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Networking technology is 
at the middle age of CS (1)

Networks are managed by configuration but 

each protocol has its own set of configuration, 

it is impossible to react to sudden unexpected 
changes.
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As if we implemented everything in assembly language!



Software Defined 
Networking concept

The traditional approach sees networks as a set of 
devices to configure. 

Operators are networking experts. 

SDN conceives the network as a program. 

Network logic is implemented by humans but 
network elements are never touched by humans.
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SDN with OpenFlow
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Cost reduction with COTS

Data-plane devices only perform forwarding: 

simple memory structures, 

simple instruction set, 

➡ easy virtualisation. 

The control plane runs on x86. 

No vendor lock-in.
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How does it work?
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Treat the network as a 
black box

See the network as a black box [NST+14, NSB+15] so 
the operator 

follows the declarative programming paradigm to 
program the network (i.e., what not how), 

sees it as a system with infinite resources (like a 
computer for an application).
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Networks do not have infinite resources



Anatomy of a flow table
A flow table is a partially ordered set of rules 

A rule is a tuple composed of 

a predicate to define equivalence classes (i.e., 
flows) 

an action to be applied on every packet of the 
same class 

a priority to provide ordering
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Predicate Action Priority
IP.destination = bob ^ tcp.destination_port = HTTP forward to West 10

TRUE drop 0



Flow tables are too small

Rule space is large,           , 

because of the flexibility offered by OpenFlow. 

Flow table size on COTS is small,           , 

because TCAM is expensive and power hungry.
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O(109)

O(104)



Let the network auto(-magically) construct 
forwarding tables so to maximise network utility 
under resource constraints.

Our objective
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Finding the optimal is unrealistic (NP-hard)

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
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Leverage default 
operations

A B

default path
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Let’s be real…

Flow tables are large enough but… 

the workload is unknown: 

unknown distributions (size, inter-arrival…), 

non-stationary processes. 

13



Let’s be real…

Flow tables are large enough but… 

the workload is unknown: 

unknown distributions (size, inter-arrival…), 

non-stationary processes. 

13

Offline optimisation is impossible



Where is the problem?

Switches are good only at switching. 

Control-plane is the real bottleneck: 

installation time >>> packets inter arrival time, 

controller treatment rate is bounded.
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Limit the number of requests to the controller
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Use the controller for flow at epoch    ? :t ut 2 {0, 1}

Maximum load on controller: c 2 [0; 1]

Reward for optimising flow at epoch   :t rt

Model controller load with a queue:

Q(t)  V · rt
Use controller if

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤



Math to networking: the 
wrong way

Remember: 

Easy: 

two sums, 

one comparison.
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a(k) = d(k)  B(k)

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤

Q(t)  V · rt

A switch should be able to do that



Switches are just pipelines 
of match-action tables

Frame parsing 

Match-action pipelines
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[BDG+14] P4: Programming Protocol-Independent Packet Processors, P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. 
Talayco, A. Vahdat, G. Varghese, D. Walker, ACM Sigcomm Computer Communications Review (CCR). Volume 44, Issue #3, July 2014. 

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling
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Drift-plus-penalty 
Workflow
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Implementation with the 
P4 DSL
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Not 100% implementable 
on the fast path

To implement our drift-plus-penalty we need: 

to compute Q (with a leaky bucket), 

to translate epoch in rate (no distribution 
knowledge), 

to remember rejected flows (update tables on the 
fly).
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Math to networking: the 
right way

Easy: 

Estimate class probabilities 

Install 4 OpenFlow rules with priority 0 

One for classes  

One for classes  

Two for class              with complementary weights
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It works!



In a 4 nodes Hadoop 
cluster
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Take away message

“Theoretical” and “practical” knowledges need each 
other 

Work and exchange your thoughts with the 
specialists.
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APIs to program the 
network
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OpenFlow to separate 
roles

Programmability of network is reached by decoupling 
control plane from data plane in OpenFlow: 

network elements are elementary switches, 

the intelligence is implemented by a logically 
centralised controller 

that manages the switches (i.e., install forwarding 
rules).
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Fast-path workflow
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Flow-table definition
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Flow-table actions
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Redirect table definition
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Redirect actions
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Implement a new protocol
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