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Why does it work?

Conceptual vulnerability 

using non-requested information as 
ground truth is dangerous 

using non-authenticated information is 
dangerous
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Why does it work?
Birthday paradox 

probability that n elements uniformly picked 
from the finite set T is 

Relying solely on transaction ID is dangerous 

particularly when IDs are small (16 bits in DNS)
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DNS Distributed Denial 
of Service (DDoS)

Attacks against Dyn DNS infrastructure  

Two bursts: 2016-10-21 11:10 UTC - 
13:20 UTC; 15:50 UTC - 20:30 UTC 

Not usual DDoS 

many more addresses than usual, 
non spoofed (between 40k and 100k 
addresses) 
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Why does it work?
Attacks performed via a Mirai-based 
botnet 

IoT devices 

End-to-End principle 

maximizes the intelligence at the edge 

network avoids making decisions 

What if the edge is “bad”?
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YouTube Hijacking 

BBC Breaking news: A router problem made YouTube 
inaccessible for many 

RIPE NIS: “On Sunday, 24 February 2008, Pakistan 
Telecom (AS17557) started an unauthorised 
announcement of the prefix 208.65.153.0/24. One of 
Pakistan Telecom's upstream providers, PCCW Global 
(AS3491) forwarded this announcement to the rest of 
the Internet, which resulted in the hijacking of YouTube 
traffic on a global scale”
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.
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Any AS can claim to be the originator of a 
prefix (i.e., she hijacks the prefix) 

To protect against that, only the import 
filters can be used 

rely on databases that are not so 
accurate 

A not secure global routing system is a 
major threat against freedom
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Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www” 

ACK, ackn
owledgment number=1024

window size = 1500B

sequence number=1024, 
data=“rm -rf /”

ACK, acknowledgment number=7599
sequence number=7600, data=“” 

ACK, ackn
owledgment number=1096
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Why does it work?

If the attacker can 

guess the initial sequence number 

guess actions from the sender 

then easy to guess a sequence number 
that will be accepted by the receiver
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The basics of security
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Security threats
Intrusion 

an attacker gains remote access to some resources that are 
normally denied to her 

e.g., steal processing power, botnets 

Eavesdropping 

an attacker collects traffic of a target in order to gain access to 
restricted information 

e.g., steal passwords by sniffing wireless traffic 

Denial of Service (DoS) 

an attacker disrupts a specific targeted service 

e.g., block the youtube website
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The attackers
Hackers 

look for challenge, notoriety, and fun 

e.g., hackers, script kiddies, students :-D 

Spies 

look for political/business gains 

e.g., intelligence, police, industrial spies 

Criminals 

look for financial gains, religious/political visibility, or just 
to break something 

e.g., criminals, terrorists, vandals
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Definitions
Key 

input of cryptographic functions to determine its output 

Authentication 

proof that the message is coming from the one claiming to be at the origin of the message 

Integrity 

proof that the message has not been altered since its creation 

Non-repudiation of origin 

an entity that generated a message cannot deny have generated the message 

Encryption 

action of encoding of a message such that an eavesdropper can’t read the message but legitimate 
destination can 

Decryption 

action of decoding an encrypted message 

Signature 

a mathematically constructed proof of authenticity of a message
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Hall of fame
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Alice and Bob 

are legitimate users, Alice and Bob exchange messages 

Chuck 

is a malicious user that is not between Alice and Bob 

Eve 

is a malicious user that can eavesdrop 

Trudy 

is a malicious user that can perform (wo)man-in-the-middle 
attacks 

Trent 

is a legitimate user that plays the role of a trusted arbitrator



Why is good security 
level so hard to obtain?

The security level of a system equals the 
security level of the weakest part of the system 

e.g., encrypting your HDD to avoid 
information leak if the laptop is stollen is 
useless if  the password is written on a post-
it attached on the laptop 

Digital system are complexes 

interactions with many components, 
distribution, easily bugged...
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Security is a tradeoff
Compare cost and probability of an attack and cost of securing the system 
against this attack 

e.g., is that necessary to make data unbreakable for 20 years if they are 
outdated after 1 hour? 

Explain the security systems and their reasons 

if a user does not understand why he must follow a procedure, he will 
not follow it 

e.g., how many of you already give their password to someone else? 

Never “over-secure” a system 

if the system is too hard to use, people will find countermeasure 

e.g., too hard to use corporate mails? Then use gmail to send 
corporate mails...
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Security is a tradeoff 
(contd.)

Protection system 

lifetime = 10 years 

cost = 10,000 EUR 

Attack 

yearly probability = 10% 

cost of restoring the system = 1,000 EUR 

Do I invest?
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Procedures!
Protection will never be perfect 

Prepare procedures 

what to do BEFORE an attack? 

what to do to limit the risk (e.g., passwords) of attack 
and to be ready if an attack happens (e.g., backup) 

what to do DURING an attack? 

the attack is on going, how to stop it 

what to do AFTER an attack? 

the attack succeeded, how to recover from it
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Securing 
communications
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Objective
Construct a communication mechanism 
where Alice and Bob can exchange 
messages such that 

only Alice and Bob can generate 
messages 

nobody else than Alice or Bob can read  
messages 

nobody can alter messages
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Steps

fill me 

fill me 

fill me
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Hash function

 28

Validate that a message has not been altered on its way between Alice and Bob 

Hash functions map arbitrary large numbers of variable length to fixed-length numbers 

h = H(m), h is called hash or digest 

e.g., MD5, SHA-1, SHA-256 

Good hash functions for cryptography must be such that 

H(m) is not complex to compute 

but finding a m2 such that H(m2) = H(m) is complex, 

H(m) is deterministic, 

H output must be evenly distributed over the output set 

Example 

SHA-1 maps messages its input space on a 160-bits output 

SHA-1(Message to validate) = 5e06ee754bda0d33cf65ec305ffc779404e66029 

SHA-1(Message tO validate) = b1c306f8cb792fa14d4d1fdcf6f37d86c2fe6bb9



Is that enough?
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Hash function with salt
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Hash functions are deterministic 

Add a salt such that the output of the hash 
function is a function of the message and 
the salt 

h = H(m, K) where K is the salt or key of 
the hash function 

As long as Trudy does not know the salt, 
she can’t forge a valid digest
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fill me 

fill me 

fill me

How can Alice and Bob agree on K?



Diffie-Hellman key 
exchange

How can Alice and Bob agree on a 
secret number and be sure that Eve will 
not discover it? 

Principle 

do not exchange the secret number 
but other numbers that are use to 
build up the secret
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Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Working on finite group and positive integers
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B    gb mod m
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Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B

B    gb mod m

b

K    Ab mod mK    Ba mod m

K    Ab mod m    (ga mod m)b mod m    gba mod m    (gb mod m)a mod m    Ba mod m    K

Eve

⌘

⌘

⌘

⌘

⌘⌘⌘⌘⌘⌘



Why  can’t Eve guess K if she knows A, B, g, and m? 

discrete exponentiation is linear with the size of the 
argument 

easy to compute x    yz mod p 

but for some discrete groups, no efficient algorithm is known 
to compute discrete logarithm 

hard to determine natural z that ensures x    yz mod p 

Eve knows A, B, g, and m but can’t determine neither a nor b 
that are absolutely necessary to compute K 

K    Ab mod m    (ga mod m)b mod p    gba mod m 
       (gb mod m)a mod m    Ba mod m

Diffie-Hellman key 
exchange (contd.)

 35

⌘

⌘

⌘⌘⌘
⌘ ⌘



3-Diffie Hellman

 36

Everyone 

A = ga mod m 

B = gb mod m 

C = gc mod m 

On A 

AC = Ca mod m, AB = Ba mod m 

On B 

BC = Cb mod m 

On A 

K = BCa mod m 

On B 

K =  ACb mod m 

On C 

K = ABc mod m 

“Proof” 

K = ABc mod m = Ba c mod m = gb ac mod m = Babc mod m



Trudy can break Diffie-Hellman

Diffie-Hellman key 
exchange (contd.)
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Alice Bob
a, g, m

A    ga mod m
A, g, m

Bt B    gtb mod mt

b

K‘    Atb mod mt

K    Bta mod m

Trudy

At, gt, mt

K‘    Bat mod mt

B

Bt    gbt mod m
bt

K    Abt mod m

at, gt, mt

At    gat mod mt

⌘

⌘

⌘

⌘
⌘

⌘
⌘
⌘



Diffie-Hellman key 
exchange (contd.)

How can we protect Diffie-Hellman from 
Trudy? 

Principle 

Alice and Bob sign the messages 
exchanged in Diffie-Hellman (?!)
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Asymmetric 
cryptography

In asymmetric cryptography (aka public-key cryptography), two keys are 
used 

public key 

publicly available to anybody (even attackers) 

used to encrypt a message 

private key 

known only by the legitimate owner of the public key 

used to decrypt a message 

e.g., RSA, PGP, Diffie-Hellman 

Public-key cryptography is 10 to 100 times slower than symmetric-key 
cryptography 

seldom (never?) used to encrypt communications

 39



Eve cannot determine the message

Asymmetric 
cryptography (contd.)

 40

Alice Bob

m 
c = crypt(m, PublicB)

Eve
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

decrypt(c, ???) = ?



Trudy can send a forged message

Asymmetric 
cryptography (contd.)
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Alice Bob

m 
c = crypt(m, PublicB)

Trudy
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

c2

c3

m2 
c2 = crypt(m2, PublicB)

m3 
c3=crypt(m3, PublicB)

decrypt(c3, PrivateB)=m3



Eve can read the message

Asymmetric 
cryptography (contd.)

 42

Alice Bob

m 
s = sign(m, PrivateA)

Eve
PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)



How to build sign and 
check?

s = sign(H(m), k) = crypt(H(m), k) 

check(m, s, K) = (H(m)==decrypt(s, K)) 

where k is the private key of the signer and K 
is the public key 

Asymmetric cryptography is slow and m can be 
large 

encrypting m would be too costly 

solution: consider the digest of m while signing
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How to safely obtain Bob’s public key?

Public key 
infrastructure

 44
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How to safely obtain Bob’s public key?

Public key 
infrastructure

 44

Alice BobTrudy
PublicB, PrivateB

PublicB

What is your  public key?

PublicB



Trudy can send a forged key

Public key 
infrastructure (contd.)
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Alice BobTrudy
PublicB, PrivateB

PublicT

What is your  public key?

PublicT

PublicT, PrivateT



Alice and Bob trust a third party (e.g., Trent) for authentication

Public key 
infrastructure (contd.)

 46

Alice TrentBob
PublicT, PrivateT

PublicB

Are you Bob?

PubB 
S(Yes, PrivB), 
S(PubB, PrivT)

PublicT, 
PublicB,PrivateB, 

S(PubB, PrivT)

PublicT



Practically, Bob sends a certificate (e.g., X.509), not only its public 
key and signature 

A certificate provides many information to be able to correctly identify 
and authenticate its subject (e.g., Bob) 

the subject name and organization 

the subject public key (and type) 

the issuer name and organization 

the certificate validity time (valid not before and not after) 

the certificate signature and type, signature made by the issuer of 
the certificate 

...

Public key 
infrastructure (contd.)
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Public key 
infrastructure (contd.)

Certificates are issued once and valid during a given 
time period, whatever the number of time it is used 

What if the subjects leaves its organization? The 
private key of the subject is stolen? The private key 
of the issuer is stolen? 

When a certified key is compromised, the certificate 
is revoked 

the issuer maintains the list of revoked certificates 

that should be checked by the client.

 48



Trudy cannot perform her attack anymore

Diffie-Hellman key 
exchange (the return)

 49

Alice Bob

a, g, m

A    ga mod m 
sA=sign((A,g,m), PrivateA) A, g, m, sA

B, sB

B    gb mod m

check((A,g,m),sA,PublicA) 
b

K    Ab mod m 
sB=sign(B, PrivateB)check(B, sB, PublicB) 

K    Ba mod m

Trudy
PublicA, PublicB, PrivateBPublicA, PrivateA, PublicB PublicA PublicB

⌘
⌘

⌘

⌘



Problem solved?
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fill me



Problem solved?
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fill me 

fill me 

fill me

Replay attacks are still possible!



Trudy can replay a message

Nonce

 51

Alice BobTrudy
PublicAPublicA, PrivateA PublicA
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PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is openremember (m, s)
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Nonce
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PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open
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s2 = sign(m2, PrivateA)

remember (m, s)
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Alice BobTrudy
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PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
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Alice BobTrudy
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Nonce

 51

Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
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remember (m, s)



Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA) 
door is closed

m, s
check(m, s, PublicA) 
door is open !!

remember (m, s)



Nonce (contd.)
A nonce is a number used only once 

Three general methods to create nonces 

sequential number 

increment after each use 

keep it in non-volatile storage in case of reboot 

timestamp 

current time of the nonce generation 

be sure clock is not going backward (e.g., winter time) 

random number 

low collision probability if the pseudo random number generator is good and 
random number is big enough (e.g., more than 128 bits) 

Nonce alone is rarely enough to have a good protection 

not robust to eavesdropping or man-in-the-middle attack

 52



Nonce (contd.)
Each message is make unique thanks to the nonce
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m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

remember (m, n, s)



Nonce (contd.)
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n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
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nonces = {n}remember (m, n, s)
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remember (m, n, s)



Nonce (contd.)
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Alice BobTrudy

m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2

remember (m, n, s)



Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA) 
nonces = {n, n2}

remember (m, n, s)
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Alice BobTrudy

m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2
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m, n, s

remember (m, n, s)



Nonce (contd.)
Each message is make unique thanks to the nonce
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Alice BobTrudy

m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA) 
nonces = {n, n2}

m, n, s
check((m,n), s, PublicA) 
nonce already used: skip

remember (m, n, s)



TCP sequence number does not protect against 
segment injection attacks in TCP

Nonce (contd.)
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segment injection attacks in TCP
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m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
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TCP sequence number does not protect against 
segment injection attacks in TCP

Nonce (contd.)
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Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9 “abcd56789”
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DoS attacks are still possible!



Denial of Services
Resources are always limited 

e.g., processor, memory, link capacity 

The easiest way of leading a DoS is to 
overwhelm CPUs, memory, or links of the target 

A more complicated way is to manage an 
intrusion and neutralize the target 

imagine you gain administrative access to 
border router of your network!
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Danger of state
Establishment and maintenance of session requires 
state 

often maintained in “tables” with predefined capacity 

An attacker can saturate state tables by initiating 
multiple sessions 

Principle 

require attacker to maintain state before maintaining 
state yourself 

in general it is too costly for an attacker to maintain 
state
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TCP relied on a state machine started upon reception of 
a SYN packet

Danger of state 
(contd.)

 58

Alice ChuckBob



TCP relied on a state machine started upon reception of 
a SYN packet

Danger of state 
(contd.)

 58

Alice ChuckBob
(src=IPA:portA, 
dst=IPB:portB, 
SYN, 
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TCP relied on a state machine started upon reception of 
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SYN+ack, 
seqB=y



TCP relied on a state machine started upon reception of 
a SYN packet

Danger of state 
(contd.)
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Alice ChuckBob
(src=IPA:portA, 
dst=IPB:portB, 
SYN, 
seqA=x)

SYN.received: 
{src=IPA:portA, 

dst=IPB:portB, 
seqA=x, 
seqB=y}

SYN+ack, 
seqB=y

When to remove state?



Always create state at the end of session establishment 
(e.g., TCP SYN cookie)

Danger of state 
(contd.)
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ACK(seq=x+1,ack=y+1)



Always create state at the end of session establishment 
(e.g., TCP SYN cookie)

Danger of state 
(contd.)
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Always create state at the end of session establishment 
(e.g., TCP SYN cookie)

Danger of state 
(contd.)
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Alice ChuckBob
(src=IPA:portA, 
dst=IPB:portB, 
SYN, 
seq=x)

No state created 
y=H(IPA, PortA, secret)SYN+ack, 

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret) 
create state

Cannot force state at Bob 
without creating local state



Danger of complexity
Protection mechanism can be complex and can 
require important processing power 

An attacker can overwhelm her target CPU by 
triggering protection mechanisms 

Principle 

require attacker to perform more processing 
than yourself 

in general an attacker does not want to have 
to do heavy computation
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Danger of complexity 
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker 
to succeed some challenges to get access. This technique is usually called challenge-response 

time challenges 

when an attack is suspected, force the attacker to wait or slow down but the DoS 
protection can lead to a DoS 

e.g., rate limiting 

mathematical challenges 

ask the initiator to solve a mathematical challenge that is hard to compute but easy to 
check, this might negatively impact legitimate clients 

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N 
is a nonce and K sets the complexity of the puzzle, both parameters are decided by 
Bob [RFC5201] 

human processing challenge 

some services are reserved for users and don’t want to be accessed by bots 

ask Alice to succeed a challenge that is simple for a human but hard for a computer 

e.g., CAPTCHA
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Danger of complexity 
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker 
to succeed some challenges to get access. This technique is usually called challenge-response 

time challenges 

when an attack is suspected, force the attacker to wait or slow down but the DoS 
protection can lead to a DoS 

e.g., rate limiting 

mathematical challenges 

ask the initiator to solve a mathematical challenge that is hard to compute but easy to 
check, this might negatively impact legitimate clients 

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N 
is a nonce and K sets the complexity of the puzzle, both parameters are decided by 
Bob [RFC5201] 

human processing challenge 

some services are reserved for users and don’t want to be accessed by bots 

ask Alice to succeed a challenge that is simple for a human but hard for a computer 

e.g., CAPTCHA
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Link overloading
Messages are sent to Bob by traversing links 

If an attacker can send packets at a high 
enough rate, she can saturate links toward Bob 
and make him unavailable 

Unfortunately, Bob cannot make anything to 
block packet before they reach him 

Principle 

tweak the network to not suffer too much of 
such attacks
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Link overloading 
(contd.)

A first parade is to filter illicit traffic before 
it can harm the target 

e.g., firewall, access lists 

A set of rules is specified a priori, if the 
traffic does not match the rules, it is 
discarded 

always block everything but what is 
acceptable
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Link overloading 
(contd.)

Filtering based on origin 

useful to avoid spoofing 

e.g., block any packet which source address does not belong 
to the customer cone of a BGP neighbor 

does not work so well as it depends on every network between 
the origin and the target 

Filtering based on traffic pattern 

analyze the traffic and if it deviates from what is normal, drop it 

e.g., drop malformed packets, rate limit a source if it sends 
too much SYN packets, ignore mails from well known SPAM 
servers, block any flow initiated by the outside if there is no 
server in the network
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Network Intrusion 
Detection System (NIDS)

An NIDS aims at discovering non-
legitimate operations 

The NIDS analyses the traffic to detect 
abnormal patterns 

Upon anomaly detection, the NIDS 
triggers an alert with a report on the 
anomaly 

NOC follows procedures upon detection
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Network Intrusion 
Detection System (contd.)

Signature based detection 

a database of abnormal behavior is maintained to construct a signature 
for each attack 

if the traffic corresponds to a signature in the database, trigger an alarm 

risk of false negative (0-day attack) 

e.g., Snort, Bro, antivirus 

Outlier detection 

the anomaly detector learns what is the normal behavior of the network 

went an outlier is detected, an alarm is triggered 

risk of false positive and false negative 

e.g., cluster analysis, time series analysis, spectral analysis
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Problem solved?
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Relay attacks are still possible!



Relay attack
In a relay attack, Chuck does not contact Alice directly but 
goes via Bob 

If the traffic from Bob to Alice is bigger than the traffic from 
Chuck to Bob, the attack is called amplification attack 

As for DoS, hard to protect correctly against relay attacks 

use filters (e.g., deactivate ICMP) 

authentication of the source 

but correct spoofing protection that doesn’t open a 
relay attack door is very hard to deploy in practice as it 
requires messages in both directions between parties
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What did we miss?
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What did we miss?

To terminate the session! 

with the same care as the opening of 
the session 

this is often neglected
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Perfect Forward 
Secrecy

With perfect forward secrecy (PFS), 
Eve cannot decrypt messages sent 
between Alice and Bob 

even if she captures every message 

even if she breaks into Alice and Bob 
after the communication to steal their 
secrets (e.g., private keys)
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Perfect Forward 
Secrecy (contd.)

PFS is provided using ephemeral keys 

the ephemeral key is generated and used 
only during the session 

the session key is not stored after the 
communication 

the session key is independent of stored 
information (e.g., good PRNG) 

for long sessions, change the session key 
regularly
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Perfect Forward 
Secrecy (contd.)

1. Initiate the communication between Alice and Bob 

authenticity proven with public/private key pairs 

2. Alice and Bob agree on a secret K 

use Diffie-Hellman 

authenticate DH messages with public/private key pairs 

3. Encrypt/Decrypt messages with symmetric cryptography using K as 
the key 

no need to sign as it is encrypted 

be sure a nonce is used to avoid replay 

4. If session is too long, back to 2. 

5. Close the session correctly and be sure K is not stored anywhere
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Privacy

 73



Sharing secrets
Context 

n students work on a top-secret 
project 

They cannot trust each other 

The project is in a digital safe 

To open the digital safe, at least k out 
of the n students must be present
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A polynomial of degree k-1 is uniquely identified with k points
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(k,n) threshold 
scheme

D = [x1, …, xn] is a data composed of n 
pieces 

When at least k pieces xi of D are 
known 

D can be computed 

otherwise D remains undetermined

 78



(k,n) threshold 
scheme

D = [x1, …, xn] is a data composed of n 
pieces 

When at least k pieces xi of D are 
known 

D can be computed 

otherwise D remains undetermined
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Shamir’s (k,n) 
Threshold Scheme
Let D be our secret (an integer), decomposed in n 
pieces 

Let p be a prime number p > max(D, n) 

Generate k-1 random number ai 

Define the polynomial of degree k-1  
 

Note that g(0) = D
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8i 2 [1; k � 1]|ai 2 [0; p[

g(x) = D + a1 · x1 + · · ·+ ak�1 · xk�1



Shamir’s (k,n) Threshold 
Scheme (contd.)

Generate n fragments of the secret 
D1 = g(1) mod p, D2 = g(2) mod p, … Dn = g(n) mod p 

Distribute (xi, Di) 

Recompute D from k fragments (xj,Dj)  
among n using Lagrange polynomial 
interpolation
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D ⌘ g(0) mod p



Example k=3, n=5
p = 997 

Make 5 groups 

group 1: (1, 547) 

group 2: (2, 629) 

group 3: (3, 394) 

group 4: (4, 839) 

group 5: (5, 967)
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Example k=3, n=5
p = 997 

Make 5 groups 

group 1: (1, 547) 

group 2: (2, 629) 

group 3: (3, 394) 

group 4: (4, 839) 

group 5: (5, 967)

 81

Collaborate with 2 other groups to compute the secret D
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Example k=3, n =5 
(contd.)

Group 1, 3, 4

 82

Example for (k=3,n=5) 

�We give to each user a fragment among 
� (1,547), (2,629), (3,394), (4,839), (5,967) 

�Assume users with fragments 1,3,4 want to 
reconstruct the secret 
� They compute g(0) 
𝑔 0 = 547

−3
1 − 3

−4
1 − 4

+ 394
−1
3 − 1

−4
3 − 4

+ 839
−1
4 − 1

−3
4 − 3

 

𝑔 0 = 547 ∗ 2 − 394 ∗ 2 + 839 = 1145 
𝑔 0   𝑚𝑜𝑑  997 = 148 

Arnaud Legout © 2006-2012 
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Example for (k=3,n=5) 

�The secret is D=148 
�Let’s  take   

� p=997 (prime), a1=59 (random), a2=340(random) 
� g(x)=148 + 59x + 340x2 

�We compute 5 fragments 
� D1 = g(1) mod 997= 547 
� D2 = g(2) mod 997 = 1626 mod 997 = 629 
� D3 = g(3) mod 997 = 3385 mod 997 = 394 
� D4 = g(4) mod 997 = 5824 mod 997 = 839 
� D5 = g(5) mod 997 = 8943 mod 997 = 967 

Arnaud Legout © 2006-2012 
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Example k=3, n =5 
(contd.)

To compute it, we took D = 148, p = 997 
a prime number, and the polynomial 
 

Such that
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�The secret is D=148 
�Let’s  take   

� p=997 (prime), a1=59 (random), a2=340(random) 
� g(x)=148 + 59x + 340x2 

�We compute 5 fragments 
� D1 = g(1) mod 997= 547 
� D2 = g(2) mod 997 = 1626 mod 997 = 629 
� D3 = g(3) mod 997 = 3385 mod 997 = 394 
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Shamir’s (k,n) Threshold 
Scheme (contd.)

The size of each fragment does not exceeds the size of 
the secret 

as long as p is chosen of the same order as the 
secret 

Possible to generate new fragments at any time, 
without altering the others 

Possible to construct hierarchies by attributing more or 
less fragments 

the boss has k fragments, the subaltern has k/2, … 

No assumption as opposed to cryptographic functions
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Anonymity
Alice wants to send a message to Bob 

Communications are unsecured 

Nobody can know who is the sender 
(not even Bob) 

Nobody can know who is the receiver 

Nobody else than Bob can retrieve 
the message
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Mix
Objectives of a mix 

Hide correspondences between 
incoming and outgoing messages 

Not possible to map a source and an 
outgoing message (apart for the mix) 

No possible to map a receiver and an 
incoming message (apart for the mix)
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Mix (contd.)

If the mix cannot be fully trusted, use a 
cascade of mixes 

It works as long as untrusted mixes do 
not collaborate all together

 87



Chaum-net
Allow to send a sealed message via a 
cascade of mixes 

In an overlay, each participant has a 
private/public key pair 

Alice randomly choses a few of them (e.g., 
3) to be mixes 

Alice recursively encrypt the message with 
the public key of each mixes she selected
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Chaum-net
Allow to send a sealed message via a 
cascade of mixes 

In an overlay, each participant has a 
private/public key pair 

Alice randomly choses a few of them (e.g., 
3) to be mixes 

Alice recursively encrypt the message with 
the public key of each mixes she selected
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Chaum-net example
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Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Cool,  I am anonymous!Are you sure?



Social behavior

 90



"If you have something that you don't want 
anyone to know, maybe you shouldn't be 
doing it in the first place."



"If you have something that you don't want 
anyone to know, maybe you shouldn't be 
doing it in the first place."
Eric Schmidt, directeur général de Google, 2009



Je n’ai rien à cacher!



Je n’ai rien à cacher!

Les définitions de lois et moralité ne sont pas universelles

















Je suis invisible sur Internet
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L’Internet a beaucoup changé

[ARPANET logic map,1969]



L’Internet a beaucoup changé

de 4 à plus 1 milliard de terminaux
[ARPANET logic map,1969]
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… et qui son intégrés à tous les sites

Cliquez ici pour partager
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Je me déconnecte









Risque pour votre vie privée



Risque pour votre vie privée

Je leur fait confiance



Qui utilise Skype?



Qui utilise Skype?

Logiciel de téléphonie par Internet composé 
d’un annuaire téléphonique publique; 
d’un protocole d’échange de paquets audio sur IP. 



Qui utilise BitTorrent?



Qui utilise BitTorrent?

Logiciel de partage de fichiers composé 
d’un protocole d’échange de paquets de données sur IP.



Qui utilise BitTorrent et Skype?



Qui utilise BitTorrent et Skype?

A tout moment il est possible de connaître l’adresse IP 
d’un utilisateur de Skype; 
de machines impliquées dans un téléchargement BitTorrent.



On peut dire qui télécharge quoi/depuis où!



On peut dire qui télécharge quoi/depuis où!

Depuis chez soi



Overlay networking
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Overlay network

Constructed on top of another network, 
called the underlay 

Nodes in the overlay appear 
to be connected 
independently of the underlay
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Definitions
Peer 

A node involved in forming the overlay (can 
be a computer, an end-user, an 
application…) 

Leecher 

A peer that is both client and server 

Seed 

A peer that is only server

 111



Definitions (contd.)
Peer-to-peer (P2P) application 

No general definition 

Specific to an application 

Every peer is client and server 

Peers form an overlay network 

In general, we define P2P application as 
overlay network formed by end-users
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P2P

P2P applications capitalize on any 
resource from anybody 

CPU 

Bandwidth 

Storage
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Before Murder
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credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent



With Murder
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credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent



How to reach nodes?
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Chord
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27/73

Speeding up Lookups

• Size of routing tables is logarithmic.:
 Routing table size: M, where N = 2^M.

• Every node n knows 
successor(n + 2^(i-1)) 
for i = 1... M

•  Routing entries = log
2
(N)

 log
2
(N) hops from any node to 

any other node

• Example: Log
2
(1000000) 20≈

0
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https://www.kth.se/social/upload/51647996f276545db53654c0/3-chord.pdf



Kademlia
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16/31

Node State

•Kbucket: each node keeps a list of information for nodes of 
distance between 2i and 2i+1.

 0 <= i < 160

 Sorted by time last seen.
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Routing in Kademlia 
(contd.)
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Slide from https://www.kth.se/social/upload/516479a5f276545d6a965080/3-kademlia.pdf20/31

Lookup Service
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Blockchains
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Why?

Traditional security mechanisms rely on 
the notion of trust 

who to be the trusted party (e.g., 
Trent) 

concentration of power
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Why?
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Trent) 

concentration of power
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Shift to cryptographic proof instead of trust



Definition
“A blockchain is a continuously growing 
list of records, called blocks, which are 
linked and secured using 
cryptography.”1

 122
1 Blockchain, https://en.wikipedia.org/wiki/Blockchain, 11th Nov. 2017



First proposed with 
bitcoin

Proposed for making Bitcoin 
transactions while avoiding double 
spending 

Nakamoto, Satoshi. "Bitcoin: A peer-
to-peer electronic cash 
system." (2008): 28. 

Now blockchains go beyond 
transactions

 123
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Nakamoto, Satoshi. "Bitcoin: A peer-
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system." (2008): 28. 

Now blockchains go beyond 
transactions
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In this presentation we use bitcoin as
an example of blockchain



Before the bitcoin: trust
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The role of intermediates: 
establish trust

Alice and Bob don’t trust each other 

need to find a common trusted party 

Banks don’t trust each other 

clearing houses settle transactions 

Each intermediate gets their share and 
concentrates power
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With the bitcoin: proof
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Alice 
(buyer)

Bob 
(seller)

1. Pay Bob

Distributed ledger

3. Deliver goods

2. Check the 
ledger



Overview
The blockchain is a list of blocks 

a block is associated to its cryptographic hash that 
encompasses 

the block data 

the block timestamp 

the block nonce 

the hash of the predecessor in the list 

blocks are “cryptographically linked” preventing 
them to be tempered 

the blocks chronology is guaranteed
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Overview (contd.)
The list of blocks is distributed in the 
network 

using a peer-to-peer network (all 
nodes seem to be connected) 

supporting broadcast 

Transactions are broadcasted in the 
network
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Overview (contd.)
Miners create new block based on the collect transactions 

a new block is added only if the majority of miners agree 

every miner collects broadcasted transactions 

and groups them together to form the data of the block 

when enough transactions are in the block, the miner 
computes a valid hash 

and broadcasts it to the network 

the first broadcasted new valid block is added as the new 
head of the blockchain, the fastest miner is the winner 

the winner is rewarded by gaining some fraction of bitcoin
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Making a transactions
The origin of the transaction 

adds its bitcoin address 

adds the bitcoin address of the destination 

signs the transaction using its private key 

advertises it in the network 

Anyone can verify the origin of the transaction 
using the public key 

and its presence in the blockchain
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How to identity clients 
in bitcoin?

Clients have a wallet 

the wallet is just a private/public key pair 

Identification with a bitcoin address 

generated for free by any bitcoin user 

public key = elliptic curve multiplication of the 
private key 

bitcoin address = hash of the public key 

represented with a 26-35 alphanumeric value
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Inside a block
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block i
predecessor

hash timestamp

noncetx root

hash

block i-1
predecessor

hash timestamp

noncetx root

hash

block i
predecessor

hash timestamp

noncetx root



Merkel tree
Transactions are stored in a Merkel tree 

In a Merkel tree 

the key of a node is the hash of its two 
children 

except for the leaves where it is the hash 
of the data itself 

in bitcoin, the hash is the SHA-256 hash 
of the SHA-256 hash of the item to hash
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Merkel tree (contd.)
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Tx1 
data

Tx2 
data

Tx3 
data

Tx4 
data



Merkel tree (contd.)

 134

Tx1 
data

Tx2 
data

Tx3 
data

Tx4 
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)
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Tx1 
data

Tx2 
data

Tx3 
data

Tx4 
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)

#12=hash(#1+#2) #34=hash(#3+#4)



Merkel tree (contd.)

 134

Tx1 
data

Tx2 
data

Tx3 
data

Tx4 
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)

#12=hash(#1+#2) #34=hash(#3+#4)

#1234=hash(#12+#34)



Proof of work
To be accepted, minors must accomplish 
a proof of work (PoW) on the blocks they 
advertise 

The PoW is hard to make, easy to check 

e.g., find a nonce such that the hash of 
the block is below some target value 

the target is chosen such that the 
PoW takes about 10 minutes
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Branch selection

Multiple branches can be valid (e.g., 
two minors gave a valid block at the 
same time) 

the longest (in terms of complexity) 
valid branch is selected 

a block is valid if it has at least 6 
successors
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Backup
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Reminders
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Naming and 
addressing

 140



Addressing in Ethernet

 141

Objective: determine the origin and destination of 
a frame within a collision domain 

Every Ethernet network adapter is assigned a 
unique datalink layer address encoded on 48 bits 

Every frame is transmitted to all network 
adapters of the collision domain 

but only the network adapter with the address 
corresponding to the destination address of the 
frame accepts it



Addressing in IP
Objective: determine the origin and destination of a packet in the 
Internet 

Every host interface has its own IP address 

routers have multiple interfaces, each with its own IP address 

the IP address determines the topological position of the 
interface 

Current version of IP is version 4 (IPv4) 

addresses are encoded on 32 bits, fixed length 

4 billions addresses were a lot... in 1981, but is way too short today 

IP version 6 (IPv6) starts to be deployed 

addresses are encoded on 128 bits, fixed length*
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Classless InterDomain 
Routing (CIDR)

No predetermined separation position between network number 
and local address with CIDR 

number of bits allocated for the network number may vary 
from 0 to 32 (resp. 128) bits in IPv4 (resp. IPv6) 

the address contains no information about the separation 
position 

Routers determine the network number by using longest-
prefix matching 

Notation a.b.c.d/n (resp. a:b:c:d:e:f:g:h/n) 

a.b.c.d (resp. a:b:c:d:e:f:g:h) is the address 

n is the number of bits assigned to the network number
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CIDR (cont.)
An address matches a route if both share the same 
prefix 

0.0.0.0/0 (resp. ::/0) is the default route matched by 
every addresses 

With CIDR, an address can match several routes 

192.0.2.1 matches 128.0.0.0/1, but also 192.0.2.0/24 
or 0.0.0.0/0 

Longest prefix matching is used to determine the route 
that has the longest prefix in common with the address 

Typically implemented with a trie
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Longest prefix matching 
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)
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(128.0.0.0/1)
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(192.0.2.1)



Longest prefix matching 
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)
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Longest prefix matching 
with a trie (examples)
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11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)  

 
 

Best match 192.0.2.0/24
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with a trie (examples)
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* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
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11011111 00000000 00000000 00000001
(223.0.0.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)



Longest prefix matching 
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)  

Best match 128.0.0.0/1



IP to Ethernet Address
To put an IP packet over an Ethernet 
frame, its IP addresses must be resolved 
into Ethernet addresses 

Protocol used: 

Address Resolution Protocol (ARP) in 
IPv4 

Neighbor Discovery Protocol (NDP) in 
IPv6
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ARP
ARP is used to get datalink layer address of a machine on the local subnet 

Broadcast an ARP request frame on the local subnet for the IP address to resolve 

destination address: FF:FF:FF:FF:FF:FF (broadcast) 

source address: Ethernet address of the network adapter that issued the ARP request 

The host (or a proxy) that owns the address replies with an ARP response frame 

destination address: Ethernet address of the requester’s network adapter 

source address: Ethernet address of the address’s owner’s (or proxy) network adapter 

Every network device is required to listen for ARP requests and replies on its network adapters 

Optimizations 

replies are stored in an ARP cache to avoid that every single packet results in ARP request/
response 

cached for a limited duration as host can change their IP address 

ARP request message contains the IP address of the origin of the frame 

destination (or any hosts in the local subnet) can learn the IP/Ethernet mapping for free
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ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3
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who-has 192.0.2.3?      (I am 192.0.2.2)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
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IP source: 192.0.2.2 IP destination: 192.0.2.3
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I am 192.0.2.3



ARP example

 148

IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3?      (I am 192.0.2.2)

I am 192.0.2.3

Ethernet source: b Ethernet destination:c IP source: 192.0.2.2 IP destination: 192.0.2.3



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP: 203.0.113.1 
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f
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Ethernet: e

IP: 192.0.2.2 
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IP source: 192.0.2.2 IP destination: 203.0.113.2
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Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24
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IP: 203.0.113.1 
Ethernet: d
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who-has 203.0.113.2? (I am 203.0.113.1)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
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Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

Ethernet source: d Ethernet destination:e IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



Dynamic address 
configuration

 150

Allow a set of hosts to share a pool of IP address 

Two approaches 

stateless auto-configuration 

no infrastructure necessary 

Dynamic Host Configuration Protocol (DHCP) 

hosts query a DHCP server to obtain their configuration 

Advantages 

less address wastage: a host can use the address of another 
hosts when it is not connected 

improves flexibility and reduces the risk of configuration error as 
no manual operation is necessary



Stateless auto-
configuration

When a host connects to the network: 

1. The host choses an address randomly in 169.254/16 (not globally 
routable) 

2. Sends an ARP request for the chosen address 

3. If an ARP reply is received (another host already uses the address 

restart from point 1 

4. Otherwise, the address the address is not used by another host and 
the host can use it safely 

Auto-configuration is used only for communications within the same 
network 

In IPv6, hosts can auto-configure their globally routable addresses 
and discover network services (e.g., routers, DNS...)
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Dynamic Host Configuration 
Protocol (DHCP)

When a host connects to the network, it broadcasts a DHCP discovery 
datagram 

Any DHCP server that receives such a message replies with a DHCP 
offer datagram that contains an offer of IP address 

The host picks one offer and broadcasts a DHCP request message to 
announce the offers it selected 

The selected DHCP server assigns the address to the host and sends 
it back a DHCP acknowledgment that confirms the lease of the 
address and give additional parameters such as the lease time, the IP 
address of the default gateway, or the IP address of the DNS servers 

when the lease time is elapsed, the address is released and made 
available for other hosts 

The other DHCP servers withdraw their offers
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Iterative resolution
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192.0.2.1

www.example.com 
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Internet

resolver

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server
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Response: ezp.inria.fr, ask inria.fr. 

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server

Query: ezp.inria.fr
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192.93.2.78}

Query: ezp.inria.fr

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server
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Iterative resolution
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@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr. 

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server

Query: ezp.inria.fr



Iterative resolution
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194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr. 

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server

Query: ezp.inria.frResponse: ezp.inria.fr = 193.51.193.149
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Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr. 

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}
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The resolver learns the hierarchy 
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Iterative resolution
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.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com 
192.0.2.1

www.example.com 
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr. 
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr. 

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server

Query: test.inria.fr

Query: ezp.inria.fr
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Transport of data 
between hosts

Transport layer provides an end-to-end 
communication service 

applications just deal with stream of 
bytes 

Most popular protocols: 

UDP: connection-less, non reliable 

TCP: connection-full, reliable
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TCP connection 
establishment
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A B

SYN, sequence number=123
LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

ACK, acknowledgment number=790

SYN-RECEIVED

ESTABLISHEDESTABLISHED



TCP data transfer
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A B

sent 1000 to 1499
sequence number=1000

ACK, ackn
owledgment number=1500sent 1500 to 1999

sequence number=1500

sent 2000 to 2499
sequence number=2000

ACK, ackn
owledgment number=2000

ACK, ackn
owledgment number=2500

window size = 1500B

sent 2500 to …
sequence number=2500

waiting to send the rest

ready to receive data 
sequenced between 
1000 and 2499

ready to receive data 
sequenced between 
1500 to 2999

ready to receive data 
sequenced between 
2500 to 3999

ready to receive data 
sequenced between 
2000 to 3499

…



TCP connection 
termination
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FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSED

FIN, sequence number = 987 

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT
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termination

 158

A B
FIN, sequence number = 567 

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSEDCLOSED

FIN, sequence number = 987 

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT



Example of Distributed Denial of 
Service (DDoS) attack

Link overloading 
(contd.)
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Alice Bob

ChuckChuck



Attacks are often to random destinations or with 
random sources 

backscatter traffic to a sink-hole that can 
receive a lot of traffic attack without impacting 
the network

Link overloading 
(contd.)
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Alice Bob

ChuckChuck



Use the sink-hole to attract bizarre 
packets

Link overloading 
(contd.)

 161

Alice Bob

ChuckChuck

IBGP: 
prefix: 0.0.0.0/0 
nexthop: sink-hole 
NO_EXPORT



Use the sink-hole to protect the target

Link overloading 
(contd.)
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Alice Bob

ChuckChuck

IBGP: 
prefix: Bob/32 
nexthop: sink-hole 
NO_EXPORT



Content replication
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Definitions
Service capacity 

Number of peers that can serve a content 

= 1 in client-server, constant with time 

Flash crowd of n 

Simultaneous request of n peers (e.g., soccer match, iOS 
update…) 

Piece/chunk/block 

Element of a partition of the content 

Each piece can be independently retrieved 

The union of pieces forms the content
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Interest of P2P to 
replicate contents

Service capacity grows up exponentially with 
time 

Average download time for a flash crowd n 
is then in log(n) 

Average download time decreases in 
          when the number of pieces increases  

if we ignore the overhead 

 165
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# of pieces



Content transfer 
model

Simple deterministic model 

Each peer serves only one peer at a time 

The unit of transfer is the content 

n-1 peers want the content, with n=2k 

T is the time to complete an upload 

T=s/b, s content size, b upload capacity 

Peer selection strategy with Binary tree 

global knowledge
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Capacity C of the 
service

t=0 => C = 20 peers 

t=T => C = 21 peers 

t=2*T => C = 22 peers 

… 

t=i*T => C = 2i peers 

➡ C = 2t/T peers
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Finish time
seed only at time t = 0 

20 peers finish at t = T 

21 peers finish at t=2T 

… 

2k-1 peers finish at t=k*T 

➡ content transferred to all 
peers at t = k*T = T * log2(n) 
vs n*T in client-server
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t=2T

t=3T



Can we speed up 
transfers?

 169



Piece transfer model
Same as before but the transfer unit is the 
piece instead of the content 

a content is divided into m equal size 
pieces 

m > k 

Piece downloaded in T/m 

➡content transferred to all peers at t = T * 1/m *  log2(n) + T 
vs T * log2(n) without piece transfer vs n*T in client-server
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Parallel downloads
Download from several peers in parallel 

Strategy 

request one piece from every server with the 
content 

request another piece from the server as 
soon as the requested piece has been 
obtained 

performance is optimal when servers are 
always busy delivering a piece of data
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Parallel downloads 
(contd.)
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Parallel downloads 
(contd.)

 172

P1 P2P

2

2
1

1

5

3

3

4

4

Peers are not always fully utilised!



Pipelining

Keep enough requests pending 

Send a new request before the 
end of the transmission of the 
piece being downloaded 

need to roughly estimate the 
RTT
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