
Tutorial
Modeling, Simulation and Control of Deformable Robots on

SOFA Framework

DEFROST team

General overview of the Tutorial
https://team.inria.fr/defrost/

● 9:00 am: Starting
○ 9:00 am: Introduction (round table) and short presentation of the

tutorial (in particular the Hybrid mode)
○ 9:10 am: Installation of SOFA on your Machine and first tests
○ 9:30 am: Notions of mechanics useful for the Tutorial (Christian)

9:00 - 11:00: Session 1:

● 10:00am: Tripod Tutorial (part 1)
○ Main steps for direct modeling

■ Finite Element Model
■ Articulated system for servo motor
■ Coupling

9:00 - 11:00: Session 1

● 11:00am: Presentation of the SOFA community and consortium
● 11:15am: Tripod Tutorial (part 2) :

○ Inverse modeling
○ Maze motion planning
○ Test on the digital twin
○ Test on the robot (for people on site)

● 12:15am: Conclusion and ongoing work

11:00 - 12:30: Session 2

Todo : show what we will have at the
end of the tutorial ?

Session 1 9:10 am to 9:30 am:
Installation of SOFA on your Machine and
first tests

Practical informations for installation

Follow instructions at

github.com/SofaDefrost/RoboSoft2022

This is not a commercial product !

● Strong efforts to make it work on all platform Our goal is to disseminate SOFA for
Soft-Robotics, and find new usages & contributors

● Any issue using SOFA? your feedback is valuable for us
○ Robosoft 2022: we are here to help you !
○ Later: we stay by your side

● We already would like to thank all the member of the DEFROST team for their
contribution as well as the SOFA consortium for helping us to set up this tutorial

Installation test
● Let's enter the world of simulation

○ Read instructions for your OS →
github.com/SofaDefrost/RoboSoft2022

○ Make sure to install pre-requisites
○ Download the SoftRobots zip
○ try runSofa with the file workshop.pyscn (on the SOFA repository)

● Report us any issue
○ Let's fix this together

PRACTICE

Main principles of SOFA :: the graph
● Scene Graph

● Nodes
● Components
● Data in components

PRACTICE

Multi-models

FEM
Spring
Mass Rigidshare/sofa/examples/Demos/chainHybrid

PRACTICE

Tutorials …

Session 1 9:30 am to 10:00 am:
Notions of mechanics useful for the Tutorial

Multi-Models Mechanics
●

q
m

m

q1

q2

Multi-Models Mechanics
● Deformable body with FEM● Deformable body with FEM

Updated linearization (at each simulation step)

Multi-Models Mechanics
● Interaction between models

FEM Model
DOFs: positions of nodes
(Vec3 types in SOFA)

Rigid Model
DOFs: positions and orientation
of gravity center
 (Rigid types in SOFA)

Configuration space / kinematic links
● Lagrangian Mechanics:

● State variables: (q, q’) [Generalized coordinates] + t [effort same space]
● Kinematic relation: x = g(q)
● Kinetic relation: x’ = dg/dq q’ => J q’
● Virtual work principle => t = Jt f (to develop)

● In SOFA,
● Mappings= [Kinematic / Kinetic / Force transfer]
● q,q’ = parent models
● x, x’ = child models
● position and velocity imposed by the mapping of a parent MechanicalObject
● force can be applied on slave models and transmitted to the parent

Main principles of SOFA :: main components
● Mapped Mechanical objects: slave models

FEM Model
DOFs: positions of nodes (Vec3)

Rigid Model
DOFs: positions and orientation
of gravity center (Rigid)Collision Model

Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Collision Model
Mapped DOFs: positions of points (Vec3)
RigidMapping

Main principles of SOFA :: main components
● Mapping

● Allow to transfer the motion (pos, vel) to a « slave » model
● Allow to transfer back to the « parent » model some Forces

Main principles of SOFA :: main components
● Mapping

● Allow to transfer the motion (pos, vel) to a « slave » model
● Allow to transfer back to the « parent » model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Collision Model
Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Main principles of SOFA :: main components
● Mapping

● Allow to transfer the motion (pos, vel) to a « slave » model
● Allow to transfer back to the « parent » model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

im
pose

d posit
ions a

nd ve
locitie

s

Collision Model
Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Main principles of SOFA :: main components
● Mapping

● Allow to transfer the motion (pos, vel) to a « slave » model
● Allow to transfer back to the « parent » model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Collision Model
Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Add fo
rces a

nd constr
aints

Main principles of SOFA :: main components
● Mapping

● Allow to transfer the motion (pos, vel) to a « slave » model
● Allow to transfer back to the « parent » model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Visual Model

im
pose

d posit
ions

Deformable-rigid coupling
Why composite mechanics ?

● Soft robot can be composed of rigid sections (backbones)

● Importance of computing the coupling between rigid parts and deformable parts.

Deform
able

Rigid
Deform

able

Slave nodes

Deformable-rigid coupling
Hierarchical representation

Slave nodes

Rigid Frame

Slave nodes

Rigid

in sofa => (Mapping)

Deformable-rigid coupling
Hierarchical representation

Slave nodes

Rigid Frame

Slave nodes

Rigid Mapping

remaining FEM nodes

Deformable-rigid coupling
Hierarchical representation

Slave nodes

Rigid Frame

Slave nodes

Rigid Mapping

remaining FEM nodes

FEM computation ?

?

Deformable-rigid coupling
Hierarchical representation

Multi-Mapping Concept

Slave nodes

Rigid Frame

Slave nodes

Rigid Mapping

remaining FEM nodes

FEM computation

?

 SubsetMultiMapping
FEM ForceField

Deformable-rigid coupling
Hierarchical representation

Multi-Mapping Concept

Slave nodes

Rigid Frame

Slave nodes

Rigid Mapping

remaining FEM nodes

FEM computation

 SubsetMultiMapping
FEM ForceField

internal
Forces

internal
Forces

internal
Forces

Deformable-rigid coupling
Hierarchical representation

Multi-Mapping Concept

Common solver

Slave nodes

1 Rigid Frame

Slave nodes

Rigid Mapping

n remaining FEM nodes

FEM computation

 SubsetMultiMapping
FEM ForceField

internal
Forces

internal
Forces

internal
Forces

Solver (size 3n + 6)

Deformable-rigid coupling
Hierarchical representation

Multi-Mapping Concept

Common solver

Slave nodes

K

KJT dq

dxKJ

KJT J

jacobian of the Rigid MappingJ

Solver (size 3n + 6)

with

Session 1 10:00 am to 11:00 am: Tripod Tutorial (part1)

PRACTICE

Step1: Mesh loader, visual model, and DOFs
We are introducing:

● Basic mechanical modeling
● Time integration and a mechanical

object to the scene
● Visual model

PRACTICE

Step1: Mesh loader, visual model, and DOFs
We are introducing:

● Basic mechanical modeling
● Time integration and a mechanical

object to the scene
● Visual model

def createScene(rootNode):

 # Tool to load the mesh file of the silicone piece.

 It will be used for both the mechanical and the

 visual models.

 # Visual object

 visual = rootNode.addChild("Visual")

 visual.addObject("MeshSTLLoader", name="loader2",

 filename="data/mesh/tripod_mid.stl")

 visual.addObject("OglModel", name="renderer",

 src='@../loader2',

 color=[1.0, 1.0, 1.0, 0.5])

PRACTICE

Step2: Mechanical model
Introducing elastic material modelling:

● Volumetric mesh
● Solver
● Force field

PRACTICE

Step2: Mechanical model
Introducing elastic material modelling:

● Volumetric mesh
● Solver
● Force field

Tetrahedric mesh

body.addObject('GIDMeshLoader', name='loader',

 filename="data/mesh/tripod_high.gidmsh")

body.addObject('TetrahedronSetTopologyContainer',

 src='@loader', name='container')

body.addObject("MechanicalObject", name="dofs",

 position=elasticbody.loader.position)

body.addObject("UniformMass", totalMass=0.032)

Solver components

body.addObject("EulerImplicitSolver")

body.addObject("SparseLDLSolver")

ForceField components

body.addObject("TetrahedronFEMForceField",

 youngModulus=800, poissonRatio=0.45)

What’s new in the scene:

PRACTICE

Step3: Fixed constraint
In this step:

● Add a box to select points
● Fix the select points with a constraint

PRACTICE

Step3: Fixed constraint

Instanciating the FixingBox prefab into the graph,

constraining the mechanical object of the ElasticBody.

fix = FixingBox(rootNode, body.ElasticMaterialObject,

 translation=[0.0, 0.0, 0.0],

 scale=[30., 30., 30.])

Changing the property of the Box ROI so that the

constraint area appears on screen.

fix.boxroi.drawBoxes = True

What’s new in the scene:In this step:

● Add a box to select points
● Fix the select points with a constraint

This prefab is implementing a S90 servo
motor.

Call to prefab:

from s90servo import ServoMotor

def createScene(rootNode):

ServoMotor(rootNode)

Run result:

runSofa details/s90servo.py

Prefabs: ServoMotor

This prefab is implementing a S90 servo
motor with the tripod actuation arm.

Call to prefab:

from actuatedarm import ActuatedArm

def createScene(rootNode):

ActuatedArm(rootNode)

Run result:

runSofa details/actuatedarm.py

Prefabs: ActuatedArm

PRACTICE

Step4: Tripod assembly
Define the tripod prefab in three steps:

1. Add the ActuatedArm prefab
2. Rigidify part to attach to the arms
3. Constraint the deformable object to

follow the arms

PRACTICE

Step4-1: Add actuated arms
First step is to:

● Add the three actuated arms
● Correctly place them

PRACTICE

Step4-2: Rigidification
Second step is:

● Deformable part should be attached at
each extremity

● So each extremity is rigidified

PRACTICE

Step4-1: Add actuated arms

from actuatedarm import ActuatedArm

…

for i in range(0, nummotors):

 name = "ActuatedArm"+str(i)

 … compute correct translation and rotation …

 ActuatedArm(self.node, name=name,

 translation=translation,

 eulerRotation=eulerRotation)

 # Add limits to angle that correspond to

 limits on real robot

 arm.ServoMotor.minAngle = -2.0225

 arm.ServoMotor.maxAngle = -0.0255

First step is to:

● Add the three actuated arms
● Correctly place them

Arms not attached to the deformable part yet

What’s new in the scene:

PRACTICE

Step4-2: Rigidification
Second step is:

● Deformable part should be attached at
each extremity

● So each extremity is rigidified

Now three frames are attached to the
deformable part

from stlib.physics.mixedmaterial import Rigidify
…

Rigidify the deformable part in each extremity
rigidified = Rigidify(self.node,
 deformableObject,
 groupIndices=groupIndices,
 frames=frames,
 name="RigidifiedStructure")

The prefab gives access to two nodes
rigidifiedstruct.DeformableParts…
rigidifiedstruct.RigidParts…

What’s new in the scene:

PRACTICE

Step4-3: Attach parts
Last step of assembly:

● Link rigidified parts with actuated arms
● Use springs to attached the frames

PRACTICE

Step4-3: Attach parts
Last step of assembly:

● Link rigidified parts with actuated arms
● Use springs to attached the frames

Attach arms
rigidParts.addObject('SubsetMultiMapping',
 input=[self.actuatedarms[0].ServoMotor…,
 self.actuatedarms[1].ServoMotor…,
 self.actuatedarms[2].ServoMotor…]
 output="@./", indexPairs=[[0,1,1,1,2,1,3,0])

What’s new in the scene:

This prefab is implementing the tripod, with
three S90 servo motors and actuation arm.

Call to prefab:

from tripod import Tripod

def createScene(rootNode):

Tripod(rootNode)

Run result:

runSofa details/tripod.py

Prefabs: Tripod

PRACTICE

Step5: Controller
Here you will learn how to:

● Add a controller
● The controller will connect user actions

to the simulated behaviour
● We will animate the tripod to put it in

the right position

PRACTICE

Step5: Controller

from tripodcontroller import TripodController

…

tripod = Tripod(model)

TripodController(rootNode, tripod.actuatedarms)

Here you will learn how to:

● Add a controller
● The controller will connect user actions

to the simulated behaviour
● We will animate the tripod to put it in

the right position

What’s new in the scene:

PRACTICE

Plug the robot

● 11:00am: Presentation of the SOFA community and consortium
● 11:15am: Tripod Tutorial (part 2) :

○ Inverse modeling
○ Maze motion planning
○ Test on the digital twin
○ Test on the robot (for people on site)

● 12:15am: Conclusion and ongoing work

11:00 - 12:30: Session 2

Todo : show what we will have at the
end of the tutorial ?

Session 2 Presentation of the SOFA community

Session 2 Tripod Tutorial (part 2)

Inverse Kinematics
Time-stepping:

Internal forces linearization :
(at each time step)

Matrix system to solve:

Mai+1 = f(xi+1 ,vi+1) + fext

 vi+1 = vi + hai+1
 xi+1 = xi + hvi+1

 f(xi+1 ,vi+1) = f(xi ,vi) + Kdx + Ddv

(M - hD - h2K) dv = hfext + hf(xt ,vt) + h2Kvt

 A b

 -K dx = f(xi-1) + fext (quasi static)

 A b

Quick Reminder

Inverse Kinematics
Problem statement:

● Control the end effector position and orientation
● By finding the right angle for each actuated arm

desired
position

?

?

?

Inverse Kinematics
For actuator and contact we use Lagrange multipliers:

A HT dx = b
H 0 -λ δ

Constraint Jacobian:
direction of the

constraint forces
Lagrange multiplier:

constraint effort

Shift, volume growth...

Quick Reminder

Inverse Kinematics

Optimization in motion space: computationally expensive
➜ Projection in space of actuation variables using Schur complement: Wjk = Hj A

-1Hk
T , with j, k∈ {e,a}

➜ Wjk : mechanical coupling between effector points and actuators.

δe = Wea λa + δe
free

δa = Waa λa + δa
free

with δfree = Hedxfree + δ(xi)
 dxfree = A-1b

A He
T Ha

T dx = b
He 0 0 -λe δe
Ha 0 0 -λa δa

xe
desired 𝝀a3

𝝀a2

xe

𝛅
e

𝝀a1

Inverse Kinematics

Optimization in motion space: computationally expensive
➜ Projection in space of actuation variables using Schur complement: Wjk = Hj A

-1Hk
T , with j, k∈ {e,a}

➜ Wjk : mechanical coupling between effector points and actuators.

δe = Wea λa + δe
free

δa = Waa λa + δa
free

with δfree = Hedxfree + δ(xi)
 dxfree = A-1b

A He
T Ha

T dx = b
He 0 0 -λe δe
Ha 0 0 -λa δa

xe
desired 𝝀a3

𝝀a2

xe

𝛅
e

𝝀a1

Inverse Kinematics
Formulation of Quadratic Program (QP) with linear constraints:

min ||δe = Weaλa + δe
free||2

 λa

s.t : (1) δmax ≥ δa = Waaλa + δa

free ≥ δmin

 (1) Constraints on actuators (e.g limit on cable displacement)

dx = A-1Ha
Tλa + dxfree

 xi+1 = xi + dx

xe
desired

𝝀a1

𝝀a3

𝝀a2

𝛅
e

xe

Inverse Kinematics with Contacts
● Signorini’s condition for contact
● QP with linear complementarity

constraints
● Specific solver

E. Coevoet - RA-Letter 2017

New actuation that moves the trunk
forward and backward

https://docs.google.com/file/d/19ZoTO1PLyI5kwQgPSd9X183wVxlbYNOK/preview

PRACTICE

Step8: Inverse model
In this step we solve the inverse kinematics:

● add effector position
● add effector target
● add joint actuator (to optimize angle)
● add inverse solver

Run examples: Tripod

2 possibilities :
• Control the 3 absolute positions of the effector (x, y, z)
• Control angle x and z and position y

PRACTICE

Maze orientation planning
run Maze.py

Create trajectory using control points over time

open mazeplanning.json

Add new points…. And to ctrl+r (reload)
Verify in simulation that it is working

Tips: To make the trajectory work well on the robot, try to
emphasize the movements. Sometimes the ball rolls better
in the simulation than in reality

PRACTICE

Control with a digital twin
1. run step8-maze.py
2. press Ctrl+a and then Ctrl+i

○ Is the desired orientation applied ?

○ Can we control the translations of the maze ? which
one ? why ?

○ In MazeController.py, change: working_y = 40 (this
is the working height of the maze in the planning).
Redo step 1 and step 2. What do you observe ? How
would you explain ?

PRACTICE

Control the real robot
Plug the robot and place the maze

Run step8-maze.py

press Ctrl+a then Ctrl+b then Ctrl+i

What difference do you observe between
simulation and reality ? Why ?

What do you propose to correct the error and
better control the small ball inside the maze ?

Thanks!

