
Network's Adventures 
in Softwar’land

January 2018Damien Saucez



Networking technology is 
at the middle age of CS (1)

Networks are managed by configuration but 

each protocol has its own set of configuration, 

it is impossible to react to sudden unexpected 
changes.

2



Networking technology is 
at the middle age of CS (2)

No abstraction is used so 

one need to know the network details (e.g., link 
capacity, IP addresses, hw…), 

one need a deep understanding of the deployed 
protocols and their interactions.

3



Networking technology is 
at the middle age of CS (2)

No abstraction is used so 

one need to know the network details (e.g., link 
capacity, IP addresses, hw…), 

one need a deep understanding of the deployed 
protocols and their interactions.

3

As if we implemented everything in assembly language!



Software Defined 
Networking concept

The traditional approach sees networks as a set of 
devices to configure. 

Operators are networking experts. 

SDN conceives the network as a program. 

Network logic is implemented by humans but 
network elements are never touched by humans.

4



SDN with OpenFlow

5

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Data-plane Data-plane

Data-plane Data-plane

Control-plane

Traditional approach OpenFlow approach



Cost reduction with COTS

Data-plane devices only perform forwarding: 

simple memory structures, 

simple instruction set, 

➡ easy virtualisation. 

The control plane runs on x86. 

No vendor lock-in.

6



How does it work?

7

AliceBob

Controller



How does it work?

7

AliceBob

to Bob

Controller



How does it work?

7

AliceBob

to Bob

Controller



How does it work?

7

AliceBob

to Bob

W
ha

t a
cti

on f
or  

    
    

    
    

  ?

to
 Bob

Controller



How does it work?

7

Fo
r  

    
    

    
    

  , 
go

 W
est

to
 BobFor    

      
      

    , 
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or  

    
    

    
    

  ?

to
 Bob

Controller



How does it work?

7

Fo
r  

    
    

    
    

  , 
go

 W
est

to
 BobFor    

      
      

    , 
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or  

    
    

    
    

  ?

to
 Bob

rules: {predicate:                ,  
          action: go West}

to Bob

Controller

rules: {predicate:                ,  
         action: go South-West}

to Bob



How does it work?

7

Fo
r  

    
    

    
    

  , 
go

 W
est

to
 BobFor    

      
      

    , 
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or  

    
    

    
    

  ?

to
 Bob

rules: {predicate:                ,  
          action: go West}

to Bob

Controller

rules: {predicate:                ,  
         action: go South-West}

to Bob



Treat the network as a 
black box

See the network as a black box [NST+14, NSB+15] so 
the operator 

follows the declarative programming paradigm to 
program the network (i.e., what not how), 

sees it as a system with infinite resources (like a 
computer for an application).

8

[NST+14] Optimizing rules placement in OpenFlow networks: trading routing for better efficiency, X. N. Nguyen, D. Saucez, T. Turletti, 
and C. Barakat, in Proc. ACM SIGCOMM HotSDN workshop, August 2014. 

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, X.N. Nguyen, D. 
Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Treat the network as a 
black box

See the network as a black box [NST+14, NSB+15] so 
the operator 

follows the declarative programming paradigm to 
program the network (i.e., what not how), 

sees it as a system with infinite resources (like a 
computer for an application).

8

[NST+14] Optimizing rules placement in OpenFlow networks: trading routing for better efficiency, X. N. Nguyen, D. Saucez, T. Turletti, 
and C. Barakat, in Proc. ACM SIGCOMM HotSDN workshop, August 2014. 

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, X.N. Nguyen, D. 
Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.

Networks do not have infinite resources



Anatomy of a flow table
A flow table is a partially ordered set of rules 

A rule is a tuple composed of 

a predicate to define equivalence classes (i.e., 
flows) 

an action to be applied on every packet of the 
same class 

a priority to provide ordering

9

Predicate Action Priority
IP.destination = bob ^ tcp.destination_port = HTTP forward to West 10

TRUE drop 0



Flow tables are too small

Rule space is large,           , 

because of the flexibility offered by OpenFlow. 

Flow table size on COTS is small,           , 

because TCAM is expensive and power hungry.

10

O(109)

O(104)



Let the network auto(-magically) construct 
forwarding tables so to maximise network utility 
under resource constraints.

Our objective

11

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Let the network auto(-magically) construct 
forwarding tables so to maximise network utility 
under resource constraints.

Our objective

11

Finding the optimal is unrealistic (NP-hard)

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Leverage default 
operations

A B

default

default path
12

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, 
X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, in Proc. IEEE INFOCOM 2015, April 2015.



Let’s be real…

Flow tables are large enough but… 

the workload is unknown: 

unknown distributions (size, inter-arrival…), 

non-stationary processes. 

13



Let’s be real…

Flow tables are large enough but… 

the workload is unknown: 

unknown distributions (size, inter-arrival…), 

non-stationary processes. 

13

Offline optimisation is impossible



Where is the problem?

Switches are good only at switching. 

Control-plane is the real bottleneck: 

installation time >>> packets inter arrival time, 

controller treatment rate is bounded.

14



Where is the problem?

Switches are good only at switching. 

Control-plane is the real bottleneck: 

installation time >>> packets inter arrival time, 

controller treatment rate is bounded.

14

Limit the number of requests to the controller



1st approach

15



1st approach

15

Maximum load on controller: c 2 [0; 1]



1st approach

15

Use the controller for flow at epoch    ? :t ut 2 {0, 1}

Maximum load on controller: c 2 [0; 1]



1st approach

15

Use the controller for flow at epoch    ? :t ut 2 {0, 1}

Maximum load on controller: c 2 [0; 1]

Model controller load with a queue:

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤



1st approach

15

Use the controller for flow at epoch    ? :t ut 2 {0, 1}

Maximum load on controller: c 2 [0; 1]

Reward for optimising flow at epoch   :t rt

Model controller load with a queue:

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤



1st approach

15

Use the controller for flow at epoch    ? :t ut 2 {0, 1}

Maximum load on controller: c 2 [0; 1]

Reward for optimising flow at epoch   :t rt

Model controller load with a queue:

Q(t)  V · rt
Use controller if

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤



Math to networking: the 
wrong way

Remember: 

Easy: 

two sums, 

one comparison.

16

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤

Q(t)  V · rt



Math to networking: the 
wrong way

Remember: 

Easy: 

two sums, 

one comparison.

16

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤

Q(t)  V · rt

A switch can’t do that



Math to networking: the 
right way

Remember: 

Easy: 

Looks like a leaky bucket.  
 
 
 

17

B(k + 1) = min[B(k)� a(k) + ā,MAX]

a(k) = d(k)  B(k)

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤

Q(t)  V · rt



Math to networking: the 
right way

Remember: 

Easy: 

Looks like a leaky bucket.  
 
 
 

17

B(k + 1) = min[B(k)� a(k) + ā,MAX]

a(k) = d(k)  B(k)

Q(t+ 1) = max

⇥
Q(t) + ut � c, 0

⇤

Q(t)  V · rt

A switch should be able to do that



Switches are just pipelines 
of match-action tables

Frame parsing 

Match-action pipelines

18

[BDG+14] P4: Programming Protocol-Independent Packet Processors, P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. 
Talayco, A. Vahdat, G. Varghese, D. Walker, ACM Sigcomm Computer Communications Review (CCR). Volume 44, Issue #3, July 2014. 

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling



Switches are just pipelines 
of match-action tables

Frame parsing 

Match-action pipelines

18

[BDG+14] P4: Programming Protocol-Independent Packet Processors, P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. 
Talayco, A. Vahdat, G. Varghese, D. Walker, ACM Sigcomm Computer Communications Review (CCR). Volume 44, Issue #3, July 2014. 

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

match/action tables



Switches are just pipelines 
of match-action tables

Frame parsing 

Match-action pipelines

18

[BDG+14] P4: Programming Protocol-Independent Packet Processors, P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. 
Talayco, A. Vahdat, G. Varghese, D. Walker, ACM Sigcomm Computer Communications Review (CCR). Volume 44, Issue #3, July 2014. 

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

metadata bus

match/action tables



Drift-plus-penalty 
Workflow

19

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

flow … portQ? ……

slow path

fast path

……



Drift-plus-penalty 
Workflow

19

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

flow … portQ? ……

miss

slow path

fast path

……



Drift-plus-penalty 
Workflow

19

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

flow … portQ? ……

miss

Drift-plus-penalty

slow path

fast path

……



Drift-plus-penalty 
Workflow

19

Anatomy of a Switch

• Ingress Pipeline
• Egress Pipeline
• Traffic Manager
◦ N:1 Relationships: Queueing, Congestion Control
◦ 1:N Relationships: Replication
◦ Scheduling

21

D
eparser

MetadataP
arser

Metadata Queueing, 
Replication 

& 
Scheduling

P
arser

D
eparser

MetadataP
arser

D
eparser

Metadata Queueing, 
Replication 

& 
Scheduling

flow … portQ? ……

miss

Drift-plus-penalty

slow path

fast path

match

……



Implementation with the 
P4 DSL

20

…

…

…



Implementation with the 
P4 DSL

20

…

…

…



Not 100% implementable 
on the fast path

To implement our drift-plus-penalty we need: 

to compute Q (with a leaky bucket), 

to translate epoch in rate (no distribution 
knowledge), 

to remember rejected flows (update tables on the 
fly).

21



Not 100% implementable 
on the fast path

To implement our drift-plus-penalty we need: 

to compute Q (with a leaky bucket), 

to translate epoch in rate (no distribution 
knowledge), 

to remember rejected flows (update tables on the 
fly).

21

Need to find another way



2nd approach

22 [DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



2nd approach

22

Maximum load on controller: c 2 [0; 1]

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



2nd approach

22

uk 2 {0, 1}Use the controller for flow   ? :k

Maximum load on controller: c 2 [0; 1]

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



2nd approach

22

lim sup
K!1

1

K

KX

k=1

E
⇥
uk

⇤
 c

uk 2 {0, 1}Use the controller for flow   ? :k

Maximum load on controller: c 2 [0; 1]

Limit controller load

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



2nd approach

22

lim sup
K!1

1

K

KX

k=1

E
⇥
uk

⇤
 c

uk 2 {0, 1}Use the controller for flow   ? :k

Maximum load on controller: c 2 [0; 1]

max

u
lim sup

K!1

1

K

KX

k=1

E
⇥
ukrk

⇤
Reward for optimising flow   :k rk

Limit controller load

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Optimal strategy

23 [DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Optimal strategy

23

Group flows in ranked classes

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Optimal strategy

23

Group flows in ranked classes

Use the controller for class   ? :k uk 2 [0; 1]

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Optimal strategy

23

uj(↵
⇤) =

8
><

>:

1 j  b↵⇤c
↵⇤ � b↵⇤c j = b↵⇤c+ 1

0 j � b↵⇤c+ 2

Group flows in ranked classes

Use the controller for class   ? :k uk 2 [0; 1]

Threshold-based optimal:

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Optimal strategy

23

For      a solution of ↵⇤

b↵cX

j=1

pj + (↵� b↵c) · pb↵c+1 = c

uj(↵
⇤) =

8
><

>:

1 j  b↵⇤c
↵⇤ � b↵⇤c j = b↵⇤c+ 1

0 j � b↵⇤c+ 2

Group flows in ranked classes

Use the controller for class   ? :k uk 2 [0; 1]

Threshold-based optimal:

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Math to networking: the 
right way

Easy: 

Estimate class probabilities 

Install 4 OpenFlow rules with priority 0 

One for classes  

One for classes  

Two for class              with complementary weights

24

 b↵⇤c

� b↵⇤c+ 2

b↵⇤c+ 1



Math to networking: the 
right way

Easy: 

Estimate class probabilities 

Install 4 OpenFlow rules with priority 0 

One for classes  

One for classes  

Two for class              with complementary weights

24

 b↵⇤c

� b↵⇤c+ 2

b↵⇤c+ 1

It works!



In a 4 nodes Hadoop 
cluster

25

signaling constraint c
0.1 0.3 0.7 0.9P

or
ti
on

op
ti
m
iz
ed

tr
affi

c

0

0.5

1

SOFIA
random
optimal

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



In a 4 nodes Hadoop 
cluster

26

signaling constraint c
0.1 0.3 0.7 0.9

C
om

p
le
ti
on

ti
m
e
[s
]

0

100

200

300

400
SOFIA
random

terasort

[DMM+18] Blind, Adaptive and Robust Flow Segmentation in Datacenters, F. De Pellegrini, L. Maggi, 
A. Massaro, D. Saucez, J. Leguay, E. Altman, in Proc. IEEE INFOCOM 2018, April 2018.



Take away message

“Theoretical” and “practical” knowledges need each 
other 

Work and exchange your thoughts with the 
specialists.

27



Network's Adventures 
in Softwar’land

January 2018Damien Saucez



APIs to program the 
network

29

Ap
pl

ic
at

io
n 

pl
an

e 
Co

nt
ro

l p
la

ne
 

D
at

a 
pl

an
e 

Ea
st

/W
es

t 
in

te
rf

ac
e

Northbound interface

Southbound interface



OpenFlow to separate 
roles

Programmability of network is reached by decoupling 
control plane from data plane in OpenFlow: 

network elements are elementary switches, 

the intelligence is implemented by a logically 
centralised controller 

that manages the switches (i.e., install forwarding 
rules).

30



Fast-path workflow

31



Flow-table definition

32



Flow-table actions

33



Redirect table definition

34



Redirect actions

35



Implement a new protocol

36


