
Security and privacy in
networks

Damien Saucez
Inria Sophia Antipolis 

Université d’Avignon et des Pays de Vaucluse, CERI - Securité dans les réseaux - October 2018

Contact information

Damien Saucez

Email: damien.saucez@inria.fr

 2

Table of Content
1. Threats by the example

2. The basics of security

3. Securing communications

4. Privacy

5. Overlay networking

6. Blockchains

 3

Threats by the
example

 4

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is f

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is f

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 192.0.2.2? (I am 192.0.2.1)

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

 5

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 192.0.2.2? (I am 192.0.2.1)

Ethernet source: b Ethernet destination:a IP source: 192.0.2.2 IP destination: 203.0.113.2

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

Why does it work?

 6

Why does it work?

Conceptual vulnerability

using non-requested information as
ground truth is dangerous

using non-authenticated information is
dangerous

 6

DNS cache poisoning

 7

resolver 192.0.2.1

DNS cache poisoning

 7

Query: rnd.example.org

resolver 192.0.2.1

DNS cache poisoning

 7

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

example.org. @{192.0.2.1}

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

example.org. @{192.0.2.1}

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

Query: bank.example.org

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

Query: bank.example.org

Query: bank.example.org

DNS cache poisoning

 7

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

Query: bank.example.org

Query: bank.example.org

Why does it work?

 8

Why does it work?
Birthday paradox

probability that n elements uniformly picked
from the finite set T is

Relying solely on transaction ID is dangerous

particularly when IDs are small (16 bits in DNS)

 8

DNS Distributed Denial
of Service (DDoS)

Attacks against Dyn DNS infrastructure

Two bursts: 2016-10-21 11:10 UTC -
13:20 UTC; 15:50 UTC - 20:30 UTC

Not usual DDoS

many more addresses than usual,
non spoofed (between 40k and 100k
addresses)

 9

https://www.ietf.org/proceedings/97/slides/slides-97-ietf-sessb-the-internets-architecture-is-under-attack-ironically-andrew-sullivan-00.pdf

Why does it work?
Attacks performed via a Mirai-based
botnet

IoT devices

End-to-End principle

maximizes the intelligence at the edge

network avoids making decisions

What if the edge is “bad”?

 10

YouTube Hijacking

BBC Breaking news: A router problem made YouTube
inaccessible for many

RIPE NIS: “On Sunday, 24 February 2008, Pakistan
Telecom (AS17557) started an unauthorised
announcement of the prefix 208.65.153.0/24. One of
Pakistan Telecom's upstream providers, PCCW Global
(AS3491) forwarded this announcement to the rest of
the Internet, which resulted in the hijacking of YouTube
traffic on a global scale”

 11

http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW
Global), are seen prepended by another 17557. The longer AS path means that more
routers prefer the announcement originated by YouTube.

 12
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW
Global), are seen prepended by another 17557. The longer AS path means that more
routers prefer the announcement originated by YouTube.

Sunday, 24 February 2008, 21:01 (UTC): AS3491 (PCCW Global) withdraws all
prefixes originated by AS17557 (Pakistan Telecom), thus stopping the hijack of
208.65.153.0/24. Note that AS17557 was not completely disconnected by AS3491.
Prefixes originated by other Pakistani ASs were still announced by AS17557 through
AS3491. 12

http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

Why does it work?

 13

Why does it work?

 13

Any AS can claim to be the originator of a
prefix (i.e., she hijacks the prefix)

To protect against that, only the import
filters can be used

rely on databases that are not so
accurate

A not secure global routing system is a
major threat against freedom

TCP session hijacking

 14

Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www”

ACK, ackn
owledgment number=1024

window size = 1500B

ACK, acknowledgment number=7599

TCP session hijacking

 14

Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www”

ACK, ackn
owledgment number=1024

window size = 1500B

sequence number=1024,
data=“rm -rf /”

ACK, acknowledgment number=7599
sequence number=7600, data=“”

ACK, ackn
owledgment number=1096

Why does it work?

 15

Why does it work?

If the attacker can

guess the initial sequence number

guess actions from the sender

then easy to guess a sequence number
that will be accepted by the receiver

 15

The basics of security

 16

Security threats
Intrusion

an attacker gains remote access to some resources that are
normally denied to her

e.g., steal processing power, botnets

Eavesdropping

an attacker collects traffic of a target in order to gain access to
restricted information

e.g., steal passwords by sniffing wireless traffic

Denial of Service (DoS)

an attacker disrupts a specific targeted service

e.g., block the youtube website

 17

The attackers
Hackers

look for challenge, notoriety, and fun

e.g., hackers, script kiddies, students :-D

Spies

look for political/business gains

e.g., intelligence, police, industrial spies

Criminals

look for financial gains, religious/political visibility, or just
to break something

e.g., criminals, terrorists, vandals

 18

Definitions
Key

input of cryptographic functions to determine its output

Authentication

proof that the message is coming from the one claiming to be at the origin of the message

Integrity

proof that the message has not been altered since its creation

Non-repudiation of origin

an entity that generated a message cannot deny have generated the message

Encryption

action of encoding of a message such that an eavesdropper can’t read the message but legitimate
destination can

Decryption

action of decoding an encrypted message

Signature

a mathematically constructed proof of authenticity of a message

 19

Hall of fame

 20

Alice and Bob

are legitimate users, Alice and Bob exchange messages

Chuck

is a malicious user that is not between Alice and Bob

Eve

is a malicious user that can eavesdrop

Trudy

is a malicious user that can perform (wo)man-in-the-middle
attacks

Trent

is a legitimate user that plays the role of a trusted arbitrator

Why is good security
level so hard to obtain?

The security level of a system equals the
security level of the weakest part of the system

e.g., encrypting your HDD to avoid
information leak if the laptop is stollen is
useless if the password is written on a post-
it attached on the laptop

Digital system are complexes

interactions with many components,
distribution, easily bugged...

 21

Security is a tradeoff
Compare cost and probability of an attack and cost of securing the system
against this attack

e.g., is that necessary to make data unbreakable for 20 years if they are
outdated after 1 hour?

Explain the security systems and their reasons

if a user does not understand why he must follow a procedure, he will
not follow it

e.g., how many of you already give their password to someone else?

Never “over-secure” a system

if the system is too hard to use, people will find countermeasure

e.g., too hard to use corporate mails? Then use gmail to send
corporate mails...

 22

Security is a tradeoff
(contd.)

Protection system

lifetime = 10 years

cost = 10,000 EUR

Attack

yearly probability = 10%

cost of restoring the system = 1,000 EUR

Do I invest?

 23

Procedures!
Protection will never be perfect

Prepare procedures

what to do BEFORE an attack?

what to do to limit the risk (e.g., passwords) of attack
and to be ready if an attack happens (e.g., backup)

what to do DURING an attack?

the attack is on going, how to stop it

what to do AFTER an attack?

the attack succeeded, how to recover from it

 24

Securing
communications

 25

Objective
Construct a communication mechanism
where Alice and Bob can exchange
messages such that

only Alice and Bob can generate
messages

nobody else than Alice or Bob can read
messages

nobody can alter messages

 26

Steps

fill me

fill me

fill me

 27

Hash function

 28

Validate that a message has not been altered on its way between Alice and Bob

Hash functions map arbitrary large numbers of variable length to fixed-length numbers

h = H(m), h is called hash or digest

e.g., MD5, SHA-1, SHA-256

Good hash functions for cryptography must be such that

H(m) is not complex to compute

but finding a m2 such that H(m2) = H(m) is complex,

H(m) is deterministic,

H output must be evenly distributed over the output set

Example

SHA-1 maps messages its input space on a 160-bits output

SHA-1(Message to validate) = 5e06ee754bda0d33cf65ec305ffc779404e66029

SHA-1(Message tO validate) = b1c306f8cb792fa14d4d1fdcf6f37d86c2fe6bb9

Is that enough?

 29

Alice BobTrudy

Is that enough?

 29

Alice Bob
msg

d = H(msg)

Trudy

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2)

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3
d3 = H(msg3)

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

Is that enough?

 29

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3) valid as d3 = H(msg3)

Hash function with salt

 30

Hash functions are deterministic

Add a salt such that the output of the hash
function is a function of the message and
the salt

h = H(m, K) where K is the salt or key of
the hash function

As long as Trudy does not know the salt,
she can’t forge a valid digest

Hash function with salt
(contd.)

 31

Alice BobTrudy
K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)

Trudy
K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy
K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K)

K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3
d3 = H(msg3)

K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

K K

Hash function with salt
(contd.)

 31

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3) invalid as d3 ≠ H(msg3, K)

K K

Problem solved?

 32

fill me

fill me

fill me

Problem solved?

 32

fill me

fill me

fill me

How can Alice and Bob agree on K?

Diffie-Hellman key
exchange

How can Alice and Bob agree on a
secret number and be sure that Eve will
not discover it?

Principle

do not exchange the secret number
but other numbers that are use to
build up the secret

 33

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice BobEve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

Eve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

b

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

Eve

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

Eve

⌘

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

 34

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

K Ab mod m (ga mod m)b mod m gba mod m (gb mod m)a mod m Ba mod m K

Eve

⌘

⌘

⌘

⌘

⌘⌘⌘⌘⌘⌘

Why can’t Eve guess K if she knows A, B, g, and m?

discrete exponentiation is linear with the size of the
argument

easy to compute x yz mod p

but for some discrete groups, no efficient algorithm is known
to compute discrete logarithm

hard to determine natural z that ensures x yz mod p

Eve knows A, B, g, and m but can’t determine neither a nor b
that are absolutely necessary to compute K

K Ab mod m (ga mod m)b mod p gba mod m 
 (gb mod m)a mod m Ba mod m

Diffie-Hellman key
exchange (contd.)

 35

⌘

⌘

⌘⌘⌘
⌘ ⌘

3-Diffie Hellman

 36

Everyone

A = ga mod m

B = gb mod m

C = gc mod m

On A

AC = Ca mod m, AB = Ba mod m

On B

BC = Cb mod m

On A

K = BCa mod m

On B

K = ACb mod m

On C

K = ABc mod m

“Proof”

K = ABc mod m = Ba c mod m = gb ac mod m = Babc mod m

Trudy can break Diffie-Hellman

Diffie-Hellman key
exchange (contd.)

 37

Alice Bob
a, g, m

A ga mod m
A, g, m

Bt B gtb mod mt

b

K‘ Atb mod mt

K Bta mod m

Trudy

At, gt, mt

K‘ Bat mod mt

B

Bt gbt mod m
bt

K Abt mod m

at, gt, mt

At gat mod mt

⌘

⌘

⌘

⌘
⌘

⌘
⌘
⌘

Diffie-Hellman key
exchange (contd.)

How can we protect Diffie-Hellman from
Trudy?

Principle

Alice and Bob sign the messages
exchanged in Diffie-Hellman (?!)

 38

Asymmetric
cryptography

In asymmetric cryptography (aka public-key cryptography), two keys are
used

public key

publicly available to anybody (even attackers)

used to encrypt a message

private key

known only by the legitimate owner of the public key

used to decrypt a message

e.g., RSA, PGP, Diffie-Hellman

Public-key cryptography is 10 to 100 times slower than symmetric-key
cryptography

seldom (never?) used to encrypt communications

 39

Eve cannot determine the message

Asymmetric
cryptography (contd.)

 40

Alice Bob

m
c = crypt(m, PublicB)

Eve
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

decrypt(c, ???) = ?

Trudy can send a forged message

Asymmetric
cryptography (contd.)

 41

Alice Bob

m
c = crypt(m, PublicB)

Trudy
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

c2

c3

m2
c2 = crypt(m2, PublicB)

m3
c3=crypt(m3, PublicB)

decrypt(c3, PrivateB)=m3

Eve can read the message

Asymmetric
cryptography (contd.)

 42

Alice Bob

m
s = sign(m, PrivateA)

Eve
PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)

How to build sign and
check?

s = sign(H(m), k) = crypt(H(m), k)

check(m, s, K) = (H(m)==decrypt(s, K))

where k is the private key of the signer and K
is the public key

Asymmetric cryptography is slow and m can be
large

encrypting m would be too costly

solution: consider the digest of m while signing

 43

How to safely obtain Bob’s public key?

Public key
infrastructure

 44

Alice BobTrudy
PublicB, PrivateB

How to safely obtain Bob’s public key?

Public key
infrastructure

 44

Alice BobTrudy
PublicB, PrivateB

What is your public key?

How to safely obtain Bob’s public key?

Public key
infrastructure

 44

Alice BobTrudy
PublicB, PrivateB

What is your public key?

PublicB

How to safely obtain Bob’s public key?

Public key
infrastructure

 44

Alice BobTrudy
PublicB, PrivateB

PublicB

What is your public key?

PublicB

Trudy can send a forged key

Public key
infrastructure (contd.)

 45

Alice BobTrudy
PublicB, PrivateB

PublicT

What is your public key?

PublicT

PublicT, PrivateT

Alice and Bob trust a third party (e.g., Trent) for authentication

Public key
infrastructure (contd.)

 46

Alice TrentBob
PublicT, PrivateT

PublicB

Are you Bob?

PubB
S(Yes, PrivB), 
S(PubB, PrivT)

PublicT, 
PublicB,PrivateB, 

S(PubB, PrivT)

PublicT

Practically, Bob sends a certificate (e.g., X.509), not only its public
key and signature

A certificate provides many information to be able to correctly identify
and authenticate its subject (e.g., Bob)

the subject name and organization

the subject public key (and type)

the issuer name and organization

the certificate validity time (valid not before and not after)

the certificate signature and type, signature made by the issuer of
the certificate

...

Public key
infrastructure (contd.)

 47

Public key
infrastructure (contd.)

Certificates are issued once and valid during a given
time period, whatever the number of time it is used

What if the subjects leaves its organization? The
private key of the subject is stolen? The private key
of the issuer is stolen?

When a certified key is compromised, the certificate
is revoked

the issuer maintains the list of revoked certificates

that should be checked by the client.

 48

Trudy cannot perform her attack anymore

Diffie-Hellman key
exchange (the return)

 49

Alice Bob

a, g, m

A ga mod m
sA=sign((A,g,m), PrivateA) A, g, m, sA

B, sB

B gb mod m

check((A,g,m),sA,PublicA)
b

K Ab mod m
sB=sign(B, PrivateB)check(B, sB, PublicB)

K Ba mod m

Trudy
PublicA, PublicB, PrivateBPublicA, PrivateA, PublicB PublicA PublicB

⌘
⌘

⌘

⌘

Problem solved?

 50

fill me

fill me

fill me

Problem solved?

 50

fill me

fill me

fill me

Replay attacks are still possible!

Trudy can replay a message

Nonce

 51

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

remember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is openremember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA)

remember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

remember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

remember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s

remember (m, s)

Trudy can replay a message

Nonce

 51

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s
check(m, s, PublicA)
door is open !!

remember (m, s)

Nonce (contd.)
A nonce is a number used only once

Three general methods to create nonces

sequential number

increment after each use

keep it in non-volatile storage in case of reboot

timestamp

current time of the nonce generation

be sure clock is not going backward (e.g., winter time)

random number

low collision probability if the pseudo random number generator is good and
random number is big enough (e.g., more than 128 bits)

Nonce alone is rarely enough to have a good protection

not robust to eavesdropping or man-in-the-middle attack

 52

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA)

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

 53

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s
check((m,n), s, PublicA)
nonce already used: skip

remember (m, n, s)

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

 54

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9 “abcd56789”

Problem solved?

 55

fill me

fill me

fill me

Problem solved?

 55

fill me

fill me

fill me

DoS attacks are still possible!

Denial of Services
Resources are always limited

e.g., processor, memory, link capacity

The easiest way of leading a DoS is to
overwhelm CPUs, memory, or links of the target

A more complicated way is to manage an
intrusion and neutralize the target

imagine you gain administrative access to
border router of your network!

 56

Danger of state
Establishment and maintenance of session requires
state

often maintained in “tables” with predefined capacity

An attacker can saturate state tables by initiating
multiple sessions

Principle

require attacker to maintain state before maintaining
state yourself

in general it is too costly for an attacker to maintain
state

 57

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

 58

Alice ChuckBob

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

 58

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

 58

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

 58

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

 58

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

When to remove state?

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

 59

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Cannot force state at Bob
without creating local state

Danger of complexity
Protection mechanism can be complex and can
require important processing power

An attacker can overwhelm her target CPU by
triggering protection mechanisms

Principle

require attacker to perform more processing
than yourself

in general an attacker does not want to have
to do heavy computation

 60

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by
Bob [RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

 61

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by
Bob [RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

 61

Link overloading
Messages are sent to Bob by traversing links

If an attacker can send packets at a high
enough rate, she can saturate links toward Bob
and make him unavailable

Unfortunately, Bob cannot make anything to
block packet before they reach him

Principle

tweak the network to not suffer too much of
such attacks

 62

Link overloading
(contd.)

A first parade is to filter illicit traffic before
it can harm the target

e.g., firewall, access lists

A set of rules is specified a priori, if the
traffic does not match the rules, it is
discarded

always block everything but what is
acceptable

 63

Link overloading
(contd.)

Filtering based on origin

useful to avoid spoofing

e.g., block any packet which source address does not belong
to the customer cone of a BGP neighbor

does not work so well as it depends on every network between
the origin and the target

Filtering based on traffic pattern

analyze the traffic and if it deviates from what is normal, drop it

e.g., drop malformed packets, rate limit a source if it sends
too much SYN packets, ignore mails from well known SPAM
servers, block any flow initiated by the outside if there is no
server in the network

 64

Network Intrusion
Detection System (NIDS)

An NIDS aims at discovering non-
legitimate operations

The NIDS analyses the traffic to detect
abnormal patterns

Upon anomaly detection, the NIDS
triggers an alert with a report on the
anomaly

NOC follows procedures upon detection

 65

Network Intrusion
Detection System (contd.)

Signature based detection

a database of abnormal behavior is maintained to construct a signature
for each attack

if the traffic corresponds to a signature in the database, trigger an alarm

risk of false negative (0-day attack)

e.g., Snort, Bro, antivirus

Outlier detection

the anomaly detector learns what is the normal behavior of the network

went an outlier is detected, an alarm is triggered

risk of false positive and false negative

e.g., cluster analysis, time series analysis, spectral analysis

 66

Problem solved?

 67

fill me

fill me

fill me

Problem solved?

 67

fill me

fill me

fill me

Relay attacks are still possible!

Relay attack
In a relay attack, Chuck does not contact Alice directly but
goes via Bob

If the traffic from Bob to Alice is bigger than the traffic from
Chuck to Bob, the attack is called amplification attack

As for DoS, hard to protect correctly against relay attacks

use filters (e.g., deactivate ICMP)

authentication of the source

but correct spoofing protection that doesn’t open a
relay attack door is very hard to deploy in practice as it
requires messages in both directions between parties

 68

What did we miss?

 69

What did we miss?

To terminate the session!

with the same care as the opening of
the session

this is often neglected

 69

Perfect Forward
Secrecy

With perfect forward secrecy (PFS),
Eve cannot decrypt messages sent
between Alice and Bob

even if she captures every message

even if she breaks into Alice and Bob
after the communication to steal their
secrets (e.g., private keys)

 70

Perfect Forward
Secrecy (contd.)

PFS is provided using ephemeral keys

the ephemeral key is generated and used
only during the session

the session key is not stored after the
communication

the session key is independent of stored
information (e.g., good PRNG)

for long sessions, change the session key
regularly

 71

Perfect Forward
Secrecy (contd.)

1. Initiate the communication between Alice and Bob

authenticity proven with public/private key pairs

2. Alice and Bob agree on a secret K

use Diffie-Hellman

authenticate DH messages with public/private key pairs

3. Encrypt/Decrypt messages with symmetric cryptography using K as
the key

no need to sign as it is encrypted

be sure a nonce is used to avoid replay

4. If session is too long, back to 2.

5. Close the session correctly and be sure K is not stored anywhere

 72

Privacy

 73

Sharing secrets
Context

n students work on a top-secret
project

They cannot trust each other

The project is in a digital safe

To open the digital safe, at least k out
of the n students must be present

 74

 75

 75

 75

 75

 76

 76

 76

 76

 76

A polynomial of degree k-1 is uniquely identified with k points

 77

(k=4,n=7)

 77

(k=4,n=7)

 77

x

y (k=4,n=7)

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

f(x) =
kX

i=1

yi

0

@
kY

j=1,j 6=i

x� xj

xi � xj

1

A

 77

x

y (k=4,n=7)

f(x) = a1 + a2 · x+ a3 · x2 + a4 · x3

f(x) =
kX

i=1

yi

0

@
kY

j=1,j 6=i

x� xj

xi � xj

1

A

(k,n) threshold
scheme

D = [x1, …, xn] is a data composed of n
pieces

When at least k pieces xi of D are
known

D can be computed

otherwise D remains undetermined

 78

(k,n) threshold
scheme

D = [x1, …, xn] is a data composed of n
pieces

When at least k pieces xi of D are
known

D can be computed

otherwise D remains undetermined

 78

A polynomial of degree k-1 is uniquely identified with k points

Shamir’s (k,n)
Threshold Scheme
Let D be our secret (an integer), decomposed in n
pieces

Let p be a prime number p > max(D, n)

Generate k-1 random number ai

Define the polynomial of degree k-1  
 

Note that g(0) = D

 79

8i 2 [1; k � 1]|ai 2 [0; p[

g(x) = D + a1 · x1 + · · ·+ ak�1 · xk�1

Shamir’s (k,n) Threshold
Scheme (contd.)

Generate n fragments of the secret
D1 = g(1) mod p, D2 = g(2) mod p, … Dn = g(n) mod p

Distribute (xi, Di)

Recompute D from k fragments (xj,Dj)  
among n using Lagrange polynomial
interpolation

 80

g(0) =
kX

i=1

Di

0

@
kY

j=1,j 6=i

�xj

xi � xj

1

A

D ⌘ g(0) mod p

Example k=3, n=5
p = 997

Make 5 groups

group 1: (1, 547)

group 2: (2, 629)

group 3: (3, 394)

group 4: (4, 839)

group 5: (5, 967)

 81

f(x) =
kX

i=1

yi

0

@
kY

j=1,j 6=i

x� xj

xi � xj

1

A

Example k=3, n=5
p = 997

Make 5 groups

group 1: (1, 547)

group 2: (2, 629)

group 3: (3, 394)

group 4: (4, 839)

group 5: (5, 967)

 81

Collaborate with 2 other groups to compute the secret D

f(x) =
kX

i=1

yi

0

@
kY

j=1,j 6=i

x� xj

xi � xj

1

A

Example k=3, n =5
(contd.)

Group 1, 3, 4

 82

Example for (k=3,n=5)

�We give to each user a fragment among
� (1,547), (2,629), (3,394), (4,839), (5,967)

�Assume users with fragments 1,3,4 want to
reconstruct the secret
� They compute g(0)
𝑔 0 = 547

−3
1 − 3

−4
1 − 4

+ 394
−1
3 − 1

−4
3 − 4

+ 839
−1
4 − 1

−3
4 − 3

𝑔 0 = 547 ∗ 2 − 394 ∗ 2 + 839 = 1145
𝑔 0 𝑚𝑜𝑑 997 = 148

Arnaud Legout © 2006-2012
371

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Example for (k=3,n=5)

�The secret is D=148
�Let’s take

� p=997 (prime), a1=59 (random), a2=340(random)
� g(x)=148 + 59x + 340x2

�We compute 5 fragments
� D1 = g(1) mod 997= 547
� D2 = g(2) mod 997 = 1626 mod 997 = 629
� D3 = g(3) mod 997 = 3385 mod 997 = 394
� D4 = g(4) mod 997 = 5824 mod 997 = 839
� D5 = g(5) mod 997 = 8943 mod 997 = 967

Arnaud Legout © 2006-2012
370

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Example k=3, n =5
(contd.)

To compute it, we took D = 148, p = 997
a prime number, and the polynomial 
 

Such that

 83

Example for (k=3,n=5)

�The secret is D=148
�Let’s take

� p=997 (prime), a1=59 (random), a2=340(random)
� g(x)=148 + 59x + 340x2

�We compute 5 fragments
� D1 = g(1) mod 997= 547
� D2 = g(2) mod 997 = 1626 mod 997 = 629
� D3 = g(3) mod 997 = 3385 mod 997 = 394
� D4 = g(4) mod 997 = 5824 mod 997 = 839
� D5 = g(5) mod 997 = 8943 mod 997 = 967

Arnaud Legout © 2006-2012
370

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Shamir’s (k,n) Threshold
Scheme (contd.)

The size of each fragment does not exceeds the size of
the secret

as long as p is chosen of the same order as the
secret

Possible to generate new fragments at any time,
without altering the others

Possible to construct hierarchies by attributing more or
less fragments

the boss has k fragments, the subaltern has k/2, …

No assumption as opposed to cryptographic functions

 84

Anonymity
Alice wants to send a message to Bob

Communications are unsecured

Nobody can know who is the sender
(not even Bob)

Nobody can know who is the receiver

Nobody else than Bob can retrieve
the message

 85

Mix
Objectives of a mix

Hide correspondences between
incoming and outgoing messages

Not possible to map a source and an
outgoing message (apart for the mix)

No possible to map a receiver and an
incoming message (apart for the mix)

 86

Mix (contd.)

If the mix cannot be fully trusted, use a
cascade of mixes

It works as long as untrusted mixes do
not collaborate all together

 87

Chaum-net
Allow to send a sealed message via a
cascade of mixes

In an overlay, each participant has a
private/public key pair

Alice randomly choses a few of them (e.g.,
3) to be mixes

Alice recursively encrypt the message with
the public key of each mixes she selected

 88

Chaum-net
Allow to send a sealed message via a
cascade of mixes

In an overlay, each participant has a
private/public key pair

Alice randomly choses a few of them (e.g.,
3) to be mixes

Alice recursively encrypt the message with
the public key of each mixes she selected

 88

Chaum-net example

 89

Alice Bob

Chaum-net example

 89

m

Alice Bob

Chaum-net example

 89

m

Alice BobA B

Chaum-net example

 89

m

Alice BobA B

Chaum-net example

 89

m

Alice BobA B

Chaum-net example

 89

m

Alice BobA B

KBob(R0, m)

Chaum-net example

 89

mBob:

Alice BobA B

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Chaum-net example

 89

mBob:B:

Alice BobA B

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

mBob:B:

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

mBob:

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

mBob:

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Chaum-net example

 89

Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Cool, I am anonymous!

Chaum-net example

 89

Alice BobA B

m

KBob(R0, m)

KB(Bob, R1, KBob(R0, m))

Ka(B, R2,KB(Bob, R1, KBob(R0, m)))

Cool, I am anonymous!Are you sure?

Social behavior

 90

"If you have something that you don't want
anyone to know, maybe you shouldn't be
doing it in the first place."

"If you have something that you don't want
anyone to know, maybe you shouldn't be
doing it in the first place."
Eric Schmidt, directeur général de Google, 2009

Je n’ai rien à cacher!

Je n’ai rien à cacher!

Les définitions de lois et moralité ne sont pas universelles

Je suis invisible sur Internet

Je suis invisible sur Internet

Mais je l’utilise tout le temps et partout

Je suis invisible sur Internet

Mais je l’utilise tout le temps et partout

L’Internet a beaucoup changé

[ARPANET logic map,1969]

L’Internet a beaucoup changé

de 4 à plus 1 milliard de terminaux
[ARPANET logic map,1969]

En principe l’Internet est décentralisé

En principe l’Internet est décentralisé

En pratique il est contrôlé par quelques géants…

En principe l’Internet est décentralisé

En pratique il est contrôlé par quelques géants…

… chez qui il faut s’enregistrer

… chez qui il faut s’enregistrer

Cliquez ici pour accepter

… et qui son intégrés à tous les sites

… et qui son intégrés à tous les sites

Cliquez ici pour partager

Je n’ai pas de compte

Je n’ai pas de compte

Je me déconnecte

Risque pour votre vie privée

Risque pour votre vie privée

Je leur fait confiance

Qui utilise Skype?

Qui utilise Skype?

Logiciel de téléphonie par Internet composé
d’un annuaire téléphonique publique;
d’un protocole d’échange de paquets audio sur IP.

Qui utilise BitTorrent?

Qui utilise BitTorrent?

Logiciel de partage de fichiers composé
d’un protocole d’échange de paquets de données sur IP.

Qui utilise BitTorrent et Skype?

Qui utilise BitTorrent et Skype?

A tout moment il est possible de connaître l’adresse IP
d’un utilisateur de Skype;
de machines impliquées dans un téléchargement BitTorrent.

On peut dire qui télécharge quoi/depuis où!

On peut dire qui télécharge quoi/depuis où!

Depuis chez soi

Overlay networking

 109

Overlay network

Constructed on top of another network,
called the underlay

Nodes in the overlay appear 
to be connected 
independently of the underlay

 110

Definitions
Peer

A node involved in forming the overlay (can
be a computer, an end-user, an
application…)

Leecher

A peer that is both client and server

Seed

A peer that is only server

 111

Definitions (contd.)
Peer-to-peer (P2P) application

No general definition

Specific to an application

Every peer is client and server

Peers form an overlay network

In general, we define P2P application as
overlay network formed by end-users

 112

P2P

P2P applications capitalize on any
resource from anybody

CPU

Bandwidth

Storage

 113

Before Murder

 114

credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent

With Murder

 115

credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent

How to reach nodes?

 116

Chord

 117

27/73

Speeding up Lookups

• Size of routing tables is logarithmic.:
 Routing table size: M, where N = 2^M.

• Every node n knows
successor(n + 2^(i-1))
for i = 1... M

• Routing entries = log
2
(N)

 log
2
(N) hops from any node to

any other node

• Example: Log
2
(1000000) 20≈

0

11

2

6

1

3

4

7

12

9 8

10

15

13

14

5

https://www.kth.se/social/upload/51647996f276545db53654c0/3-chord.pdf

Kademlia

 118

16/31

Node State

•Kbucket: each node keeps a list of information for nodes of
distance between 2i and 2i+1.

 0 <= i < 160

 Sorted by time last seen.

110

111

100101

000011 010 001

[1, 2)

[2, 4)

[4, 8)

Slide from https://www.kth.se/social/upload/516479a5f276545d6a965080/3-kademlia.pdf

Routing in Kademlia
(contd.)

 119

Slide from https://www.kth.se/social/upload/516479a5f276545d6a965080/3-kademlia.pdf20/31

Lookup Service

001

000

011010

110 100 111

[1, 2)

[2, 4)

[4, 8)

110

111

100

000011 010 001

[1, 2)

[2, 4)

[4, 8)

100

101

110111

011001 000 010

[1, 2)

[2, 4)

[4, 8)

Step1

Step2

Step3

Blockchains

 120

Why?

Traditional security mechanisms rely on
the notion of trust

who to be the trusted party (e.g.,
Trent)

concentration of power

 121

Why?

Traditional security mechanisms rely on
the notion of trust

who to be the trusted party (e.g.,
Trent)

concentration of power

 121

Shift to cryptographic proof instead of trust

Definition
“A blockchain is a continuously growing
list of records, called blocks, which are
linked and secured using
cryptography.”1

 122
1 Blockchain, https://en.wikipedia.org/wiki/Blockchain, 11th Nov. 2017

First proposed with
bitcoin

Proposed for making Bitcoin
transactions while avoiding double
spending

Nakamoto, Satoshi. "Bitcoin: A peer-
to-peer electronic cash
system." (2008): 28.

Now blockchains go beyond
transactions

 123

First proposed with
bitcoin

Proposed for making Bitcoin
transactions while avoiding double
spending

Nakamoto, Satoshi. "Bitcoin: A peer-
to-peer electronic cash
system." (2008): 28.

Now blockchains go beyond
transactions

 123

In this presentation we use bitcoin as
an example of blockchain

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok7. Ok

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok7. Ok

8. Ok

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok7. Ok

8. Ok

9. Ok

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok7. Ok

8. Ok

9. Ok

10. Bob paid

Before the bitcoin: trust

 124

Alice
(buyer)

Bob
(seller)

Alice’s bank Bob’s bank

Intermediate 1
(e.g., Paypal)

1. Pay Bob

Intermediate 2
(e.g., Visa)

2. Request to
pay Bob

3. Request to
pay Bob

Intermediate 3
clearing)

4. Transfer
to Bob

5. Receive
from Alice

6. Ok7. Ok

8. Ok

9. Ok

10. Bob paid

11. Deliver goods

The role of intermediates:
establish trust

Alice and Bob don’t trust each other

need to find a common trusted party

Banks don’t trust each other

clearing houses settle transactions

Each intermediate gets their share and
concentrates power

 125

With the bitcoin: proof

 126

Alice
(buyer)

Bob
(seller)

1. Pay Bob

Distributed ledger

3. Deliver goods

2. Check the
ledger

Overview
The blockchain is a list of blocks

a block is associated to its cryptographic hash that
encompasses

the block data

the block timestamp

the block nonce

the hash of the predecessor in the list

blocks are “cryptographically linked” preventing
them to be tempered

the blocks chronology is guaranteed

 127

Overview (contd.)
The list of blocks is distributed in the
network

using a peer-to-peer network (all
nodes seem to be connected)

supporting broadcast

Transactions are broadcasted in the
network

 128

Overview (contd.)
Miners create new block based on the collect transactions

a new block is added only if the majority of miners agree

every miner collects broadcasted transactions

and groups them together to form the data of the block

when enough transactions are in the block, the miner
computes a valid hash

and broadcasts it to the network

the first broadcasted new valid block is added as the new
head of the blockchain, the fastest miner is the winner

the winner is rewarded by gaining some fraction of bitcoin

 129

Making a transactions
The origin of the transaction

adds its bitcoin address

adds the bitcoin address of the destination

signs the transaction using its private key

advertises it in the network

Anyone can verify the origin of the transaction
using the public key

and its presence in the blockchain

 130

How to identity clients
in bitcoin?

Clients have a wallet

the wallet is just a private/public key pair

Identification with a bitcoin address

generated for free by any bitcoin user

public key = elliptic curve multiplication of the
private key

bitcoin address = hash of the public key

represented with a 26-35 alphanumeric value

 131

Inside a block

 132

block i
predecessor

hash timestamp

noncetx root

hash

block i-1
predecessor

hash timestamp

noncetx root

hash

block i
predecessor

hash timestamp

noncetx root

Merkel tree
Transactions are stored in a Merkel tree

In a Merkel tree

the key of a node is the hash of its two
children

except for the leaves where it is the hash
of the data itself

in bitcoin, the hash is the SHA-256 hash
of the SHA-256 hash of the item to hash

 133

Merkel tree (contd.)

 134

Tx1
data

Tx2
data

Tx3
data

Tx4
data

Merkel tree (contd.)

 134

Tx1
data

Tx2
data

Tx3
data

Tx4
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)

Merkel tree (contd.)

 134

Tx1
data

Tx2
data

Tx3
data

Tx4
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)

#12=hash(#1+#2) #34=hash(#3+#4)

Merkel tree (contd.)

 134

Tx1
data

Tx2
data

Tx3
data

Tx4
data

#1=hash(Tx1) #2=hash(Tx2) #3=hash(Tx3) #4=hash(Tx4)

#12=hash(#1+#2) #34=hash(#3+#4)

#1234=hash(#12+#34)

Proof of work
To be accepted, minors must accomplish
a proof of work (PoW) on the blocks they
advertise

The PoW is hard to make, easy to check

e.g., find a nonce such that the hash of
the block is below some target value

the target is chosen such that the
PoW takes about 10 minutes

 135

Branch selection

Multiple branches can be valid (e.g.,
two minors gave a valid block at the
same time)

the longest (in terms of complexity)
valid branch is selected

a block is valid if it has at least 6
successors

 136

References
O. Bonaventure. Computer Networking: Principles, Protocols and Practice. http://
inl.info.ucl.ac.be/CNP3.

some network slides inspired from this book

J. Kurose and K. Ross. Computer Networking: A Top-Down Approach, Addison-
Wesley, 6th Edition.

L. Peterson and B. Davie. 
Computer Networks: A Systems Approach.  
Morgan Kaufmann Publishers, 4th Edition.

A. Tanenbaum, D. Wetherall, Computer Networks, Prentice Hall, 4th Edition

A. Legout, Peer-to-Peer Applications From BitTorrent to Privacy, Inria

some privacy and peer-to-peer slides inspired from this course

J. Kehrli, The Blockchain – The Technology behind Bitcoin, https://www.slideshare.net/
JrmeKehrli/the-blockchain-the-technology-behind-bitcoin, November 2017

some blockchain slides inspired from this presentation

 137

Backup

 138

Reminders

 139

Naming and
addressing

 140

Addressing in Ethernet

 141

Objective: determine the origin and destination of
a frame within a collision domain

Every Ethernet network adapter is assigned a
unique datalink layer address encoded on 48 bits

Every frame is transmitted to all network
adapters of the collision domain

but only the network adapter with the address
corresponding to the destination address of the
frame accepts it

Addressing in IP
Objective: determine the origin and destination of a packet in the
Internet

Every host interface has its own IP address

routers have multiple interfaces, each with its own IP address

the IP address determines the topological position of the
interface

Current version of IP is version 4 (IPv4)

addresses are encoded on 32 bits, fixed length

4 billions addresses were a lot... in 1981, but is way too short today

IP version 6 (IPv6) starts to be deployed

addresses are encoded on 128 bits, fixed length*

 142

Classless InterDomain
Routing (CIDR)

No predetermined separation position between network number
and local address with CIDR

number of bits allocated for the network number may vary
from 0 to 32 (resp. 128) bits in IPv4 (resp. IPv6)

the address contains no information about the separation
position

Routers determine the network number by using longest-
prefix matching

Notation a.b.c.d/n (resp. a:b:c:d:e:f:g:h/n)

a.b.c.d (resp. a:b:c:d:e:f:g:h) is the address

n is the number of bits assigned to the network number

 143

CIDR (cont.)
An address matches a route if both share the same
prefix

0.0.0.0/0 (resp. ::/0) is the default route matched by
every addresses

With CIDR, an address can match several routes

192.0.2.1 matches 128.0.0.0/1, but also 192.0.2.0/24
or 0.0.0.0/0

Longest prefix matching is used to determine the route
that has the longest prefix in common with the address

Typically implemented with a trie

 144

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11000000 00000000 00000010 00000001
(192.0.2.1)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)

11000000 00000000 00000010 00000001
(192.0.2.1)  

 
 

Best match 192.0.2.0/24

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11011111 00000000 00000000 00000001
(223.0.0.1)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)

Longest prefix matching
with a trie (examples)

 145

* 
(0.0.0.0/0)

00001010
(10.0.0.0/8)

11000000 00000000 00000010
(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010
(138.96.200.0/22)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)

11011111 00000000 00000000 00000001
(223.0.0.1)  

Best match 128.0.0.0/1

IP to Ethernet Address
To put an IP packet over an Ethernet
frame, its IP addresses must be resolved
into Ethernet addresses

Protocol used:

Address Resolution Protocol (ARP) in
IPv4

Neighbor Discovery Protocol (NDP) in
IPv6

 146

ARP
ARP is used to get datalink layer address of a machine on the local subnet

Broadcast an ARP request frame on the local subnet for the IP address to resolve

destination address: FF:FF:FF:FF:FF:FF (broadcast)

source address: Ethernet address of the network adapter that issued the ARP request

The host (or a proxy) that owns the address replies with an ARP response frame

destination address: Ethernet address of the requester’s network adapter

source address: Ethernet address of the address’s owner’s (or proxy) network adapter

Every network device is required to listen for ARP requests and replies on its network adapters

Optimizations

replies are stored in an ARP cache to avoid that every single packet results in ARP request/
response

cached for a limited duration as host can change their IP address

ARP request message contains the IP address of the origin of the frame

destination (or any hosts in the local subnet) can learn the IP/Ethernet mapping for free

 147

ARP example

 148

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

ARP example

 148

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

ARP example

 148

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

ARP example

 148

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

I am 192.0.2.3

ARP example

 148

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

I am 192.0.2.3

Ethernet source: b Ethernet destination:c IP source: 192.0.2.2 IP destination: 192.0.2.3

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP: 203.0.113.1
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

 149

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

Ethernet source: d Ethernet destination:e IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

Dynamic address
configuration

 150

Allow a set of hosts to share a pool of IP address

Two approaches

stateless auto-configuration

no infrastructure necessary

Dynamic Host Configuration Protocol (DHCP)

hosts query a DHCP server to obtain their configuration

Advantages

less address wastage: a host can use the address of another
hosts when it is not connected

improves flexibility and reduces the risk of configuration error as
no manual operation is necessary

Stateless auto-
configuration

When a host connects to the network:

1. The host choses an address randomly in 169.254/16 (not globally
routable)

2. Sends an ARP request for the chosen address

3. If an ARP reply is received (another host already uses the address

restart from point 1

4. Otherwise, the address the address is not used by another host and
the host can use it safely

Auto-configuration is used only for communications within the same
network

In IPv6, hosts can auto-configure their globally routable addresses
and discover network services (e.g., routers, DNS...)

 151

Dynamic Host Configuration
Protocol (DHCP)

When a host connects to the network, it broadcasts a DHCP discovery
datagram

Any DHCP server that receives such a message replies with a DHCP
offer datagram that contains an offer of IP address

The host picks one offer and broadcasts a DHCP request message to
announce the offers it selected

The selected DHCP server assigns the address to the host and sends
it back a DHCP acknowledgment that confirms the lease of the
address and give additional parameters such as the lease time, the IP
address of the default gateway, or the IP address of the DNS servers

when the lease time is elapsed, the address is released and made
available for other hosts

The other DHCP servers withdraw their offers

 152

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.frResponse: ezp.inria.fr = 193.51.193.149

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

 153

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: test.inria.fr

Query: ezp.inria.fr

Transport

 154

Transport of data
between hosts

Transport layer provides an end-to-end
communication service

applications just deal with stream of
bytes

Most popular protocols:

UDP: connection-less, non reliable

TCP: connection-full, reliable

 155

TCP connection
establishment

 156

A B

TCP connection
establishment

 156

A B
LISTEN

TCP connection
establishment

 156

A B

SYN, sequence number=123
LISTEN

TCP connection
establishment

 156

A B

SYN, sequence number=123
LISTEN

SYN-SENT SYN-RECEIVED

TCP connection
establishment

 156

A B

SYN, sequence number=123
LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

SYN-RECEIVED

TCP connection
establishment

 156

A B

SYN, sequence number=123
LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

ACK, acknowledgment number=790

SYN-RECEIVED

TCP connection
establishment

 156

A B

SYN, sequence number=123
LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

ACK, acknowledgment number=790

SYN-RECEIVED

ESTABLISHEDESTABLISHED

TCP data transfer

 157

A B

sent 1000 to 1499
sequence number=1000

ACK, ackn
owledgment number=1500sent 1500 to 1999

sequence number=1500

sent 2000 to 2499
sequence number=2000

ACK, ackn
owledgment number=2000

ACK, ackn
owledgment number=2500

window size = 1500B

sent 2500 to …
sequence number=2500

waiting to send the rest

ready to receive data
sequenced between
1000 and 2499

ready to receive data
sequenced between
1500 to 2999

ready to receive data
sequenced between
2500 to 3999

ready to receive data
sequenced between
2000 to 3499

…

TCP connection
termination

 158

A B

TCP connection
termination

 158

A B
ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567 ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN-WAIT-2

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSED

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

 158

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSEDCLOSED

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

Example of Distributed Denial of
Service (DDoS) attack

Link overloading
(contd.)

 159

Alice Bob

ChuckChuck

Attacks are often to random destinations or with
random sources

backscatter traffic to a sink-hole that can
receive a lot of traffic attack without impacting
the network

Link overloading
(contd.)

 160

Alice Bob

ChuckChuck

Use the sink-hole to attract bizarre
packets

Link overloading
(contd.)

 161

Alice Bob

ChuckChuck

IBGP:
prefix: 0.0.0.0/0
nexthop: sink-hole
NO_EXPORT

Use the sink-hole to protect the target

Link overloading
(contd.)

 162

Alice Bob

ChuckChuck

IBGP:
prefix: Bob/32
nexthop: sink-hole
NO_EXPORT

Content replication

 163

Definitions
Service capacity

Number of peers that can serve a content

= 1 in client-server, constant with time

Flash crowd of n

Simultaneous request of n peers (e.g., soccer match, iOS
update…)

Piece/chunk/block

Element of a partition of the content

Each piece can be independently retrieved

The union of pieces forms the content

 164

Definitions
Service capacity

Number of peers that can serve a content

= 1 in client-server, constant with time

Flash crowd of n

Simultaneous request of n peers (e.g., soccer match, iOS
update…)

Piece/chunk/block

Element of a partition of the content

Each piece can be independently retrieved

The union of pieces forms the content

 164
http://www.internetphenomena.com/2013/09/traffic-spotlight-ios-7-launch/

Interest of P2P to
replicate contents

Service capacity grows up exponentially with
time

Average download time for a flash crowd n
is then in log(n)

Average download time decreases in 
 when the number of pieces increases

if we ignore the overhead 

 165

1

of pieces

Content transfer
model

Simple deterministic model

Each peer serves only one peer at a time

The unit of transfer is the content

n-1 peers want the content, with n=2k

T is the time to complete an upload

T=s/b, s content size, b upload capacity

Peer selection strategy with Binary tree

global knowledge

 166

Capacity C of the
service

 167

t=0

Capacity C of the
service

 167

t=0

t=T

Capacity C of the
service

 167

t=0

t=T

t=2T

Capacity C of the
service

 167

t=0

t=T

t=2T

t=3T

Capacity C of the
service

t=0 => C = 20 peers

t=T => C = 21 peers

t=2*T => C = 22 peers

…

t=i*T => C = 2i peers

➡ C = 2t/T peers

 167

t=0

t=T

t=2T

t=3T

Finish time
seed only at time t = 0

20 peers finish at t = T

21 peers finish at t=2T

…

2k-1 peers finish at t=k*T

➡ content transferred to all
peers at t = k*T = T * log2(n) 
vs n*T in client-server

 168

t=0

t=T

t=2T

t=3T

Can we speed up
transfers?

 169

Piece transfer model
Same as before but the transfer unit is the
piece instead of the content

a content is divided into m equal size
pieces

m > k

Piece downloaded in T/m

➡content transferred to all peers at t = T * 1/m * log2(n) + T 
vs T * log2(n) without piece transfer vs n*T in client-server

 170

Parallel downloads
Download from several peers in parallel

Strategy

request one piece from every server with the
content

request another piece from the server as
soon as the requested piece has been
obtained

performance is optimal when servers are
always busy delivering a piece of data

 171

Parallel downloads
(contd.)

 172

P1 P2P

Parallel downloads
(contd.)

 172

P1 P2P

2
1

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1
3

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

3

3

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

3

3

4

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

5

3

3

4

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

5

3

3

4

4

Parallel downloads
(contd.)

 172

P1 P2P

2

2
1

1

5

3

3

4

4

Peers are not always fully utilised!

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

1

1

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

1

2
1

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

1
2

2
1

3

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

1
2

2
1

4
3

3

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

 173

P1P

1
2

2
1

4
3

3
4

