∈ PE ,
and keeping in the resulting master equation only the leading order terms in ε, that we
denote S0 and π0 = (π0,e)e∈PE , we obtain:

−∂t S0(x, t)π0(x, t) =
n∑

i=1

(
Ki (x)+ ∂xi (S0)Fi (x)

)
π0(x, t).

Identifying the vectors π0 and ∇x S0 with the variables ζ and p in Eq. (10), we
obtain that S0 is solution of an Hamilton–Jacobi equation:

∀x ∈ � : H(x,∇x S0(x, t))+ ∂t S0(x, t) = 0. (14)
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More precisely, if at any time t , the marginal distribution on proteins of the PDMP
process, denoted u(·, t), follows a LDP and if its rate function, denoted V (·, t), is
differentiable on �, then the function H(·,∇x V (·, t)) appears as the time derivative
ofV (·, t) at t .Moreover, theWKBmethod presented above shows that the rate function
V (·, t) is identified for any time t with the leading order approximation in ε of the
function S(·, t) = −ε log(u(·, t)). Note that (13) is also reminiscent of the Gibbs
distribution associated with a potential S. Some details about the interpretation of this
equation and its link with the quasistationary approximation can be found in Newby
and Keener (2011).

Next, we consider a function V , solution of the Hamilton–Jacobi Eq. (14), that
we assume being of class C1(� × R

+, R) for the sake of simplicity. Then, for any
piecewise differentiable trajectory φt ∈ C0T (�) such that φ̇(t) ∈ �v(φ(t)) for all
t ∈ [0, T ), one has, by definition of the Fenchel-Legendre transform:

∫ T

0
L(φ(t), φ̇(t))dt =

∫ T

0
sup
p

(
n∑

i=1
pi φ̇i (t)− H(φ(t), p)

)
dt

≥
∫ T

0

(
n∑

i=1
∂xi V (φ(t), t)φ̇i (t)− H(φ(t),∇x V (φ(t), t))

)
dt

=
∫ T

0

(
n∑

i=1
∂xi V (φ(t), t)φ̇i (t)+ ∂t V (φ(t), t)

)
dt

= V (φ(T ), T )− V (φ(0), 0). (15)

Moreover, when H is strictly convex in p, we have:

∀v ∈ �v(x),∀x, p ∈ R
n × R

n, (L(x, v) = 〈p, v〉 − H(x, p)) ⇐⇒ (
v = ∇pH(x, p)

)
.

Then, the equality in (15) is exactly reached at any time for trajectories φt such that
for all t ∈ [0, T ), i = 1, . . . , n:{

pi (t) = ∂xi V (φ(t), t),

φ̇i (t) = ∂pi H(φ(t), p(t)).
(16)

4.2.3 General method for computing probabilities of the form (7)

We now detail the link existing between the regular solutions V of the Hamilton–
Jacobi Eq. (14) and the probabilities of the form (7). For this, we introduce the notion
of quasipotential.

Definition 2 Denoting C1,pw
0T (�) the set of piecewise differentiable trajectories in

C0T (�), we define the quasipotential as follows: for two sets A, B ⊂ � and a set
R ⊂ � \ (A ∪ B),

QR(A, B) = inf
φt ,T
{JT (φ) | φt ∈ C1,pw

0T (�), φ(0) ∈ A, φ(T ) ∈ B,∀t ∈ (0, T ) : φ(t) /∈ R}.
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We call a trajectory φt ∈ C1,pw
0T (�) an optimal trajectory between the two subsets

A, B ⊂ � in � \ R, if it reaches the previous infimum.

For the sake of simplicity, if R = ∅, we will write QR(A, B) = Q(A, B).
With these notations, the LDP principle allows to approximate for any basin Z j ,

i = j , the probability pε
i j (x0) defined in (7), which is the probability of reaching Z j ,

from a point x0 ∈ 
min,Zi , before γmin,Zi , by the expression:

−ε ln
(
pε
i j (x0)

)
→
ε→0

Q ⋃
k =i, j

{∂Zi∩∂Zk }(x0, ∂Zi ∩ ∂Z j ).

A direct consequence of the inequality (15), in the case where equality is reached,
is that a regular solution V of the Hamilton–Jacobi Eq. (14) defines trajectories for
which the cost (12) is minimal between any pair of its points. Moreover, if V is a
stationary solution of (14), the cost of such trajectories does not depend on time: these
trajectories are then optimal between any pair of its points among every trajectory in
any time. We immediately deduce the following lemma:

Lemma 1 For a stationary solution V ∈ C1(�, R) of (14) and for all T > 0, any
trajectory φt ∈ C1,pw

0T (�) satisfying the system (16) associated to V is optimal in �

between φ(0) and φ(T ), and we have:

Q(φ(0), φ(T )) = JT (φ) = V (φ(T ))− V (φ(0)).

Thus, for approximating the probability of interest (7), between any pair of basin
(Zi , Z j ), we are going to build a trajectory

i j
t , which verifies the system (16) associ-

ated to a stationary solution V of (14), withi j (0) = x0 ∈ 
min,Zi , andwhich reaches
in a time T a point x ∈ ∂Zi∩∂Z j such that Q(x0, x) = Q ⋃

k =i, j
{∂Zi∩∂Zk }(x0, ∂Zi∩∂Z j ).

For such trajectory, from Lemma 1, we could then approximate the probability (7) by
the formula

pε
i j (x0) 	 Ci j e

−JT (
i j
t )

ε , (17)

where Ci j is an appropriate prefactor. Unfortunately, if there exists an explicit expres-
sion of Ci j in the one-dimensional case (Newby and Keener 2011), and that an
approximation has been built formulti-dimensional SDEmodel (Bouchet andReygner
2016), they are intractable or not applicable in our case. In general, the prefactor does

not depend on ε (Berglund 2011). In that case − ln
(
pε
i j (x0)

)
is asymptotically an

affine function of ε−1, the slope of which is JT (
i j
t ) and the initial value − ln(Ci j ).

Then, the strategy we propose simply consists in approximating the prefactor by com-
parison between the probabilities given by theAMSalgorithmand theLarge deviations
approximation (17) for a fixed ε (large enough to be numerically computed.)

To conclude, for every pair of basins (Zi , Z j ), i = j , one of the most efficient
methods for computing the probability (7) is to use the AMS algorithm. When the
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dimension is large, and for values of ε which are too small for this algorithm to be effi-
ciently run, we can use the LDP approximation (17), provided that the corresponding
optimal trajectories 

i j
t can be explicitly found. The latter condition is studied in the

next sections. The AMS algorithm is then still employed to approximate the prefactor,
which is done using intermediate values of ε by the regression procedure mentioned
above.

5 Analytical approximation of probabilities of the form (7) for the
PDMP system

5.1 Expressions of the Hamiltonian and the Lagrangian

In this section, we identify the Perron eigenvalue H(x, p) of the spectral problem
(10), and prove that its Fenchel-Legendre transform L with respect to the variable p
is well defined on R

n . We then obtain the explicit form of the Hamiltonian and the
Lagrangian associated to the LDP for the PDMP system (1).

Theorem 2 For all n in N
∗, the Hamiltonian is expressed as follows: for all (x, p) ∈

�×R
n, the unique solution of the spectral problem (10) (with nonnegative eigenvector)

is:

H(x, p) =1

2

n∑
i=1

(
pidi (1− 2xi )− (kon,i (x)+ koff ,i )

+
√

(pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

)
. (18)

Moreover, the function H is strictly convex with respect to p.

Theorem 3 The Lagrangian is expressed as follows: for all (x, v) ∈ �×R
n, one has:

⎧⎪⎪⎨
⎪⎪⎩

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

if v ∈ �v(x)

L(x, v) = ∞ if v /∈ �v(x).

(19)

In addition, for all x ∈ �, L(x, v) = 0 if and only if for all i = 1, . . . , n:

vi = di

(
kon,i (x)

kon,i (x)+ koff ,i
− xi

)
.

As detailed in “Appendix C.2”, we remark that the Lagrangian of the PDMPprocess
defined in (19) is not equal to the Lagrangian of the diffusion approximation defined
in “Appendix C.1”, which is:
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Ld(x, v) =
n∑

i=1

(kon,i (x)+ kof f ,i )3

4d2i kon,i (x)kof f ,i

(
vi − di

(
kon,i (x)

kon,i (x)+ kof f ,i
− xi

))2

.

More precisely, the Lagrangian of the diffusion approximation is a second order
approximation of the Taylor expansion of the Lagrangian of the PDMP system around
the velocity field associated to the deterministic limit system (4). Observe that the
Lagrangian of the diffusion approximation is a quadratic mapping in v, which is
expected since the diffusion approximation is described by a Gaussian process. On
the contrary, the Lagrangian L given by (19) is not quadratic in v. As it had been
shown in Bouchet et al. (2016) for Fast–Slow systems, this highlights the fact that the
way rare events arise for the PDMP system is fundamentally different from the way
they would arise if the dynamics of proteins was approximated by an SDE.

Proof of Theorem 2 Defining the 2× 2 matrix

M (i)(x, pi ) = pi F
(i)(x)+ K (i)(x) =

(−xi pi di − kon,i (x) koff ,i
kon,i (x) −koff ,i + (1− xi )pidi

)
,

the Perron eigenproblem associated to M (i)

M (i)(x, p)ζ (i)(x, p) = Hi (x, p)ζ
(i)(x, p), ζ (i) > 0,

implies immediately that

Hi (x, p) = 1

2

(
Tr(M (i))+

√
(Tr(M (i)))2 − 4det(M (i))

)

= 1

2

(
pidi (1− 2xi )− (kon,i (x)+ koff ,i )

+
√

(pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

)
.

If we impose the constraint ζ (i)
0 + ζ

(i)
1 = 1, i.e that there exists for all x, pi , αp,i (x) ∈

(0, 1) such that ζ (i)(x, p) =
(
1− αp,i (x)

αp,i (x)

)
, we obtain the following equation:

Tx (αp,i (x)) = kon,i (x)(1− αp,i (x))+ (−koff ,i + (1− xi )pidi )αp,i (x) = Hi (x, p)αp,i (x).

Since Tx (0) = −kon,i (x) and Tx (1) = koff ,i , Tx has one and only one root in (0, 1).
After a quick computation, one gets for all x, p ∈ �× R

n :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αp,i (x) = 1

2

⎛
⎝1+

√
(pi di + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i − (kon,i (x)+ koff ,i )

pi di

⎞
⎠ if pi = 0

αp,i (x) = kon,i (x)

kon,i (x)+ koff ,i
if pi = 0.

(20)
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Considering the tensorial structure of the problem, denoting Mi (x, p) = pi Fi (x) +
Ki (x) (the tensorial version, see Sect. 2), we have by definition of M (11):

M =
n∑

i=1
Mi (x, p).

For ζ(x, p) =⊗n
i=1 ζ (i)(x, p), we obtain:

M(x, p)ζ(x, p) =
n∑

i=1
ζ (1)(x, p)⊗ · · · ⊗ M (i)(x, p)ζ (i)(x, p)︸ ︷︷ ︸

i-th position

⊗ · · · ⊗ ζ (n)(x, p)

=
n∑

i=1
Hi (x, pi )ζ

(1)(x, p)⊗ · · · ⊗ ζ (i)(x, p)⊗ · · · ⊗ ζ (n)(x, p)

=
(

n∑
i=1

Hi (x, pi )

)
ζ(x, p).

Since ζ > 0, one obtains the expression (18) for the Hamiltonian:

H(x, p) =
n∑

i=1
Hi (x, pi ) =

n∑
i=1

pidi (αp,i (x)− xi ). (21)

Weverify that H is strongly convexwith respect to p, which follows from the following
computation: for all i, j = 1, . . . , n,

∂2

∂ p2i
H(x, p) = 2d2i kon,i (x)koff ,i

((pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i )
3
2

> 0,

and the cross-derivatives are clearly 0. This concludes the proof of Theorem 2. ��
Proof of Theorem 3 The objective is to compute the Fenchel-Legendre transform of
the Hamiltonian H given by (18) in Theorem 2.

For all x ∈ � and for all vi ∈ R, the function g : pi �→ pivi − Hi (x, pi ) is
concave. An asymptotic expansion (when pi →±∞) gives:

g(pi ) =pi

(
vi − di

(
1

2
(1+ sgn(pi ))− xi

))

+ 1

2

(
kon,i (x)+ koff ,i − sgn(pi )

(
kon,i (x)− koff ,i

))
+ O

(
1

pi

)
. (22)

Let us study three cases. If vi ∈ (−di xi , di (1− xi )), g goes to−∞ when pi →±∞:
thus g reaches a unique maximum in R. At the boundary vi = −di xi (resp. vi =
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di (1 − xi )), g goes to −∞ as pi goes to +∞ (resp. −∞) and converges to kon,i (x)
(resp. koff ,i ) as pi goes to −∞ (resp. +∞): then g is upper bounded and the sup is
well defined. If vi /∈ [−di xi , di (1− xi )], g(pi ) goes to +∞ when either pi → −∞
of pi →+∞, thus g is not bounded from above.

As a consequence, Li (x, vi ) = sup
pi

(
pivi − Hi (x, pi )

)
is finite if and only if

vi ∈ [−di xi , di (1− xi )].
The Fenchel-Legendre transform of H is then given as follows: for all x ∈ � and

v ∈ R
n

L(x, v) =
∑
i

Li (x, vi ) =
n∑

i=1
sup
pi∈R

(
pivi − Hi (x, pi )

)
,

and L(x, v) is finite for every v ∈ �v(x). To find an expression for L(x, v), we have
to find for all i = 1, . . . , n the unique solution pv,i (x) of the invertible equation:
vi = ∂Hi

∂ pi
(x, pi ). Developing the term on the right-hand side, we obtain:

vi = 1

2

⎛
⎝di (1− 2xi )+ di (di pi + kon,i (x)− koff ,i )√

(di pi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

⎞
⎠

⇐⇒ ui = di zi√
z2i + ci

, (23)

where ui = 2(vi + di xi )− di , ci = 4kon,i (x)koff ,i > 0, zi = di pi + kon,i (x)− koff ,i .
When vi ∈ (−di xi , di (1− xi )), we have ui ∈ (−di , di ). Thus, we obtain

zi = ± ui
√
ci√

d2i − u2i

,

and as zi andui must have the same sign,we can conclude for everyvi ∈ (−di xi , di (1−
xi )):

pv,i (x) = 1

di

(
koff ,i − kon,i (x)+

√
koff ,i kon,i (x)

2(vi + di xi )− di√
(vi + di xi )(di (1− xi )− vi )

)
.

(24)

Injecting this formula in the expression of the Fenchel-Legendre transform, we obtain
after straightforward computations:

Li (x, vi ) = pv,i (x)vi − Hi (x, pv,i (x))

= 1

2

(√
2koff ,i

vi + di xi
di

−
√
2kon,i (x)

di (1− xi )− vi

di

)2

.
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We finally obtain the expression when v ∈ �v(x):

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

.

Finally, if v /∈ �v(x), i.e. if there exists i such that vi /∈ [−di xi , di (1 − xi )], then
L(x, v) = Li (xi , vi ) = ∞. As expected, the Lagrangian is always nonnegative. In
addition, it is immediate to check that L(x, v) = 0 if and only if the velocity field v

is the drift of the deterministic trajectories, defined by the system (4). ��

5.2 Stationary Hamilton–Jacobi equation

We justified in Sect. 4.2.3 that the stationary solutions of the Hamilton–Jacobi Eq. (14)
are central for finding an analytical approximation of the transition rates described in
Sect. 4.1. Thus, we are going to study the existence and uniqueness (under some
conditions) of functions V ∈ C1(�, R) such that for all x ∈ �:

H(x,∇x V (x)) = 0. (25)

Recalling that from (21), H(x, p) =
n∑

i=1
pidi (αp,i (x)− xi ), we construct two classes

of solutions V , such that for all i = 1, . . . , n, ∂xi V (x) = 0 or α∇x V ,i (x) = xi .
The first class of solutions contains all the constant functions on �. From the

expression (20). The second class contains all functions V such that for all x ∈ �:

∀i = 1, . . . , n : ∂xi V (x) = −kon,i (x)

di xi
+ koff ,i

di (1− xi )
. (26)

In particular, we show in “Appendix D” that the condition (26) holds for the toggle-
switch network described in “Appendix E” and studied in Sect. 6.

We will see in the next section that the class of constant solutions are associated
to the deterministic system (4), which are the trajectories of convergence within the
basins. We describe in Sect. 5.3.2 a more general class of solutions than (26), which
defines the optimal trajectories of exit from the basins of attraction of the deterministic
system.

5.3 Optimal trajectories

In the sequel we study some properties of the optimal trajectories associated to the
two classes of solutions of the stationary Hamilton–Jacobi Eq. (25) introduced above.

5.3.1 Deterministic limit and relaxation trajectories

From Lemma 1, for every constant function V (·) = C on �, the associated collection
of paths φt satisfying the system (16) is optimal in � between any pair of its points.
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Replacing p = ∇x V = 0 in (16), we find that these trajectories verify at any time
t > 0 the deterministic limit system (4):

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
.

Moreover, for every trajectory φt solution of this system, we have for any T > 0:

JT (φt ) =
∫ T

0
L(φt , φ̇t )dt = V (φT )− V (φ0) = 0. (27)

We call such trajectories the relaxation trajectories, as they characterize the optimal
path of convergence within every basin. From Theorem 3, these relaxation trajectories
are the only zero-cost admissible trajectories.

5.3.2 Quasipotential and fluctuation trajectories

We now characterize the optimal trajectories of exit from the basins. We are going to
show that the condition (C) defined below is sufficient for a solution V ∈ C1(�, R)

of the Eq. (25) to define optimal trajectories realizing the rare events described by the
probabilities (7).

Definition 3 We define the following condition on a function V ∈ C1(�, R):

(C) The set {x ∈ � | ∇x V (x) = 0} is reduced to isolated points.

The results presented below in Theorem 4 are mainly an adaptation of Theorem
3.1, Chapter 4, in Freidlin and Wentzell (2012). In this first Theorem, we state some
properties of solutions V ∈ C1(�, R) of (25) satisfying the condition (C):

Theorem 4 Let V ∈ C1(�, R) be a solution of (25).

(i) For any optimal trajectory φt satisfying the system (16) associated to V , for any
time t we have the equivalence:

(
∀i ∈ {1, . . . , n}, φi (t) = kon,i (φ(t))

kon,i (φ(t))+ koff ,i

)
⇐⇒ φ̇(t) = 0.

(ii) The condition (C) implies that the gradient of V vanishes only on the stationary
points of the system (4).

(iii) If V satisfies (C), then V is strictly increasing on any trajectory which solves
the system (16), such that the initial condition is not an equilibrium point of the
system (4). Moreover, for any basin of attraction Zi associated to an attractor
Xeq,Zi , we have:

∀x ∈ Zi \ Xeq,Zi , V (x) > V (Xeq,Zi ).
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(iv) If V satisfies the condition (C), under the assumption that lim
x→∂�

V (x) = +∞,

we have the formula:

∀x ∈ �, V (x) = min{a∈�|∇x V (a)=0} V (a)+ Q(a, x).

(v) Let us consider V , Ṽ ∈ C1(�, R) two solutions of (25) satisfying the con-
dition (C). The stable equilibria of the system defined for every time t by
φ̇t = −∇pH (φt ,∇x V (φt )) are exactly the attractor of the deterministic sys-

tem (4) (Xeq,Zi )Zi∈Z . We denote (Z f
i )Zi∈Z the basins of attraction which are

associated to these equilibria: at least on
⋃

Zi∈Z
Z̄ f
i , the relation ∇x V = ∇x Ṽ is

satisfied.
Moreover, under the assumptions 1. that lim

x→∂�
V (x) = lim

x→∂�
Ṽ (x) = ∞, and

2. that between any pair of basins (Z f
i , Z f

j ), we can build a serie of basins

(Z f
uk )k=1,...,m such that u0 = 1, um = j and for all k < m, Z̄ f

uk ∩ Z̄ f
uk+1 = ∅,

then V and Ṽ are equal in � up to a constant.

Note that the point (iii) makes these solutions consistent with the interpretation
of the function V as the rate function associated to the stationary distribution of the
PDMP system, presented in Sect. 4.2.2. Indeed, as every random path converges in
probability when ε → 0 to the solutions of the deterministic system (4) (Faggionato
et al. 2009), the rate function has to be minimal on the attractors of this system, which
then corresponds to the points of maximum likelihood at the steady state. It should
also converge to +∞ on ∂�, as the cost of reaching any point of the boundary is
infinite (see Corollary 2, in the proof of Theorem 5). However, we see in (v) that the
uniqueness, up to a constant, needs an additional condition on the connection between
basins which remains not clear for us at this stage, and which will be the subject of
future works.

If V ∈ C1(�, R) is a solution of (25) saitsfying (C), we call a trajectory solution
of the system (16) associated to V a fluctuation trajectory.

We observe that any function satisfying the relation (26) belongs to this class of
solutions of (25), and then that in particular, such C1 function exists for the toggle-
switch network. In that special case, we can explicitly describe all the fluctuation

trajectories: for any time t , replacing pi (t) = − kon,i (φ(t))
diφi (t)

+ koff ,i
di (1−φi (t))

in the system
(16), we obtain

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
koff ,iφi (t)2

kon,i (φ(t))(1− φi (t))2 + koff ,iφi (t)2
− φi (t)

)
.

(28)

In the second theorem (Theorem 5), we justify that the fluctuation trajectories are
the optimal trajectories of exit:
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Theorem 5 Let us assume that there exists a function V ∈ C1(�, R)which is solution
of (25) and satisfies the condition (C). For any basin Zi ∈ Z, there exists at least one
basin Z j , j = i , such that there exists a couple (x0, φt ), where x0 ∈ 
Zi and φt is a
fluctuation trajectory, and such that φ(0) = x0, φ(T ) →

T→∞ xi j = argmin
y∈∂Zi∩∂Z j

V (y).

Let us denote Xi j
un = {x ∈ ∂Zi ∩ ∂Z j | ∇x V (x) = 0}, xi jun = argmin

y∈Xi j
un

V (y) and

Ri j = ⋃
k =i, j
{∂Zi ∩ ∂Zk}. Under the following assumption

(A) any relaxation trajectory starting in ∂Zi ∩ ∂Z j stays in ∂Zi ∩ ∂Z j ,

we have xi j = xi jun and:

QRi j (Xeq,Zi , ∂Zi ∩ ∂Z j ) = V (xi jun)− V (Xeq,Zi ).

In particular, if there exists a fluctuation trajectory between any attractor Xeq,Zi and
every saddle points of the deterministic system (16) on the boundary ∂Zi , and if the
assumption (A) of Theorem 5 is verified for every basin Z j , j = i , the function
V allows to quantify all the optimal costs of transition between the basins. This is
generally expected because the attractors are the only stable equilibria for the reverse
fluctuations (see the proof of Theorem 4.(v)). The proofs of Theorems 4 and 5 use
classical tools from Hamiltonian system theory and are postponed to Appendix H.

When a solution V ∈ C1(�, R) satisfying (C) exists, the saddle points of the deter-
ministic system (4) are then generally the bottlenecks of transitions between basins
and the function V characterizes the energetic barrier between them. The function
Q(Xeq,Zi , ·) depends on the basin Zi , which is a local property: it explains why the
function V is generally called the global quasipotential, and Q(Xeq,Zi , ·) the local
quasipotential of the process (Zhou and Li 2016).

The precise analysis of the existence of a regular solution V satisfying (C) for a
given network is beyond the scope of this article. When it is impossible to find a
regular solution, more general arguments developed within the context of Weak KAM
Theory can allow to link the viscosity solutions of the Hamilton–Jacobi equation to
the optimal trajectories in the gene expression space (Fathi 2008).

5.4 Partial conclusion

Wehave obtained inTheorem3 the formof theLagrangian in the variational expression
(12) for the rate function JT associated to the LDP for the PDMP system (1). We have
also highlighted the existence and interpretation of two types of optimal trajectories.

The first class consists in relaxation trajectories,which characterize the convergence
within the basins. The fact that they are the only trajectories which have zero cost
justifies that any random path Xε

t converges in probability to a relaxation trajectory.
When there exists a function V ∈ C1(�, R) satisfying (26), the system (28) defines

the second class of optimal trajectories, called the fluctuation trajectories. From Theo-
rem 5, for every basin Zi , there exists at least one basin Z j , j = i , and a trajectory

i j
t

which verifies this system, starts on x0 ∈ 
min,Zi and reaches a point of x ∈ ∂Zi ∩∂Z j
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such that Q(x0, x) = Q(x0, ∂Zi ∩∂Z j ). This trajectory then realizes the rare event of
probability pi j (x0). Injecting the velocity field defining (28) in the Lagrangian (19),
we deduce:

−ε ln
(
pε
i j (x0)

)
→
ε→0

JT (
i j
t ) =

∫ T

0

n∑
i=1

(
kon,i (φ(t))(1− φi (t))− koff ,iφi (t)

)2
kon,i (φ(t))(1− φi (t))2 + koff ,iφi (t)2

dt .

(29)

If the assumption (A) of Theorem 5 is verified, this minimum is necessarily reached on
a saddle point of V on ∂Zi ∩ ∂Z j and in that case, the time T must be taken infinite.
Then, the formula (29) can be injected in the approximation (17), and the method
described in Sect. 4.2.2 allows to compute the probability of the form (7) for the pair
(Zi , Z j ).

Moreover, for every basin Zk , k = i , if the assumption (A) of Theorem 5 is verified
and if there exists, for any saddle point xikun ∈ ∂Zi ∩ ∂Zk , a trajectory satisfying the
system (28) which starts at x0 and reaches xikun (at T →∞), the formula (29) can also
be injected in the approximation (17) for the pair (Zi , Zk), and the method described
in Sect. 4.2.3 allows then to compute the probabilities of the form (7) for any pair of
basins (Zi , Zk)k=1,...,m .

6 Application to the toggle-switch network

In this section, we consider the class of interaction functions defined in Appendix D
for a network with two genes (n = 2). This function comes from a chromatin model
developed in Herbach et al. (2017) and is consistent with the classical Hill func-
tion characterizing promoters switches. Using results and methods described in the
previous sections, we are going to reduce the PDMP system when the GRN is the
toggle-switch network described in “Appendix E”. After defining the attractors of the
deterministic system (4), building the optimal fluctuation trajectories between these
attractors and the common boundaries of the basins, we will compute the cost of the
trajectories and deduce, from the approximation (17), the transition probabilities of
the form (7) as a function of ε, up to the prefactor. We will compute these probabil-
ities for some ε with the AMS algorithm described in “Appendix G” for obtaining
the prefactor. We will then approximate the transition rates characterizing the discrete
Markov chain on the cellular types, given by the formula (8), for many values of ε. We
will finally compare these results to the ones given by a crude Monte-Carlo method.

6.1 Computation of the attractors, saddle points and optimal trajectories

First, we compute the stable equilibrium points of the PDMP system (1). The system
(5) has no explicit solution. We present a simple method to find them, which consists
in sampling a collection of random paths in �: the distribution of their final position
after a long time approximates the marginal on proteins of the stationary distribution.
We use these final positions as starting points for simulating the relaxation trajectories,
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Fig. 5 a 100 cells are plotted under the stationary distribution. The relaxation trajectories allow to link
every cell to its associated attractor. b 1000 cells are plotted under the stationary distribution. They are then
classified depending on their attractor, and this figure sketches the kernel density estimation of proteins
within each basin. c The ratio of cells that are found within each basin gives an estimation of the stationary
distribution on the basins

described by (4), with an ODE solver: each of these relaxation trajectories converges
to one of the stable equilibrium points. This method allows to obtain all the stable
equilibrium corresponding to sufficiently deep potential wells (see Fig. 5). Possible
other potential wells can be omitted because they correspond to basins where the
process has very low probability of going, and which do not impact significantly the
coarse-grained Markov model.

Second, we need to characterize the fluctuation trajectories. In “Appendix D”, we
introduced the interaction function and proved that for any symmetric two-dimensional
network defined by this function, i.e such that for any pair of genes (i, j), θi j = θ j i

(where θ is the matrix characterizing the interactions between genes), there exists a
function V such that the relation (26) is verified. This is then the case for the toggle-
switch network, which is symmetric. We have proved in Sect. 5.2 that such function V
solves the Hamilton–Jacobi Eq. (25), and verifies the condition (C). Thus, the system
(28) defines the fluctuation trajectories.

Third, we need to find the saddle points of the system (4). As we know that for any
attractor, there exists at least one fluctuation trajectory which starts on the attractor
and reaches a saddle point (in an infinite time), a naive approach would consist in
simulating many trajectories with different initial positions around every attractors,
until reaching many saddle points of the system. This method is called a shooting
method and may be very efficient in certain cases. But for the toggle-switch, we
observe that the fluctuation trajectories are very unstable: this method does not allow
to obtain the saddle points.

We develop a simple algorithm which uses the nonnegative function l(·) =
L(·, νv(·)), which corresponds to the Lagrangian evaluated on the drift νv of the
fluctuation trajectories defined by the system (28). We have :

l : x → L(x, νv(x)) =
n∑

i=1

(
kon,i (x)(1− x)− koff ,i x

)2
kon,i (x)(1− x)2 + koff ,i x2

.
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Fig. 6 The optimal fluctuation trajectories from a first attractor continued by the relaxation trajectories
reaching the second attractor, for the pair (Z+−, Z−+). We omit the other pairs of attractors (Z+−, Z−−)

and (Z−−, Z−+), because their optimal trajectories are simply straight lines (colour figure online)

As expected, since νv cannot be equal to the drift of a relaxation trajectory except on
the stationary points of the relaxation trajectories and since the Lagrangian L(x, v) is
equal to 0 if and only if v corresponds to the drift of a relaxation trajectory, the function
l vanishes only on these stationary points. If there exists a saddle point connecting
two attractors, this function will then vanish there. The algorithm is described in
Appendix I. For the toggle-switch network, it allows to recover all the saddle points
of the system (4).

Fourth, we want to compute the optimal trajectories between every attractors and
the saddle points on the boundary of its associated basin. Using the reverse of the
fluctuation trajectories, for which the attractors of the system (4) are asymptotically
stable (see the proof of Theorem 4.(v)), we can successively apply a shooting method
around every saddle points. We observe that for the toggle-switch network, for any
saddle point at the boundary of two basins, there exists a reverse fluctuation trajectory
which converges to the attractors of both basins. For any pair of basins (Zi , Z j ), we
then obtain the optimal trajectories connecting the attractor Xeq,Zi and the saddle
points belonging to the common boundary ∂Zi ∩ ∂Z j (see Fig. 6).

Finally, we want to compute the optimal transition cost between any pair of basins
(Zi , Z j ). We observe that every relaxation trajectories starting on the common bound-
ary of two basins stay on this boundary and converge to a unique saddle point inside:
the assumption (A) of Theorem 5 is then verified. It follows from this theorem that the
optimal trajectory between any basin Zi and Z j necessarily reaches ∂Zi ∩ ∂Z j on a
saddle point, and then that the optimal transition cost is given by the trajectory which
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Fig. 7 Comparison between the optimal trajectory of the Fig. 6 and 30 random paths conditioned on
reaching, from a point of the boundary of the R-neighborhood of an attractor Xeq,Z−+ , the r -neighborhood
of a new attractor Xeq,Z+− before the r neighborhood of the first attractor Xeq,Z−+ , with r < R. We
represent this comparison for a ε = 1/7 and b ε = 1/21. For each figure, one of these random paths is
colored, separating the fluctuation and the relaxation parts (colour figure online)

minimizes the cost among all those found previously between the attractor and the
saddle points. We denote this optimal trajectory φ

i j
t . Its cost is explicitly described by

the formula (29) (with T →∞), which is then the optimal cost of transition between
Zi and Z j .

The LDP ensures that for all δ, η > 0, there exists ε′ such that for all ε ∈ (0, ε′),
a random path Xε

t reaching Z j from 
Zi before γZi , verifies: supt {| Xε
t − φ

i j
t |} ≤ δ

with probability larger than 1 − η. In other words, given a level of resolution δ, we
could then theoretically find ε such that any trajectory of exit from Zi to Z j would

be indistinguishable from trajectory φ
i j
t at this level of resolution. But in practice, the

event {τ ε
Z j

< τε
γZi
} is too rare to be simulated directly for such ε.

We plot in Fig. 7 two sets of random exit paths, simulated for two different ε,
illustrating the fact that the probability of an exit path to be far from the optimal
fluctuation trajectory decreases with ε.

6.2 Comparison between predictions and simulations

For each pair of basins (Zi , Z j ), the expression (29) provides an approximation of the
probability of the rare event {τ ε

Z j
< τε

γZi
}, up to a prefactor, and the approximation

(17) allows to deduce the associated transition rate. We plot in Fig. 8 the evolution of
these two estimations, as ε decreases, comparing respectively to the probabilities given
by the AMS algorithm and the transition rates computed with a Monte-Carlo method.
As in Bréhier and Lelièvre (2019), we decide to plot these quantities in logarithmic
scale. We observe that, knowing the prefactor, the Large deviations approximation
is accurate even for ε > 0.1, and that induced transition rates are close to the ones

123



Reduction of a stochastic model of gene expression... Page 27 of 63 59

observed with a Monte-Carlo method too. We represent in Fig. 10b the variance of the
estimator of the transition rates given by the AMS method.

We also remark that our analysis provides two ways of estimating the stationary
measure of the discrete coarse-grained model. On the one hand, we can obtain a long-
time proteins distribution of thousands of cells by simulating the PDMP system (1)
from random initial conditions: by identifying each cell with a basin, as shown in
Fig. 9a, we can find a vector μb describing the ratio of cells belonging to each basin.
When the number and length of the simulations are large enough, this vectorμb should
be a good approximation of the stationary measure on the basins. On the other hand,
the transition rates allows to build the transition matrix M of the discrete Markov
process on the basins, Ẑ ε

l , defined in Sect. 3.2. If the exponential approximation of
the first passage time from every basin is accurate, then the stationary distribution
on the basins should be well approximate by the unique probability vector such that
μzM = 0 (see Fig. 9b).

Monte-Carlo methods for approximating the transition rates have a very high com-
putational cost when ε is small. Thus, comparing these two stationary distributions
appears as a good alternative for verifying the accuracy of the transition rates approxi-
mations. We plot in Fig. 10a the evolution of the total variation distance between these
two stationary distributions as ε decreases. We observe that the total variation is small
even for realistic values of ε. The variance of the estimator μb is very small (given it
is estimated after a time long enough) but the estimator μz accumulates all numeri-
cal errors coming from the estimators needed to compute the transition rates: this is
likely to explain the unexpected small increases observed in this curve for ε = 1/6.
We represent in Fig. 10b the variance of the transition rates estimators between every
pair of attractors used for estimating the distribution μz in Fig. 10a, for ε = 1/7: as
expected, this variance increases with the transition rates.

The similarity between the two distributions μz andμb seems to justify the Marko-
vian approximation of the reduced process Ẑ ε

t for small but realistic ε: at least for the
toggle-switch network, the coarse-grained model, evolving on the basins of attractions
seen as cellular types, describes accurately the complex behaviour of a cell in the gene
expression space.

6.3 Applicability for more complex networks

It is in general very complex to find a solution V ∈ C1(�, R) to the stationary
Hamilton–Jacobi Eq. (25) which satisfies the condition (C) for general networks, when
the number of genes is greater than 2. In order to apply the strategy developed in Sect. 5,
for computing the cost of the optimal trajectories of transition between two basins,
it would be then necessary to build a computational method for approximating such
solution. Although the most common approach in this case consists in finding optimal
trajectories without computing a potential (see Heymann and Vanden-Eijnden 2008
or Li et al. 2021 for more recent works), some methods have been recently built for
SDEs model, like Langevin dynamics (Brackston et al. 2018). Such computational
method for the PDMP system is beyond the scope of the article. However, we remark
that even if there are no reasons for the trajectories satisfying the system (28) to be
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Fig. 8 a Comparison between the probabilities (7) between the basins Z+− and Z−−, in logarithmic scale,
given by the Large deviations approximation (in red) and the AMS algorithm (in green). The prefactor
is computed for ε = 1/8 and the red curve is then adjusted to fit the numerical results. The blue curve
corresponds to the probabilities obtained with a Monte-Carlo method. b Comparison between the transition
rates between the basins Z+− and Z−−, in logarithmic scale, given by the formula (8), where the probability
(7) is given by the Large deviations approximation (in red) and theAMS algorithm (in green). The blue curve
corresponds to the transition rates obtained with a Monte-Carlo method, by the formula (6). The quantities
obtained by a Monte-Carlo method, in blue, are not represented after ε = 1/8 because the transition rates
become too small to be efficiently computed (colour figure online)

Fig. 9 Comparison between the two methods for obtaining estimators of the stationary distributions on the
basins: μb (a) and μz (b)
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Fig. 10 a The total variation of the difference between μb and μz as a function of ε−1. b Boxplots
representing the variation of the transition rates for 10 iterations of the method used in a, between each pair
of basins for ε = 1/7

optimal when no function satisfying the relation (26) can be found, our computational
method still allows to compute these trajectories, and we observe that they generally
still bound the attractors and the saddle points of the deterministic system (4). Their
costs can then be used as a proxy for the probabilities of the form (7): we observe in
Figs. 16b and 17b in Appendix J that for two non-symmetric networks of respectively
3 and 4 genes, our method still provides good results.

7 Discussion

Using the WKB approximation presented in Sect. 4.2.2 and the explicit formulas for
the Hamiltonian and the Lagrangian detailed in Sect. 5.1, we are going now to analyze
more precisely how the LDP for the proteins can be interpreted in regards to the
dynamics of promoters, and we will see how two classical notions of energies can be
interpreted in light of this analysis.

7.1 Correspondences between velocities and promoters frequency lead to
energetic interpretations

The main idea behind the LDP principle for the PDMP system is that a slow dynamics
on proteins coupled to the fastMarkov chain on promoters rapidly samples the different

states of PE according to some probability measure π = (πe)e∈PE . The value
n∑

e,ei=1
πe

corresponds then to the parameter of the Bernoulli describing the random variable Ei ,
and can be interpreted as the frequency of the promoter of gene i .

The point of view of Faggionato et al. (2009) consisted in stating a LDP for the
PDMP system by studying the deviations of π from the quasistationary distribution
(3). The work of Bressloff and Faugeras (2017) consists in averaging the flux asso-
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ciated to the transport of each protein over the measure π , in order to build a new
expression of this LDP which depends only on the protein dynamics. Its coupling
with an Hamiltonian function through a Fenchel-Legendre transform allows to apply
a wide variety of analytical tools to gain insight on the most probable behaviour of
the process, conditioned on rare events. In this Section, we see how correspondences
between these different points of view on the LDP shed light on the meaning of the
Hamiltonian and Lagrangian functions and lead to some energetic interpretations.

7.1.1 Correspondence between velocity and promoter frequency

Let us fix the time. The velocity field of the PDMP system, that we denote , is a
n-dimensional vector field, function of the random vectors E, X , which can be written
for any i = 1, . . . , n:

i = (1− Ei )× voff ,i (Xi )+ Ei × von,i (Xi ), (30)

with the functions voff ,i : xi �→ −di xi and von,i : xi �→ di (1− xi ) for any x ∈ �.
For all i = 1, . . . , n, let ρi : x �→ E(Ei | X = x) denote the conditional

expectation of the promoter Ei knowing a protein vector X . As presented in Sect. 3.1,
the quasistationary approximation identifies the vector field ρ to the invariant measure
of the Markov chain on the promoter states.

For a given conditional expectation of promoters ρ, the vector field vρ : x �→
EE∼ρ(x)( | X = x) is defined for all x ∈ � by:

∀i = 1, . . . , n, vρ,i (x) = (1− ρi (x))voff ,i (x)+ ρi (x)von,i (x)

= di (ρi (x)− xi ) ∈ [−di xi , di (1− xi )]. (31)

Denoting �v the set of vector fields v continuous on �, such that for all x ∈ �,
v(x) ∈ �v(x), we see that vρ ∈ �v . Conversely, the formula (31) can be inverted
for associating to every velocity field v ∈ �v , characterizing the protein dynamics,
a unique conditional expectation of promoters states knowing proteins, ρv , which is
the unique solution to the reverse problem v(·) = EE∼ρ(·)( | X = ·), and which is
defined by:

∀x ∈ �, ∀i = 1, . . . , n : ρv,i (x) = vi (x)− voff ,i (x)

di
∈ [0, 1]. (32)

7.1.2 Dynamics associated to a protein field

We detailed above the correspondence between any admissible velocity field v ∈ �v

and a unique vector field ρv describing a conditional expectation of promoters states
knowing proteins. Moreover, the proof of Theorem 2 reveals that for any vector field
p : � �→ R

n , we can define a unique vector field αp : � �→ (0, 1)n by the expression
(20).

As presented in Sect. 4.2.2, we denote V the leading order term of the Taylor
expansion in ε of the function S defined in (13), such that the distribution of the
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PDMP system is defined at a fixed time t , and for all e ∈ PE , by ue(·) = πe(·)e− S(·)
ε ,

where π(x) is a probability vector in SE for all x ∈ �.
On the one hand, we have seen in Sect. 4.2.2 that for all x ∈ �, the eigenvector

ζ(x,∇x V (x)) of the spectral problem (10) (for p = ∇x V (x)) corresponds to the
leading order term of the Taylor expansion in ε of π(x). For all i = 1, . . . , n, the
quantity

∑
e∈PE ,ei=1

ζe(x,∇x V (x)) then represents the leading order approximation of

the conditional expectation ρi (x) = E(Ei | X = x). On the other hand, if we
denote the gradient field p = ∇x V defined on �, we recall that for all x ∈ �:

ζ(x, p) =
n⊗

i=1

(
1− αp,i (x)

αp,i (x)

)
. We then obtain:

αp,i (x) =
∑

e∈PE ,ei=1
ζe(x,∇x V (x)) ≈ ρi (x).

This interpretation of the vector αp, combined with the relation (32), allows us to state
that the velocity field defined for all x ∈ � by vαp (x) =

(
di (αp,i (x)− xi )

)
i=1,...,n ∈

�v(x) characterizes, in the weak noise limit, the protein dynamics associated to the

proteins distribution u = e−
S(·)
ε .

We see that the velocity field vαp corresponds to the drift of the deterministic system

(4) if and only if αp = kon
kon+koff , and then if and only if p = 0 (see Sect. 5.2). The

gradient field p can be understood as a deformation of the deterministic drift, in the
weak noise limit.

We recall that for all p ∈ R
n , we have from (21):

H(x, p) =
n∑

i=1
pidi (αp,i (x)− xi ).

With the previous notations, the Lagrangian associated to a velocity field v can then
be written on every x ∈ � as a function of αp and ρv:

L(x, v(x)) =
n∑

i=1
pi (x)di (ρv,i (x)− xi )−

n∑
i=1

pi (x)di (αp,i (x)− xi )

= 〈p(x), v(x)− vα,p(x)〉,

where p(x) = pv(x) is defined by the expression (24). Thus, we see that the duality
between the Lagrangian and the Hamiltonian, that we intensively used in this article
for analyzing the optimal trajectories of the PDMP system, and which is expressed
through the relation (24) between the variables v and p, also corresponds to a duality
between two promoters frequencies ρv and αp associated to the velocity fields v and
vαp .

The situation is then the following: for a given proteins distribution u(·) = e−
S(·)
ε

such that the first order approximation of S in ε, V , is differentiable on �, the velocity
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field v associated by duality to the gradient field p = ∇x V , and which characterizes
a collection of optimal trajectories of the PDMP system (satisfying the system (16)
associated to V ) when u is the stationary distribution, does not correspond to the
protein velocity vαp associated to the distribution u in the weak noise limit, except
when the Lagrangian vanishes on (x, v). Alternatively speaking, the optimal trajec-
tories associated to a distribution in the sense of Large deviations, characterized by
the velocity field v, do not correspond to the trajectories expected in the weak noise
limit, characterized by the velocity field vαp . This is an important limit for develop-
ing a physical interpretation of the Hamiltonian system in analogy with Newtonian
mechanics. However, the correspondence between promoters states distributions and
velocity fields developed above leads us to draw a parallel with some notions of energy.

7.1.3 Energetic interpretation

Following a classical interpretation in Hamiltonian system theory, we introduce a
notion of energy associated to a velocity field:

Definition 4 Let us consider x ∈ � and v ∈ �v . The quantity Ev(x) = H(x, pv(x)) is
called the energy of the velocity field v on x , where pv(x) is defined by the expression
(24).

Interestingly, combining the expression of the Hamiltonian given in Theorem 2
with the expressions (24) and (32), the energy of a velocity v on every x ∈ � can be
rewritten:

Ev(x) =
n∑

i=1

√
kon,i (x)koff ,i

di

(
Eρv,i (|i | | X = x)

σ (ρv,i (x))
− Eρi (|i | | X = x)

σ (ρi (x))

)

where for all i = 1, . . . , n, i is the random variable defined by the expression (30),
which follows, conditionally to proteins, a Bernoulli distribution of parameter ρv,i ,
and σ(ρv,i (x)) =

√
ρv,i (x)(1− ρv,i (x)) denotes its standard deviation.

Finally, we have Eρv,i (|i | | X = x) = (1 − ρv,i (x))vof f ,i (x) + ρv,i (x)von,i (x),
and ρ denotes the quasistationary distribution described in (3).

Formally, the energy of a promoter distribution can then be decomposed in two
terms : a first term describing its velocity in absolute terms, scaled by its standard
deviation, and a second term depending on the network. A high energy distribution
on a point x is characterized by a fast and deterministic protein dynamics in regards
respectively to the velocity of the quasistationary approximation on x and the standard
deviation of its associated promoter distribution.

We remark that this notion of energy does not depend on the proteins distribution,
but only on the promoters frequency ρv around a certain location x . Depending on x
only through the vector field ρv (and the functions kon,i ), it is likely to be interpreted
as the kinetic energy of a cell.

The potential V = − ln(û), where û is the marginal on proteins of the stationary
distribution of the stochastic process, is classically interpreted as a notion of potential
energy, not depending on the effective promoter frequency. Apparently, this notion of
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Fig. 11 Weak noise approximate
model. The Markov chain on the
set of basins Z is here illustrated
by the one corresponding to the
toggle-switch network of Fig. 3a

energy is not related to the one described previously. Once again, the difficulty for
linking these two notions of energy comes from the fact that the dynamics associated
to the "momentum" p = ∇x V , which is characterized by the velocity field v defined
by the formula (23), is not the same that the protein dynamics associated in the weak

noise limit to the marginal distribution on proteins e−
V (·)
ε , which is defined by the

promoters frequency vαp .

7.2 Mixturemodel

The results of Sect. 6 lead us to consider the coarse-grained model as promising for
capturing the dynamics of themetastable system, even for realistic ε.We are nowgoing
to introduce a mixture model which provides an heuristic link between the protein
dynamics and the coarse-grained model, and appears then promising for combining
both simplicity and ability to describe the main ingredients of cell differentiation
process.

When ε is small, a cell within a basin Z j ∈ Z is supposed to be most of the time
close to its attractor: a rough approximation consists in identifying the activation rate
of a promoter ei in each basin by the dominant rate within the basin, corresponding to
the value of kon,i on the attractor. For any gene i = 1, . . . , n and any basin Z j ∈ Z ,
we can then consider:

∀x ∈ Z j : kon,i (x) ≈ kon,i (Xeq,Z j ).

Combining this approximation of the functions kon,i by their main mode within
each basin with the description of metastability provided in Sect. 3.2, we build another
process described by the 2n + 1-dimensional vector of variables (Z(t), E(t), X(t)),
representing respectively the cell type, the promoter state and the protein concentration
of all the genes (see Fig. 11).

Considering that the PDMP system spends in each basin a time long enough to
equilibrate inside, we decide to approximate the distribution of the vector (E(t), X(t))
in a basin Z j by its quasistationary distribution. It is then equivalent to the stationary
distribution of a simple two states model with constant activation function, which is a
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product of Beta distributions (Herbach et al. 2017). Thus, the marginal on proteins of
the stationary distribution of this new model, that we denote u, can be approximated
by a mixture of Beta distributions:

u ≈
∑
Z j∈Z

μz(Z j )
∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
, (33)

where μz is the stationary distribution of the Markov chain characterizing the coarse-
grained model.

In that point of view, the marginal distribution on proteins of a single cell X is
characterized by a hidden Markov model: in each basin Z j , which corresponds to the
hidden variable, the vector X is randomly chosen under the quasistationary distribution
uZ j of the reduced process (E, X | Z j ). This simplified model provides a useful
analytical link between the proteins distribution of the PDMP system (depending on
the whole GRN) and the coarse-grained model parameters.

This mixture also provides an approximation for the potential of the system on �:

V (x) ≈ − ln

⎛
⎝∑

Z j∈Z
μz(Z j )

∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
(x)

⎞
⎠. (34)

We remark that this new phenomenological model is a generalization of the local
approximations of both the potential and the distribution within each basin that we
have used for building the isocomittor surfaces and the score function of the AMS
algorithm in “Appendices F.3 and G”.

7.3 One application for themixturemodel

An interesting application for the mixture approximation presented in Sect. 7.2 is the
computation of the potential energy of the system, as defined in the previous section.
The potential energy of a population of cellsC located on (xc)c∈C can be approximated
by the sum

∑
c∈C

V (xc), where V is defined by (34)

We represent in Fig. 12 the evolution of the potential energy of a population of cells
during the differentiation process, simulated from the PDMP system associated to the
toggle-switch network presented in “Appendix E”. The population is initially centered
on the attractor of the undifferentiated state Z−−. We observe that the potential energy
reaches a peak before decreasing.

We remark that in Gao et al. (2020), the authors have revealed the universality
of such feature during cell differentiation, for what they called the transcriptional
uncertainty landscape, for many available single-cell gene expression data sets. This
transcriptional uncertainty actually corresponds to the stationary potential V of our
model, approximated for each cell from the exact stationary distribution of an uncou-
pled system of PDMPs (i.e with a diagonal interaction matrix). Although it cannot
be formally linked to intracellular energetic spending yet, we can note that one of

123



Reduction of a stochastic model of gene expression... Page 35 of 63 59

Fig. 12 Evolution of the potential energy V of a population of 500 cells along the differentiation process

the authors recently described a peak in energy consumption during the erythroid
differentiation sequence (Richard et al. 2019).

The mixture model also paves the way for interpreting non-stationary behaviours.
Indeed, let us denote μz,t the distribution of the basins at any time t . The mixture
distribution can be used as a proxy for non stationary distributions of a PDMP system:

pt ≈
∑
Z j∈Z

μz,t (Z j )
∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
.

In that case, the only time-dependent parameters are the coordinates of the vector
μz,t ∈ [0, 1]m where m is the number of basins, and μz,t = μz if t is such that the

stationary distribution is reached. The parameters (μz,t (Z j ),
kon,i (Xeq,Z j )

di
,
koff ,i
di

)Z j∈Z
could be inferred from omics data at any time t , for example with an EM algorithm
(Pearce et al. 2019; Ma and Leijon 2009).

8 Conclusion

Reducing a model of gene expression to a discrete coarse-grained model is not a new
challenge, (Lv et al. 2014; Lin andGalla 2016), and it is often hard to performwhen the
dimension is large. This reduction is closely linked to the notion of landscape through
the quasipotential, the analysis of which has been often performed for nonmechanistic
models, where the random effects are considered as simple noise (Brackston et al.
2018; Wang et al. 2010), or for a number of genes limited to 2.

In this work, we propose a numerical method for approximating the transition
rates of a multidimensional PDMP system modeling genes expression in a single cell.
This method allows to compute these transition rates from the probabilities of some
rare events, for which we have adapted an AMS algorithm. Although this method
theoretically works for any GRN, the computation cost of the AMS algorithm may
explode when both the number of genes increases and the scaling factor ε decreases.
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In order to approximate these probabilities within the Large deviations context, we
provided an explicit expression for the Hamiltonian and Lagrangian of a multidimen-
sional PDMP system, we defined the Hamilton–Jacobi equation which characterizes
the quasipotential, for any number of genes, and we provided the explicit expres-
sion of the associated variational problem which characterizes the landscape. We have
deduced for some networks an analytical expression of the energetic costs of switching
between the cell types, fromwhich the transition rates can be computed. These approx-
imations are accurate for a two-dimensional toggle-switch. We also verified that these
analytical approximations seem accurate even for networks of 3 or 4 genes for which
the energetic cost provided by the method is not proved to be optimal. However, test-
ing the accuracy of this method for describing more complex networks would imply
to build an approximate solution to the stationary Hamilton–Jacobi Eq. (25), which
would be the subject of future works.

Finally, we have derived from the coarse-grained model a Beta-mixture model able
to approximate the stationary behavior of a cell in the gene expression space. As far
as we know, this is the first time that such an explicit link between a PDMP system
describing cell differentiation and a non-Gaussian mixture model is proposed.

Altogether this work establishes a formal basis for the definition of a genetic/
epigenetic landscape, given a GRN. It is tempting to now use the same formalism to
assess the inverse problem of inferring themost likely GRN, given an (experimentally-
determined) cell distribution in the gene expression space, a notoriously difficult task
(Pratapa et al. 2020; Herbach et al. 2017).

Such random transitions between cell states have been recently proposed as the
basis for facilitating the concomitant maintenance of transcriptional plasticity and
stem cell robustness (Wheat et al. 2020). In this case, the authors have proposed a
phenomenological view of the transition dynamics between states. Our work lays
the foundation for formally connecting this cellular plasticity to the underlying GRN
dynamics.

Finally ourwork provides the formal basis for the quantitativemodelling of stochas-
tic state transitions underlying the generation of diversity in cancer cells (Zhou et al.
2014; Gupta et al. 2011), including the generation of cancer stem cells (Tong et al.
2018).

Acknowledgements This work was supported by funding from French agency ANR (SingleStatOmics;
ANR-18-CE45-0023-03). We thank Ulysse Herbach for having highlighted the notions of main modes for
the stochastic hybrid model of gene expression, and for critical reading of the manuscript. We would like to
thank the referees and the associated editor for carefully reading our manuscript and for their constructive
comments which helped improving the quality of the paper. We also thank all members of the SBDM and
Dracula teams, and of the SingleStatOmics project, for enlightening discussions. We also thank the BioSyL
Federation and the LabEx Ecofect (ANR-11-LABX-0048) of the University of Lyon for inspiring scientific
events.

Declarations

Code availability The code for reproducing the main figures of the article is available at
https://gitbio.ens-lyon.fr/eventr01/jomb_reduction. It also contains the functions for the AMS algorithm,
which is detailed in the appendix.

123

https://gitbio.ens-lyon.fr/eventr01/jomb_reduction


Reduction of a stochastic model of gene expression... Page 37 of 63 59

A Mechanistic model and fast transcription reduction

We recall briefly the full PDMP model, which is described in details in Herbach et al.
(2017), based on a hybrid version of the well-established two-state model of gene
expression (Ko 1991; Peccoud and Ycart 1995) including both mRNA and protein
production (Shahrezaei and Swain 2008) and illustrated in Fig. 13.

Agene is described by the state of a promoter,which can be {on, off }. If the promoter
is on, mRNAs will be transcripted with a rate sm and degraded with a rate dm . If it
is off , only mRNA degradation occurs. Translation of mRNAs into proteins happens
regardless of the promoter state at a rate sp, and protein degradation at a rate dm .
Neglecting the molecular noise of proteins and mRNAs, we obtain the hybrid model:

⎧⎪⎪⎨
⎪⎪⎩
E(t) : 0 kon−→ 1, 1

koff−−→ 0,

M ′(t) = sm E(t)− dmM(t),

P ′(t) = spM(t)− dp P(t).

where (E(t), M(t), P(t)) denote respectively the promoter, mRNA and protein con-
centration at time t . As detailed in Sect. 2, the key idea is then to put this two-states
model into a network by characterizing the jump rates of each gene by two specific
functions kon,i and koff ,i , depending at any time on the protein vector X(t).

In order to obtain the PDMP system (1) that we use throughout this article, we
exploit the two modifications that are performed in Herbach et al. (2017) to this mech-
anisticmodel. First, the parameters sm and sp can be removed to obtain a dimensionless
model, from which physical trajectories can be retrieved with a simple rescaling.

Second, a scaling analysis leads to simplify the model. Indeed, degradation rates
play a crucial role in the dynamics of the system. The ratio dm,i

dp,i
controls the buffering

of promoter noise by mRNAs and, since koff ,i  kon,i , the ratio kon,i
dm,i

controls the
buffering of mRNA noise by proteins. In line with several experiments (Albayrak
et al. 2016; Li and Xie 2011), we consider that mRNA bursts are fast in regard to
protein dynamics, i.e dm,i

dp,i
 1 with kon,i

dm,i
fixed. The correlation between mRNAs and

proteins produced by the gene is then very small, and the model can be reduced by
removing mRNA and making proteins directly depend on the promoters. We then
obtain the PDMP system (1).

Fig. 13 The two-states model of
gene expression (Herbach et al.
2017; Peccoud and Ycart 1995) OFF ON RNA Prot.

RNA Prot.

kon

koff

sm sp

dm dp
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Denoting ki themean value of the function kon,i , i.e its value where there is no inter-

action between gene i and the other genes, the value of a scaling factor εi = dp,i
ki

can

then be decomposed in two factors: one describing the ratio between the degradation
rates of mRNA and proteins,

dp,i
dm,i

, which is evaluated around 1/5 in Schwanhäusser
et al. (2011), and one characterizing the ratio between promoter jumps frequency and
the degradation rates of mRNA, dm,i

ki
. This last ratio is very difficult to estimate in

practice. Assuming that it is smaller than 1, i.e that the mean exponential decay of
mRNA when the promoter Ei is off is smaller than the mean activation rate, we can
consider that εi is smaller than 1/5. Finally, for obtaining the model (1), we consider
two typical timescales d̄ and k̄, for the rates of proteins degradation and promoters

activation respectively, such that for all genes i , ki
k̄
and

dp,i
d̄

are of order 1 (when the

disparity between genes is not too important). We then define ε = d̄
k̄
.

B Tensorial expression of themaster equation of the PDMP system

Wedetail the tensorial expression of themaster Eq. (2) for a two-dimensional network.
We fix ε = 1 for the sake of simplicity.

The general form for the infinitesimal operator can be written:

Lu(t, e, x) = 〈F (e, x) ,∇xu(t, e, x)〉 +
∑
e′∈PE

Q(e, e′)(x)u(t, e′, x)

where F is the vectorial flow associated to the PDMP and Q the matrix associated to
the jump operator.

A jump between two promoters states e, e′ is possible only if there is exactly one
gene for which the promoter has a different state in e than in e′: in this case, we denote
e ∼ e′.

We have, for any x : F(e, x) = (d0(e0 − x0), . . . , dn(en − xn))T . Then, for all
e ∈ PE , the infinitesimal operator can be written:

Lu(t, e, x) =
n∑

i=1
Fi (e, x)∂xi u(t, e, x)

+
∑
{e′|e′∼e}

(
kon,i (x)δei=0 + koff ,iδei=1

) (
u(t, e′, x)− u(t, e, x)

)
.

For a two-dimensional process (n = 2), there are four possible configurations
for the promoter state: e00 = (0, 0), e01 = (0, 1), e10 = (1, 0), e11 = (1, 1). It
is impossible to jump between the states e00 and e11. If we denote u(t, x) the four-
dimensional vector: (ue(t, x))e∈PE , we can write the infinitesimal operator in a matrix
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form:

Lu(t, x) =

⎛
⎜⎜⎝
−d1x1 0 0 0

0 −d1x1 0 0
0 0 d1(1− x1) 0
0 0 0 d1(1− x1)

⎞
⎟⎟⎠

︸ ︷︷ ︸
F1(x)

⎛
⎜⎜⎝

∂x1ue00(t, x)
∂x1ue01(t, x)
∂x1ue10(t, x)
∂x1ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−d2x2 0 0 0

0 d2(1− x2) 0 0
0 0 −d2x2 0
0 0 0 d2(1− x2)

⎞
⎟⎟⎠

︸ ︷︷ ︸
F2(x)

⎛
⎜⎜⎝

∂x2ue00(t, x)
∂x2ue01(t, x)
∂x2ue10(t, x)
∂x2ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−kon,1(x) 0 kon,1(x) 0

0 −kon,1(x) 0 kon,1(x)
koff ,1 0 −koff ,1 0
0 koff ,1 0 −koff ,1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q1(x)

⎛
⎜⎜⎝
ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−kon,2(x) kon,2(x) 0 0
koff ,2 −koff ,2 0 0
0 0 −kon,2(x) kon,2(x)
0 0 koff ,2 −koff ,2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q2(x)

⎛
⎜⎜⎝
ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

⎞
⎟⎟⎠ .

We remark that each of these matrices can be written as a tensorial product of the
corresponding two-dimensional operator with the identity matrix:

• F1(x) = F (1)(x)⊗ I2 • Q1(x) = Q(1)(x)⊗ I2
• F2(x) = I2 ⊗ F (2)(x) • Q2(x) = I2 ⊗ Q(2)(x)

• F (i)(x) =
(−di xi 0

0 di (1− xi )

)
• Q(i)(x) =

(−kon,i (x) kon,i (x)
koff ,i −koff ,i

)
.

The master Eq. (2) is obtained by taking the adjoint operator of L:

∂u

∂t
(t, x) = L∗u(t, x) = −

n∑
i=1

∂

∂xi
(Fiu)(t, x)+

n∑
i=1

Kiu(t, x)

where K (x) = QT (x) is the transpose matrix of Q.
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C Diffusion approximation

C.1 Definition of the SDE

In this section, we apply a key result of Pakdaman et al. (2012) to build the diffusion
limit of the PDMPsystem (1). Let us denote Xt a trajectory satisfying theODE system:

ẋ(t) = v(x(t)),

where v : x → d
(

kon(x)
kon(x)+koff − x

)
characterizes the deterministic system (4). We

consider the process Z ε
t defined by:

Z ε
t =

1√
ε
(Xε

t − Xt ),

where Xtε verifies the PDMP system. Then, from the theorem 2.3 of Pakdaman et al.
(2012) the sequence of processes {Z ε

t }ε converges in law when ε → 0 to a diffusion
process which verifies the system:

dZt = ∂xv(Xt )Ztdt + σ(Xt )dBt , (35)

where Bt denotes the Brownian motion. The diffusion matrix �(x) = σ(x)σ T (x) is
defined by:

∀i, j = 1, . . . , n, �i, j (x) :=
∑
e

2Wi (x, e)φ j (x, e)ζ(x, e),

where ∀e ∈ PE , W (x, e) = d(e− x)− v(x), and φ is solution of a Poisson equation:

⎧⎨
⎩
∀e ∈ PE ,∀i = 1, . . . , n : ∑e′ Qee′(x)φi (x, e′) = −Wi (x, e),∑
e∈PE

φi (x, e)ζ(x, e) = 0. (36)

Let ζ be a probability vector in SE representing the stationary measure of the jump
process on promoters knowing proteins : ∀x ∈ �, ζ(x, ·)Q(x) = 0. We have: ∀e ∈
PE , ζ(x, e) =

n∏
i=1

k
ei
on,i (x)k

1−ei
off ,i

kon,i (x)+koff ,i .

It is straightforward to see that for all i = 1, . . . , n:Wi (x, e) = di
(
ei − kon,i (x)

kon,i (x)+kof f ,i
)
.

Then, let us define φ such that:

∀e ∈ PE ,∀i = 1, . . . , n : φi (x, e) = di
kon,i (x)+ kof f ,i

(
ei − kon,i (x)

kon,i (x)+ kof f ,i

)
.
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We verify that this vector φ is solution to the Poisson equation (36) for all x . The
matrix �(x) is then a diagonal matrix defined by:

∀i = 1, . . . , n : �i i (x) = 2
d2i k

2
on,i (x)kof f ,i + d2i k

2
of f ,i kon,i (x)

(kon,i (x)+ kof f ,i )4

= 2
d2i kon,i (x)kof f ,i

(kon,i (x)+ kof f ,i )3
. (37)

For all x ∈ �, the matrix σ(x) is then also diagonal and defined by:

∀i = 1, . . . , n, σi i (x) =
√

2d2i kon,i (x)kof f ,i
(kon,i (x)+ kof f ,i )3

,

and we have defined all the terms of the diffusion limit (35).

C.2 The Lagrangian of the diffusion approximation is a second-order
approximation of the Lagrangian of the PDMP system

It is well known that the diffusion approximation satisfies a LDP of the form (12)
(Freidlin and Wentzell 2012). The formula (37) allows to define the Lagrangian asso-
ciated to this LDP, that we denote Ld . From the theorem 2.1 of Freidlin and Wentzell
(2012), we have:

∀x, v ∈ �×�v(x) : Ld(x, v)

=
n∑

i=1

(kon,i (x)+ kof f ,i )3

4d2i kon,i (x)kof f ,i

(
vi − di

(
kon,i (x)

kon,i (x)+ kof f ,i
− xi

))2

. (38)

Note that for any fixed x ∈ �, Ld(x, ·) is a quadratic function.
We recall that the Lagrangian associated to the LDP for the PDMP system, that we

found in Theorem 3, is defined for all x, v ∈ �×�v(x) by:

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

.

Expanding this Lagrangian with respect to v around v (the drift of the relaxation
trajectories), we obtain:

L(x, v) =
n∑

i=1

⎛
⎝ kon,i (x)+ kof f ,i

2di
√

kon,i (x)kof f ,i
kon,i (x)+kof f ,i

⎞
⎠

2

(vi − vi )
2 + o (vi − vi )

2 = Ld (x, v)+ o (vi − vi )
2 .
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Thus, we proved that the Lagrangian of the diffusion approximation of the PDMP
process corresponds to the two first order terms in (vi − vi ) of the Taylor expansion
of the real Lagrangian.

D Example of interaction function

We recall that we assume that the vector koff does not depend on the protein vector.
The specific interaction function chosen comes from a model of the molecular

interactions at the promoter level, described in Herbach et al. (2017):

kon,i (X) = k0,i + k1,i (σi Xi )
miii (X)

1+ (σi Xi )mii i (X)
, (39)

with:

• k0,i the basal rate of expression of gene i ,
• k1,i the maximal rate of expression of gene i ,
• mi, j an interaction exponent, representing the power of the interaction between
genes i and j ,

• σi is the rescaling factor depending on the parameters of the full model including
mRNAs,

• θ a matrix defining the interactions between genes, corresponding to a matrix with
diagonal terms defining external stimuli, and

• i (X) = eθi,i
∏

j =i
1+eθ j,i+θ j, j (σ j X j )

m ji

1+eθ j, j (σ j X j )
m ji

.

For a two symmetric two-dimensional network, we have for any x = (x1, x2) ∈ �:

∂x2kon,1(x)

x1
= m21eθ22xm21−1

2 eθ11xm11−1
1 (1− eθ12)

1+ eθ22xm21
2 + eθ11xm11

1 + xm21
2 xm11

1 eθ11+θ22+θ12
.

When m11 = m22 = m12 = m21 and θ12 = θ21, we have then for every x ∈ �:

∂x2kon,1(x)

x1
= ∂x1kon,2(x)

x2
.

Thus, for all x ∈ �, when d1 = d2 we have:

∂x2

(
−kon,1(x)

d1x1
+ koff ,1

d1(1− x1)

)
= ∂x1

(
−kon,2(x)

d2x2
+ koff ,2

d2(1− x2)

)
.

As a consequence, owing to the Poincaré lemma, there exists a function V ∈ C1(�, R)

such that the condition (26) is satisfied: one has

∀i = 1, 2 : ∂xi V (x) = −kon,i (x)

di xi
+ koff ,i

di (1− xi )
.

123



Reduction of a stochastic model of gene expression... Page 43 of 63 59

E Description of the toggle-switch network

This table describes the parameters of the symmetric two-dimensional toggle-switch
used all along the article. These values correspond to the parameters used for the
simulations. The rescaling in time by the parameter scale d̄ , for the model presented
in Sect. 2, corresponds to divide every k0,i , k1,i , di by d̄ = 0.2. The mean values k̄i
and di are then, as expected, of order 1 for every gene i .

(i, j) k0,i k1,i di σi mi,i mi, j θi,i θi, j koff ,i

(1,2) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε
(2,1) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε

F Details on the approximation of the transition rate as a function of
probability (7)

In this section, we adapt the method developed in Cérou et al. (2011) to justify the
formula (8) provided in Sect. 4.1, which approximate for every pair of basins (Zi , Z j )
the transition rate ai j as a function of the probability (7).

F.1 General setting

Let us consider r , R such that 0 < r < R, we recall that γZi and 
Zi denote
respectively the r -neighborhood and the R-neighborhood of the attractor Xeq,Zi .
Let us consider a random path Xε

t of the PDMP system, with initial condition
Xε
0 = x0 ∈ ∂
Zi . We define the series of stopping times (με

l )l∈N, (σ ε
l )l∈N∗ such

that με
0 = 0 and for all l ∈ N

∗ :
• σε

l = inf{t ≥ με
l−1 | Xε

t ∈ {γZi ∪ {
⋃
k =i

Zk}},
• με

l = inf{t ≥ σε
l | Xε

t ∈ Zi \ 
Zi }.
We then define Y ε

l = Xε
σl
. If Y ε

l ∈ Z j , we set ∀k > l : σε
k = με

k = ∞ and the chain
Y ε
l stops.
From the formula (6) characterizing the transition rates, we can write:

aε
i j 	

Px0(Ẑ
ε
1 = Z j )

Ex0(τ
ε
1 )

=
Px0

(
T ε
Z j

< T ε

{Z\{Zi∪Z j }}
)

E(σwε
i
)

, (40)

where we define the random variable: wε
i = inf{l | Y ε

l ∈
⋃
k =i

Zk}.
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Fig. 14 Illustration of the
stopping times σl and μl
describing respectively the lth

entrance of a random path Xt in
a r -neighborhood γ of an
attractor Xeq , and its lth exit
from a R-neighborhood 


Let us denote T
ε

Zi ,Zi = E(σ ε
l+1 − σε

l | Y ε
l ∈ γZi , Y

ε
l+1 ∈ γZi ). We can make the

following approximation:

E(σwε
i
) 	 E(wε

i )× T
ε

Zi ,Zi .

Indeed, the quantity on the left hand side is close to the mean number of attempts
for reaching, from ∂
Zi , a basin Zk , k = i , before γZi , which is equal to E(wε

i ),
multiplied by the mean time of each attempt (knowing that at each step l, Y ε

l ∈ γZi ),
which is exactly T

ε

Zi ,Zi . We should add the mean time for reaching ∂Z j from ∂
Zi
at the last step, but it is negligible when the number of attempts is large, which is the
case in the small noise limit.

F.2 Method when@0Zi is reduced to a single point

We consider the case when ∂
Zi is reduced to a single point. It can happen for example
when we consider only one gene (� = (0, 1)) and when the attractor Xeq,Zi is located
at a distance smaller than r from one of the boundaries of the gene expression space
(Xeq,Zi < r or Xeq,Zi > 1− r ). In such situation, a random path crosses necessarily
the same point x0 to both exit 
Zi and come back to γZi (if it does not reach a
basin Z j before): the Markov property of the PDMP process then justifies that the
quantities E

(
σε
l − με

l−1 | Y ε
l−1 /∈ Z j

)
and E

(
με
l − σε

l | Y ε
l /∈ Z j

)
do not depend of l.

Then 1Y ε
l ∈Z j behaves like a discrete homogeneous Markov chain with two states, 1

being absorbing.
Let us define a second random variable W ε

i j = inf{l | Y ε
l ∈ Z j }. The homogeneity

of the Markov chain 1Y ε
l ∈Z j ensures that W

ε
i j follows a geometric distribution. Its

expected value is then the reverse of the parameter of the geometric law, i.e:E(W ε
i j ) =

(pε
i j (x0))

−1.
Moreover, it is straightforward to see that from the same reasoning applied to any

Zk , k = i :

E(wε
i ) =

1∑
k =i

pε
ik(x0)

= 1

pε
i j (x0)

pε
i j (x0)∑

k =i
pε
ik(x0)

= E(W ε
i j )× Px0

(
T ε
Z j

< T ε

{Z\{Zi∪Z j }}
)
.

Thus, from (40) we can approximate the transition rate by the formula (8).
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F.3 Method in the general case

The difficulty for generalizing the approach described above,when ∂
Zi is not reduced
to a single point, is to keep the Markov property, which has been used to cut the
trajectories into pieces. Heuristically, the same argument which led us to approximate
the PDMP system by a Markov jump process can be used to justify the asymptotic
independence on l of the quantity E(με

l − σε
l | Y ε

l /∈ Z j ): for ε � 1, any trajectory
starting on ∂γZi will rapidly loose the memory of its starting point after a mixing time
within γZi . But it is more complicated to conclude on the independence from l of the
quantity E(σ ε

l −με
l−1 | Y ε

l−1 /∈ Z j ), which may depend on the position of Xε
μl−1 when

the gene expression space is multidimensional.
We introduce two hypersurfaces γmin,Zi = {x ∈ Zi , pε

i j (x) = c1} and 
min,Zi =
{x ∈ Zi , pε

i j (x) = c2}, where c1 < c2 are two small constants. We substitute to
the squared euclidean distance, used for characterizing the neighborhood γZi and

Zi , a new function based on the probability of reaching the (unknown) boundary:
∀x, y ∈ Zi , || x − y ||2←| pε

i j (x) − pε
i j (y) |. The function pε

i j is generally called
committor, and the hypersurfaces γmin,Zi and 
min,Zi isocommittor surfaces. The
committor function is not known in general; if it was, employing a Monte-Carlo
method would not be necessary for obtaining the probabilities (7). However, it can be
approximated from the potential of the PDMP systemwithin each basin, defined in the
equilibrium case by the well-knownBoltzman law: V = − ln(û), û being themarginal
on proteins of the stationary distribution of the process. Indeed, for reasons that are
precisely the subject of Sect. 4.2 (studied within the context of Large deviations), the
probability pε

i j (x) is generally linked in the weak noise limit to the function V by the
relation:

∀x ∈ Zi : pε
i j (x) ∼

ε→0
Ci j e

V (x)/ε,

where Ci j is a constant specific to each pair of basins (Zi , Z j ). We remark that when
ε is small, a cell within a basin Z j ∈ Z is supposed to be most of the time close
to its attractor: a rough approximation could lead to identify the activation rate of a
promoter ei in each basin by the dominant rate within the basin, corresponding to the
value of kon,i on the attractor. For any gene i = 1, . . . , n and any basin Z j ∈ Z , we
can then approximate:

∀x ∈ Z j : kon,i (x) ≈ kon,i (Xeq,Z j ).

Under this assumption, the stationary distribution of the process is close to the sta-
tionary distribution of a simple two states model with constant activation function,
which is a product of Beta distributions (Herbach et al. 2017). We then obtain an
approximation of the marginal on proteins of the stationary distribution within each
basin Z j :

pZ j ≈
n∏

i=1
Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
,
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By construction, this approximation is going to be better in a small neighborhood of
the attractor Xeq,Z j . Thus, this expression provides an approximation of the potential
V around each attractor Xeq,Z j :

V ≈ − ln
(
pZ j

)
. (41)

In every basin Zi , and for all x ∈ Zi close to the attractor, the hypersurfaces where pε
i j

is constant will be then well approximated by the hypersurfaces where the explicitly
known function ξZi = − ln (pZi ) is constant.

For each attractor Xeq,Zi , we can then approximate the two isocommittor surfaces
described previously:

{
γmin,Zi 	 {x ∈ Zi | ξZi (x) = c′1}

min,Zi 	 {x ∈ Zi | ξZi (x) = c′2},

(42)

where c′1 and c′2 are two constants such that ξZi (Xeq,Zi ) < c′1 < c′2.
We then replace γZi and 
Zi by, respectively, γmin,Zi and 
min,Zi in the definitions

of the stopping times με
l and σε

l provided in Sect. F.1. From the proposition 1. of
Cérou et al. (2011), we obtain that, as in the simple case described in Sect. F.2,
E(σ ε

l − με
l | Y ε

l /∈ Z j ) is independent of l. Defining W ε
i j = inf{l | Y ε

l ∈ Z j },
the definition of 
min,Zi allows to ensure that W ε

i j does not depend on the point x0
of 
min,Zi which is crossed at each step l ′ < W ε

i j . This random variable follows

then a geometric distribution, with expected value (pε
i j (x0))

−1, and we can derive an
expression of the form (8).

G AMS algorithm

We use an Adaptive Multilevel Splitting algorithm (AMS) described in Bréhier et al.
(2016). The algorithm provides for every Borel sets (A, B) an unbiased estimator of
the probability:

P
ε
x (τ

ε
A < τε

B).

It is supposed that the random process attains easily A from x , more often than B,
called the target set.

The crucial ingredient we need to introduce is a score function ξ(·) to quantify the
adaptive levels describing how close we are from the target set B from any point x .
The variance of the algorithm strongly depends on the choice of this function.

The optimal score function is the function x �→ P
ε
x (τ

ε
A < τε

B) itself, called the
committor which is unknown. It is proved, at least for multilevel splitting algorithms
applied to stochastic differential equations in Dean and Dupuis (2009), Budhiraja and
Dupuis (2019), that if a certain scalar multiplied by the score function is solution of the
associated stationary Hamilton–Jacobi equation, where the Hamiltonian comes from

123



Reduction of a stochastic model of gene expression... Page 47 of 63 59

the Large deviations setting, the number of iterations by the algorithm to estimate the
probability in a fixed interval confidence grows sub-exponentially in ε.

For the problem studied in this article, for every basin Z j ∈ Z , we want to esti-
mates probabilities substituting A to γ j and B to another basin Zk , k = j . Using
the approximation of V given by the expression (34), we obtain the following score
function, up to a specific constant specific to each basin:

ξ(x) = − ln

(
sup
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

))
.

We remark that this last approximation allows to retrieve the definition of the local
potential (41) defined on Appendix F.3, when the boundary of the basins are approx-
imated by the leading term in the Beta mixture. The approximation is justified by the
fact that for small ε, the Beta distributions are very concentrated around their centers,
meaning that for every basin Zk ∈ Z , k = j :

∀x ∈ Z j ,
∏
i

Beta

(
kon,i (Xeq,Zk )

εdi
,
koff ,i
εdi

)
(x)�

∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
(x).

We supposed that ∀Z j ∈ Z , μz(Z j ) > 0, where μz denotes the distributions on
the basins. This is a consequence of the more general assumption that the stationary
distribution of the PDMP system is positive on thewhole gene expression space, which
is necessary for rigorously deriving an analogy of the Gibbs distribution for the PDMP
system (see Sect. 4.2.2).

We modify the score function to be adapted for the study of the transitions from
each basin Z j to Zk , k = j :

ξk(x) = − ln

(
sup
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

))

+ ln

(∏
i

Beta

(
kon,i (Xeq,Zk )

εdi
,
koff ,i
εdi

)
(x)

)
.

This function is specific to each transition to a basin Zk but defined in the whole gene
expression space. We verify: ξk(x) ≤ 0 if x ∈ � \ Zk and ξk(x) = 0 if x ∈ Zk . We
use ξk as the score function for the AMS algorithm.

In order to estimate probabilities of the type P
ε
x (τ

ε
Zk

< τε
γ j

) for x ∈ Z j , we need
to approximate the boundaries of the basins of attraction, which are unknown. For
this sake, we use again the approximate potential function ξ ≈ V to approximate the
basins only from the knowledge of their attractor:

∀Zk ∈ Z : Zk 	 {x ∈ � | argmax
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

)
= Zk}.
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We use the Adaptative Multilevel Splitting algorithm described in Section 4 of
Bréhier et al. (2016), with two slight modifications in order to take into account the
differences due to the underlying model and objectives:
• First, a random path associated to the PDMP system does not depend only on the

protein state but is characterized at each time t by the 2n-dimensional vector: (Xt , Et ).
For any simulated random path, we then need to associate an initial promoter state.
However, we know that in the weak noise limit, for a protein state close to the attractor
of a basin, the promoter states are rapidly going to be sampled by the quasistationary
distribution: heuristically, this initial promoter state will not affect the algorithm. We
decide to initially choose it randomly under the quasistationary distribution. For every
x0 ∈ 
min, j beginning a random path in a basin Z j , we choose for the promoter state
of any gene i , ei0 , following a Bernoulli distribution:

ei0 ∼ B

(
1,

kon,i (x0)

koff ,i + kon,i (x0)

)
.

• Compared with (Bréhier et al. 2016), an advanced algorithm is used to improve
the sampling of the entrance time in a set γmin, j . In practice timestepping is required
to approximate the protein dynamics, and it may happen that the exact solution enters
γmin, j between two time steps, whereas the discrete-time approximation remains out-
side γmin, j .We propose a variant of the algorithm studied inGobet (2000) for diffusion
processes, where a Brownian Bridge approximation gives a more accurate way to test
entrance in the set γmin, j .

In the case of the PDMP system, we replace the Brownian Bridge approximation,
by the solution of the ODE describing the protein dynamics: considering that the
promoter state e remains constant between two timepoints, the protein concentration
of every gene i , xi (t) is a solution of the ODE: ˙xi (t) = di (ei − xi (t)), which implies:

∀t ∈ [0,�t] : xi (t) = ei + (xi (0)− ei )e
−tdi .

We show that for one gene, the problem can be easily solved. Indeed, let us denote
Xieq,Z j

the i th component of the vector Xeq,Z j . The function: fi (t) = (xi (t)−Xeq,Z j i
)2

is differentiable and its derivative

f ′i (t) = −2di (xi (0)− ei )e
−tdi ((ei − Xieq,Z j

)+ (xi (0)− ei )e
−tdi ),

vanishes if and only if (xi (0)− ei )e−tdi = (Xieq,Z j
− ei ), i.e when

t = 1

di
ln

(
Xieq,Z j

− ei

xi (0)− ei

)
= ci .

Then, if ci ≤ 0 or ci ≥ �t , the minimum of the squared euclidean distance of the i-th
coordinate of the path to the attractor is reached at one of the points xi (0) or xi (�t). If
0 ≤ ci ≤ �t , the extremum is reached at xi (ci ). This value, if it is a minimum, allows
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us to determine if the process has reached any neighborhood of an attractor Xeq,Z j

between two timepoints.

For more than one gene, the minimum of the sum: || x − Xeq,Z j ||2=
n∑

i=1
(xi (t)−

Xieq,Z j
)2 is more complicated to find. If for all i = 1, . . . , n, di = d, which is the

case of the two-dimensional toggle-switch studied in Sect. 6, the extremum can be
explicitly computed:

t = 1

d
ln

⎛
⎜⎜⎝

n∑
i=1

(Xieq,Z j
− ei )(xi (0)− ei )

n∑
i=1

(xi (0)− ei )2

⎞
⎟⎟⎠ = c.

But we recall that for more than one gene, the set of interest is the isocommittor surface
γmin, j and not a neighborhood γ j . An approximation consists in identifying γmin, j

to the r -neighborhood of Xeq,Z j , where r is the mean value of || x − Xeq,Z j ||2 for
x ∈ γmin, j .

If the parameters di are not all similar, we have to make the hypothesis that the
minimum is close to the minimum for each gene. In this case, we just verify that
for any gene i , the value of the minimum xi (ci ) for every gene is not in the set
{xi | x ∈ γZ j }: if it is the case for one gene, we consider that the process has reached
the neighborhood γZ j of the basins Z j between the two timepoints.

H Proofs of Theorems 4 and 5

First, we recall the theorem of characteristics applied to Hamilton–Jacobi equation
(Evans 2010), which states that for every solution V ∈ C1(�, R) of (25), the system
(16) associated to V

{
p(t) = ∇x V (φ(t))

φ̇(t) = ∇pH(φ(t), p(t)),

is equivalent to the following system of ODEs on (x, p) ∈ �× R
n , for x(0) = φ(0)

and p(0) = ∇x V (x(0)):

{
ṗ(t) = −∇x H (x(t), p(t))

ẋ(t) = ∇pH (x(t), p(t)) .

A direct consequence of this equivalence with an ODE system is that two optimal
trajectories associated to two solutions of the stationary Hamilton–Jacobi equation
cannot cross each other with the same velocity. We then have the following lemma:

Lemma 2 Let V1 and V2 be two solutions of (25) in C1(�, R).
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For any trajectories φ1
t , φ

2
t ∈ C1,pw

0T (�) solutions of the system (16) associated
respectively to V1 and V2, if there exists t ∈ [0, T ] such that φ1(t) = φ2(t) and
φ̇1(t) = φ̇2(t), then one has φ1(t) = φ2(t) for all t ∈ [0, T ].

This corollary is important for the two first items of the proof of Theorem 4:

Corollary 1 For any solution V ∈ C1(�, R) of (25) and any trajectoryφt ∈ C1,pw
0T (�)

satisfying the system (16) associated to V , we have the equivalence:

∃ t ∈ [0, T ], ∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
⇐⇒∀t ∈ [0, T ] : ∇x V (φ(t)) = 0.

Proof We recall that the relaxation trajectories correspond to trajectories satisfying
the system (16) associated to a constant function V , i.e such that ∇x V = 0 on the
whole trajectory. At any time t , the correspondence between any velocity field v of
�v and a unique vector field p, proved in Theorem 3 with the relation (24), allows to
ensure that:

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
⇐⇒ p(t)

= ∇x V (φ(t)) = 0.

The Lemma 2 ensures that any trajectory which verifies the same velocity field than a
relaxation trajectory at a given time t is a relaxation trajectory: we can then conclude.

��
Finally, the following lemma is important for thefirst itemof the proof ofTheorem4:

Lemma 3 ∀i ∈ {1, . . . , n}, ∀x ∈ � we have:

• ∂

∂ pi
H(x, p′) = 0 ⇐⇒ Hi (x, p

′
i ) = min

pi∈R
Hi (x, pi ),

• min
pi∈R

Hi (x, pi ) ≤ 0,

• min
pi∈R

Hi (x, pi ) = 0 ⇐⇒ xi = kon,i (x)

kon,i (x)+ koff ,i
.

Proof We have seen in the proof of Theorem 2 that for all i = 1, . . . , n and for all
x ∈ �, Hi (x, ·) is strictly convex, and that Hi (x, pi )→∞ as pi →±∞. Moreover,

Hi (x, pi ) vanishes on two points pi1 = 0 and pi2 = − kon,i (x)
di xi

+ koff ,i (x)
di (1−xi ) inside R.

Then, the min on pi is reached on the unique critical point p′i ∈ [pi1, pi2 ], and we
have: H(x, p′i ) = min

pi∈R
Hi (x, pi ) ≤ 0.

Finally:

min
pi∈R

Hi (x, pi ) = 0 ⇐⇒ p′i = pi1 = pi2 = 0
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⇐⇒ xi = kon,i (x)

kon,i (x)+ koff ,i
.

��
We now prove the theorem 4.

Proof of Theorem 4.(i) Weconsider a trajectoryφt satisfying the system (16) associated
to V . We recall that the Fenchel-Legendre expression of the Lagrangian allows to
state that the vector field p associated to the velocity field φ̇(t) by the relation (24)
is precisely p = ∇x V (φ(t)). When V is such that H(·,∇x V (·)) = 0 on �, we have
then for any time t :

L(φ(t), φ̇(t)) =
n∑

i=1
∂xi V (φ(t))φ̇i (t). (43)

We recall that from Theorem 3 :

L(φ(t), φ̇(t)) = 0 ⇐⇒
(
∀i = 1, . . . , n : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

))
.

From this and (43), we deduce that for such an optimal trajectory:

φ̇(t) = 0 "⇒
(
∀i = 1, . . . , n : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

))
.

The velocity field then vanishes only at the equilibrium points of the deterministic
system.

Conversely, we recall that for such trajectory we have for any t :

{
φ̇(t) = ∂H

∂ p (φ(t),∇x V (φ(t))),

H(φ(t),∇x V (φ(t)) = 0.

Assume that for all i = 1, . . . , n, φi (t) = kon,i (φ(t))
kon,i (φ(t))+koff ,i . Then, by Lemma 3, we

have: min
pi∈R

Hi (φ(t), pi ) = 0 for all i .

Thereby, H(φ(t),∇x V (φ(t))) = 0 if and only if for all i Hi (φ(t), ∂xi V (φ(t)) =
min
pi∈R

Hi (φ(t), pi ) = 0,which implies: ∂H
∂ p (φ(t),∇x V (φ(t))) = φ̇(t) = 0.The lemma

is proved. ��
Proof of Theorem 4.(ii) From the Corollary 1, if ∇x V (φ(t)) = 0, the trajectory is a
relaxation trajectory, alongwhich the gradient is uniformly equal to zero. The condition
(C) implies that it is reduced to a single point: φ̇(t) = 0. Conversely, with the same
reasoning that for the proof of (i):

φ̇(t) = 0 "⇒ L(φ(t), φ̇(t)) = 0 "⇒ ∀i : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
.
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We recognize the equation of a relaxation trajectory, which implies: ∇x V (φ(t)) = 0.
Thus, for any optimal trajectory satisfying the system (16) associated to a solution V
of the Eq. (25) satisfying the condition (C), we have for any time t :

φ̇(t) = 0 ⇐⇒ ∇x V (φ(t)) = 0.

From the equivalence proved in (i), the condition (C) then implies that the gradient of
V vanishes only on the stationary points of the system (4). ��
Proof of Theorem 4.(iii) As a consequence of (ii), for any optimal trajectory φt associ-
ated to a solution V of (25) which satisfies the condition (C), we have for all t > 0:

φ̇(t) = 0 ⇐⇒ ∇x V (φ(t)) = 0.

Then, if there exists t > 0 such that φ̇(t) = 0, it cannot be equal to the drift of a
relaxation trajectory, defined by the deterministic system (4), which is known to be
the unique velocity field for which the Lagrangian vanishes (from Theorem (3)). Then
it implies:

φ̇(t) = 0 "⇒ L(φ(t), φ̇(t)) = 0.

The relation (43), combined to the fact that the Lagrangian is always nonnegative
allow to conclude:

φ̇(t) = 0 "⇒
n∑

i=1
∂xi V (φ(t))φ̇i (t) = ∂V

∂t
(φ(t)) > 0.

Thus, the function V strictly increases on these trajectories.
Furthermore, on any relaxation trajectory φr (t), from the inequality (15) we have

for any times T 1 < T 2 :

0 =
∫ T2

T1
L(φ f (t), φ̇r (t))dt ≥ V (φr (T2))− V (φr (T1)).

The equality holds between T 1 and T 2 if and only if for any t ∈ [T 1, T 2]:
L(φ(t), φ̇(t)) = 0. In that case, from Theorem 3the drift of the trajectory is nec-
essarily the drift of a relaxation trajectory between the two timepoints and then, from
Corollary 1, ∇x V = 0 on the set of points {φ(t), tR+}, which is excluded by the
condition (C) (when this set is not reduced to a single point). Thus, if φ(T1) = φ(T2),
we have: V (φ(T1)) > V (φ(T2)).

By definition, for any basin Zi and for all x ∈ Zi there exists a relaxation trajectory
connecting x to the associated attractor Xeq,Zi . So ∀x ∈ Zi , V (x) > V (Xeq,Zi ). ��
Proof of Theorem 4.(iv) Let V be a solution of (25) satisfying the condition (C).
We consider trajectories solutions of the system defined by the drift φ̇(t) =
−∇pH(φ(t),∇x V (φ(t))). We recall that from (iii), the condition (C) ensures that
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V decreases on these trajectories, and that for all t1 < t2: V (φ(t1)) − V (φ(t2)) =
Q(φ(t2), φ(t1)) > 0. Then, the hypothesis lim

x→∂�
V (x) = ∞ ensures that such trajec-

tories cannot reach the boundary ∂�: if it was the case, we would have a singularity
inside�, which is excluded by the condition V ∈ C1(�, R). The same reasoning also
ensures that there is no limit cycle or more complicated orbits for this system.

Recalling that from (i) and (ii), the fixed point of this system are reduced to the
points where ∇x V = 0 on �, we conclude that for all x ∈ �, there exists a fixed
point a ∈ �, satisfying ∇x V (a) = 0, such that a trajectory solution of this system
converges to a, i.e: V (x)− V (a) = Q(a, x).

As from the inequality (15), we have for every point a the relation V (x)− V (a) ≤
Q(a, x), the previous equality corresponds to a minimum and we obtain the formula:

∀x ∈ �, V (x) = min{a∈�|∇x V (a)=0} V (a)+ Q(a, x).

��
Proof of Theorem 4.(v) Let V be a solution of (25) satisfying the condition (C). We
denote by νV the drift of the optimal trajectories φt on [0, T ] satisfying the system
(16) associated to V : ∀t ∈ [0, T ], φ̇(t) = ∇pH(φ(t),∇x V (φ(t))) = νV (φ(t)). We
call trajectories solution of this system reverse fluctuations trajectories.

For any basin Zi associated to the stable equilibrium of the deterministic system
Xeq,Zi , we have:

• From (i), νV (Xeq,Zi ) = 0 and ∀x ∈ Zi \ Xeq,Zi : νV (x) = 0.
• From (iii), we know that V increases on these trajectories: ∀x ∈ Zi \ Xeq,Zi :
〈∇x V (x), νV (x)〉 > 0.

• From (iii), we also have: V (Xeq,Zi ) = min
x∈Zi

V (x).

Without loss of generality (since we only use ∇x V ), we can assume V (Xeq,Zi ) = 0.
We have then: ∀x ∈ Zi \ {Xeq,Zi } , V (x) > 0. Moreover, since we have assumed
that Xeq,Zi is isolated, there exists δV > 0 such that Zi contains a ball B(Xeq,Zi , δV ).
Therefore, V reaches a local minimum at Xeq,Zi . Conversely if V reaches a local
minimum at a point x̄ , then x̄ is necessarily an equilibrium (from (ii)), and the fact
that V strictly decreases on the relaxation trajectories ensures that it is a Lyapunov
function for the deterministic system, and then that x̄ is a stable equilibrium. The
stable equilibria of the deterministic system are thereby exactly the local minima of
V , and for any attractor Xeq,Zi , V is also a Lyapunov function for the system defined
by the drift−νV , for which Xeq,Zi is then a locally asymptotically stable equilibrium.
Thereby, stable equilibria of the deterministic system are also stable equilibria of the
system defined by the drift −νV .

It remains to prove that no unstable equilibria the deterministic system is stable
for the system defined by the drift −νV . Let x̄ be an unstable equilibrium of the
relaxation system, then V does not reach a local minimum at x̄ . Therefore, as close as
we want of x̄ there exists x such that V (x) < V (x̄). We recall that reverse fluctuations
trajectories φt starting from such a point and remaining in�will have V (φ(t)) striclty
decreasing: by Lyapunov La Salle principle, they shall be attracted towards the set
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{y,∇〈V (y), νV (y)〉 = 0}, which contains from (iii) only the critical points of V ,
which are from (i) the equilibria of both deterministic and reverse fluctuation systems.
In particular, either φt leaves � (and the equilibrium is unstable) or φt converges to
another equilibrium (since they are isolated) and this contradicts the stability. So we
have proved that stable equilibria of both systems are the same.

We then obtain that for any Zi , there exists δV such that:

∀x ∈ B(Xeq,Zi , δV ), ∃φt ∈ C1(�) : {φ(0) = x, ∀t ∈ [0, T ] : φ̇(t)

= −νV (φ(t)), , φ(T ) →
T→∞ Xeq,Zi }.

Reverting time, any point of B(Xeq,Zi , δV ) can then be reached from any small neigh-
borhood of Xeq,Zi . We deduce from Lemma 1 that:

∀x ∈ B(Xeq,Zi , δV ) : Q(Xeq,Zi , x) = V (x)− V (Xeq,Zi ).

Applying exactly the same reasoning to another function Ṽ solution of (25) and
satisfying (C), this ensures that V (x)− Ṽ (x) = V (Xeq,Zi )− Ṽ (Xeq,Zi ), at least for
x ∈ B(Xeq,Zi ,min(δV , δṼ )).

We recall that that from Lemma 2, two optimal trajectories φt , φ̃t solutions of the
system (16), associated respectively to two solutions V and Ṽ of the Eq. (25), cannot
cross each otherwithout satisfying∇x V = ∇x Ṽ along thewhole trajectories. Thereby,
we can extend the equality ∇x V = ∇x Ṽ on the basins of attraction associated to the
stable equilibrium Xeq,Zi for both systems defined by the drifts−νV or−νṼ . Thus, we
have proved that the basins associated to the attractors are the same for both systems.
We denote (Z f

i )Zi∈Z these common basins.
Under the assumption 2. of the theorem, we obtain by continuity of V that for every

pair of basin (Z f
i , Z f

j ), V (Xeq,Zi )− Ṽ (Xeq,Zi ) = V (Xeq,Z j )− Ṽ (Xeq,Z j ). It follows
that under this assumption, there exists a constant c ∈ R such that for every attractor
Xeq,Zi :

V (Xeq,Zi ) = Ṽ (Xeq,Zi )+ c. (44)

Moreover, the assumption 1. ensures that fromTheorem4.(iv), there exists a fixed point
a1 ∈ � (with∇x V (a1) = 0), such that a trajectory solution of the systemdefined by the
drift−νV converges to a1, i.e: V (x)−V (a1) = Q(a1, x). On one side, if a1 is unstable,
it necessarily exists on any neighborhood of a1 a point x2 such that V (x2) < V (a1). As
for all y ∈ �, Q(·, y) is positive definite,we have then another fixed pointa2 = a1 such
that V (x2) = Q(a2, x2)+ V (a2). We obtain: V (x) > h(x, a1)+ Q(a2, x2)+ V (a2).
On the other side, by continuity of the function Q(a2, ·), for every δ1 > 0, x2 can be
chosen close enough to a1 such that: Q(a2, x2) ≥ Q(a2, a1)− δ1. We obtain:

∀δ1 > 0, ∃x2, ∃a2 = a1 : V (x) > Q(a1, x)+ Q(a2, a1)+ V (a2)− δ1.

Repeating this procedure until reaching a stable equilibrium at a step N , which is
necessarily finite because we have by assumption a finite number of fixed points, we
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obtain the inequality

∀x ∈ �, ∀δ > 0, ∃(ak)n=1,...,N : V (x) > Q(a1, x)+ V (aN )+
N−1∑
k=1

Q(ak+1, ak)− δ,

where every ak denotes a fixed point and aN is an attractor. Using the triangular
inequality satisfied by Q, and passing to the limit δ→ 0, we find that V (x)−V (aN ) ≥
Q(aN , x). Moreover, from the inequality (15), we have necessarily Ṽ (x)− Ṽ (aN ) ≤
Q(aN , x). It then follows from (44) that Ṽ (x)+ c ≤ V (x).

Applying exactly the same reasoning for building a serie of fixed point (ãk)n=1,...,Ñ
such that ãÑ is an attractor and Ṽ (x) − Ṽ (ãÑ ) ≥ Q(ãÑ , x), we obtain Ṽ (x) ≥
V (x)− c. We can conclude:

∀x ∈ � : V (x) = Ṽ (x)+ c.

��
Proof of Theorem 5 First, we prove the following lemma:

Lemma 4 ∀i ∈ {1, . . . , n}, we have:
(i) ∃δl > 0, ∃ηl > 0, such that ∀x, y ∈ �, if yi < xi ≤ δl , then we have:

Q(x, y) ≥ ηl ln
xi
yi

.

(ii) ∃δr < 1, ∃ηr > 0, such that ∀x, y ∈ �, if yi > xi ≥ δr , then we have:

Q(x, y) ≥ ηr ln
1− xi
1− yi

.

Proof (i) We denote mi = min
x∈� kon,i (x). We have mi > 0 by assumption. We choose

a real number δ which satisfies these two conditions:

1. 0 < δl <
mi

di (mi+koff ,i ) ,

2.
√
koff ,iδl −√mi (1− δl) ≤ −

√
mi
2 .

On the one hand, we recall that the function vi → Li (x, vi ) =
(√

koff ,i
vi+di xi

di
−√

kon,i (x)
di (1−xi )−vi

di

)
is convex and vanishes only on vi = di

(
kon,i (x)

kon,i (x)+koff ,i − xi
)
.

Then, Li (x, ·) is decreasing on [−di xi , di
(

kon,i (x)
kon,i (x)+koff ,i − xi

)
].

On the other hand, for all x ∈ �, if xi ≤ δl , we have necessarily:

di
(

kon,i (x)
kon,i (x)+koff ,i − xi

)
≥ di (mi − δl) > 0 from the condition 1. Then, we obtain

that for all x ∈ �, if xi ≤ δl :

∀vi ∈ [−di xi , 0] : Li (x, vi ) ≥ Li (x, 0).
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From the condition 2., we also see that for all x ∈ �, if xi ≤ δl :

√
koff ,i xi −

√
kon,i (x)(1− xi ) ≤

√
koff ,iδl −

√
mi (1− δl) ≤ −

√
mi

2
,

which implies:

Li (x, 0) =
(√

koff ,i xi −
√
kon,i (x)(1− xi )

)2 ≥ mi

2
.

Then,weobtain that for any admissible trajectoryφt ∈ C1,pw
0T (�) (i.ewith a velocity

in �v(φ(t)) at all time) and such that φ(0) = x and φ(T ) = y, if yi < xi ≤ δl we
have:

JT (φ) =
T∫

0

L(φ(t), φ̇(t))dt ≥
T∫

0

Li (φ(t), φ̇i (t))dt ≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }Li (φ(t), φ̇i (t))dt,

≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }Li (φ(t), 0)dt ≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }
mi

2
dt,

≥ mi

2

l∑
k=1

(tr ,k − tl,k), (45)

where we denote {[tl,k, tr ,k]}k=1,...,l the l intervals on which the velocity φ̇i (t) < 0
and φi (t) < δl on the interval [0, T ]. As we now by assumption that φi (0) = xi ≤ δl
and φi (T ) = yi < φi (0), this set of intervals cannot be empty.

Moreover, for every k = 1, . . . , l,wehavebyassumption:∀t ∈ [tl,k, tr ,k], −diφi (t) ≤
φ̇i (t) ≤ 0. Then:

φi (tr ,k) ≥ φi (tl,k)e
−di (td,k−tg,k ).

As by definition, for every k = 1, . . . , l − 1, φ̇i (t) ≥ 0 on [tr ,k, tl,k+1], we have
φi (tl,k+1) ≥ φi (tr ,k) (because φ̇i (t) ≥ 0 on [tr ,k, tl,k+1]). Finally, we obtain:

φ(T ) = yi ≥ e
−di

(
l∑

k=1
tr ,k−tl,k

)
φi (0) = xi ,

which implies:

l∑
k=1

(tr ,k − tl,k) ≥ 1

di
ln

xi
yi

.
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This last inequality combined with (45) allows to conclude:

JT (φ) ≥ mi

2di
ln

xi
yi

.

Thus, if δl satisfies conditions 1. and 2., and fixing ηl = mi
2di

> 0, for every x, y ∈ �

such that yi < xi ≤ δl we have:

Q(x, y) ≥ ηl ln
xi
yi

.

(ii) Denoting Mi = max
x∈� kon,i (x) (which exists by assumption), we chose this time

the real number δr in order to satisfy these two conditions:

1. 1 > δr >
Mi

di (Mi+koff ,i ) ,

2.
√
koff ,iδr −√Mi (1− δr ) ≥

√
koff ,i
2 ,

and we fix ηr = koff ,i
2di

. The rest consists in applying exactly the same reasoning than
for the proof of (i) in a neighborhood of 1 instead of 0. ��

We deduce immediately the following corollary:

Corollary 2 ∀x ∈ �, lim
y→∂�

Q(x, y) = ∞.

Let us denote V ∈ C1(�, R) a solution of the Eq. (25), which satisfies the condition
(C). From the proof of Theorem 4.(v), we know that for any attractor Xeq,Zi , there

exists a ball B(Xeq,Zi , δ) ⊂ Z f
i , where Z f

i is the basin of attraction of Xeq,Zi for the
system defined by the drift −νV (·) = − ∂

∂ p H(·, ∂x V (·)). Moreover, as V decreases

on trajectories solutions of this system, the set ZV
i = {x ∈ Zi | V (x) ≤ min

y∈∂Zi
V (y)}

is necessarily stable: we have ZV
i ⊂ Z f

i .
We deduce that:

∀x ∈ ZV
i , ∃φt ∈ C1(�) : {φ(0) = x, ∀t ∈ [0, T ] : φ̇(t) = −νV (φ(t)), φ(T ) →

T→∞ Xeq,Zi },

and in that case Q(Xeq,Zi , x) = V (x) − V (Xeq,Zi ). If there existed y ∈ ∂� ∩ Z
V
i ,

we would have, by continuity of V and from Corollary 2:

lim
x→y

(V (x)− V (Xeq,Zi ) = lim
x→y

Q(Xeq,Zi , x) = ∞.

It would imply that min
y∈∂Zi

V (y) = ∞, which is impossible when ∂Zi = ∂�, which is

necessarily the case when there is more than one attractor.
Thus, there exists at least one point xi on the boundary ∂Zi \ ∂�, such that for

any neighborhood of Xeq,Zi , there exists a fluctuation trajectory starting inside and
converging to xi .
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We recall that we assume that � ⊂ ⋃
Zi∈Z

Zi . Then we have ∂Zi \ ∂� = ⋃
k =i
{∂Zi ∩

∂Zk} and there exists Z j such that: xi ∈ ∂Zi ∩ ∂Z j = ∂Zi \ Ri j . We obtain, by
continuity of V :

QRi j (Xeq,Zi , ∂Zi ∩ ∂Z j ) = min
y∈∂Zi∩∂Z j

V (y)− V (Xeq,Zi ) = V (xi )− V (Xeq,Zi ).

It remains to prove that under the assumption (A) of the theorem, xi = xi jun . On one
hand, from Theorem 4.(iii), V decreases on the relaxation trajectories. On the other
hand, if every relaxation trajectories starting in ∂Zi ∩∂Z j stay inside, they necessarily
converge from any point of ∂Zi ∩ ∂Z j to a saddle point (also in ∂Zi ∩ ∂Z j ). Then,

the minimum of V in ∂Zi ∩ ∂Z j is reached on the minimum of V on Xi j
un (the set of

all the saddle points in ∂Zi ∩ ∂Z j ), which is x
i j
un . Thus, if every relaxation trajectories

starting in ∂Zi ∩ ∂Z j stay inside, then XZi ∈ ∂Z j implies XZi = xi jun . The theorem
is proved. ��

I Algorithm to find the saddle points

We develop a simple algorithm using the Lagrangian associated to the fluctuation tra-
jectories (28) to find the saddle points of the deterministic system (4). This Lagrangian
is a nonnegative function which vanishes only at the equilibria of this system. Then,
if there exists a saddle point connecting two attractors, this function will vanish at this
point. Starting on a small neighborhood of the first attractor, we follow the direction
of the second one until reaching a maximum on the line (see 15a). Then, we follow
different lines, in the direction of each other attractor for which the Lagrangian func-
tion decreases (at least, the direction of the second attractor (see 15b)), until reaching
a local minimum.We then apply a gradient descent to find a local minimum (see 15c).
If this minimum is equal to 0, this is a saddle point, if not we repeat the algorithm
from this local minimum until reaching a saddle point or an attractor. Repeating this
operation for any ordered couple of attractors (Xeq,Zi , (Xeq,Z j )Zi ,Z j∈Z ,i = j , we are
likely to find most of the saddle points of the system. This method is described in
pseudo-code in Algorithm 1.
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Fig. 15 Saddle-point algorithm between two attractors. The color map corresponds to the Lagrangian
function associated to the fluctuation trajectories

Algorithm 1 Find the list of saddle points: list-saddle-points
Require: • The list of attractors: list-attractors = (Xeq,Zi )Zi∈Z
• The Lagrangian function to minimize on the saddle points: Lag : Rn → R

+
• A gradient descent function, finding a local minimum of Lag from a point x : gradient-descent(x)
• A subdivision coefficient: α � 1
while Xeq,Zi ∈ list-attractors do

X = Xeq,Zi
while Xeq,Z j ∈ list-attractors\Xeq,Zi do

Lag0 = Lag(X)

X ← X + α(Xeq,Zi − Xeq,Z j )

while Lag(X) >= Lag0 do
Lag0← Lag(X)

X ← X + α(Xeq,Zi − Xeq,Z j )

end while
while Xeq,Z j ∈ list-attractors\Xeq,Zi do

while Lag(X) < Lag0 do
Lag0← Lag(x)
X ← X + α(Xeq,Zi − Xeq,Z j )

end while
X0 = gradient-descent(X)

if Lag(X0) = 0 then
list-saddle-points← X0

end if
end while

end while
end while

J Applicability of themethod for non-symmetric networks andmore
than two genes

We present in Figs. 16b and 17b an analogy of Fig. 8, which was presented for the
toggle-switch network, for two non-symmetric networks of respectively 3 and 4 genes.
The networks are presented on the left-hand side of Figs. 16b and 17b: the red arrows
represent the inhibitions and the green arrows represent the activations between genes.
A typical random trajectory for each network is presented in Figs. 16a and 17a.
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Fig. 16 a A random trajectory associated to the non-symmetric toggle-switch network of 3 genes with
ε = 1/8. The network is associated to 2 attractors only: Z−−− all the genes inactive, and Z+−− gene
1 active and gene 2 and gene 3 inactive due to the inhibitions. b Analogy of Fig. 8 between Z−−− and
Z+−−. We see that the analytical approximations of the transition rates are very accurate although we had
no theoretical evidence for the trajectories computed by the method presented in Sect. 5.3 to be optimal

We recall that we build the LDP approximation (in red) by using the cost of the
trajectories satisfying the system (28) between the attractors and the saddle points of
the system (4). The cost of these trajectories is known to be optimal when there exists a
solution V of the Eq. (25) which verifies the relations (26), which can generally happen
only under symmetry conditions. This is not the case nor for the 3 genes network of
Fig. 16b when there is no symmetry between the interactions, neither for the 4 genes
network of Fig. 17b. Then, we could expect that these LDP approximations would be
far from the Monte-Carlo and AMS computations, especially for the 4 genes network,
since we have no symmetry between the interactions, not only in value but also in sign.
However, we observe that the approximations given by our method seem to remain
relatively accurate.
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Fig. 17 a A random trajectory associated to the non-symmetric 4 genes network with ε = 1/8. The
network is associated to 3 attractors: Z−−−− all the genes inactive, Z+++− genes 1–2–3 active and gene
4 inactive, and Z++++ all the genes active. b: Analogy of Fig. 8 between Z++++ and Z+++−. The
analytical approximations seem to become accurate from ε 	 1/9
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