Tutorial

Modeling, Simulation and Control of Deformable Robots on SOFA Framework

DEFROST team

General overview of the Tutorial

9:00-11:00: Session 1:

- 9:00 am: Starting
- 9:00 am: Introduction (round table) and short presentation of the tutorial (in particular the Hybrid mode)
- 9:10 am: Installation of SOFA on your Machine and first tests
- 9:30 am: Notions of mechanics useful for the Tutorial (Christian)

9:00-11:00: Session 1

- 10:00am: Tripod Tutorial (part 1)
- Main steps for direct modeling
- Finite Element Model
- Articulated system for servo motor
- Coupling

11:00-12:30: Session 2

- 11:00am: Presentation of the SOFA community and consortium
- 11:15am: Tripod Tutorial (part 2) :
- Inverse modeling
- Maze motion planning
- Test on the digital twin
- Test on the robot (for people on site)

- 12:15am: Conclusion and ongoing work

Todo : show what we will have at the end of the tutorial ?

Session 1

9:10 am to 9:30 am:

Installation of SOFA on your Machine and first tests

Practical informations for installation

Follow instructions at github.com/SofaDefrost/RoboSoft2022

This is not a commercial product !

- Strong efforts to make it work on all platform Our goal is to disseminate SOFA for Soft-Robotics, and find new usages \& contributors
- Any issue using SOFA? your feedback is valuable for us
- Robosoft 2022: we are here to help you !
- Later: we stay by your side
- We already would like to thank all the member of the DEFROST team for their contribution as well as the SOFA consortium for helping us to set up this tutorial

Installation test

- Let's enter the world of simulation
- Read instructions for your OS \rightarrow github.com/SofaDefrost/RoboSoft2022
- Make sure to install pre-requisites
- Download the SoftRobots zip
- try runSofa with the file workshop.pyscn (on the SOFA repository)
- Report us any issue
- Let's fix this together

Main principles of SOFA :: the graph

- Scene Graph
- Nodes
- Components
- Data in components

- RequiredPlugin requiredPlugin1
- VisualStyle visualStyle1
- LCPConstraintSolver ICPConstraint...
- FreeMotionAnimationLoop freeMoti...
- DefaultPipeline defaultPipeline1
- BruteForceDetection N2
- MinProximityIntersection Proximity
- Camera camera1
- LightManager lightManager1
- SpotLight light1
- SpotLight light2
- DefaultContactManager Response
- DefaultVisualManagerLoop defaultV...
v - Snake
- - SparseGridRamificationTopology ..
- EulerImplicitSolver cg_odesolver
- CGLinearSolver linear_solver
- MechanicalObject dofs
- UniformMass uniformMass1
- HexahedronFEMForceField FEM
- UncoupledConstraintCorrection ...
- Collis
- VisuBody

Multi-models

FEM

Rigid

Tutorials ...

Session 1

9:30 am to 10:00 am:

Notions of mechanics useful for the Tutorial

Multi-Models Mechanics

- (Articulated) rigid body dynamics
$J^{T}(\boldsymbol{q}) \mathrm{M} J(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\mathbf{C}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\tau(\boldsymbol{q})$

Multi-Models Mechanics

- Deformable body with FEM
$\boldsymbol{M} \ddot{\boldsymbol{q}}+\boldsymbol{f}(\boldsymbol{q}, \dot{\boldsymbol{q}})=f_{\text {ext }}$

\boldsymbol{q} are nodes position in global coordinates \boldsymbol{M} close to diagonal, diagonal if mass lumping $\boldsymbol{f}(\boldsymbol{q}, \dot{\boldsymbol{q}})$ internal forces from FEM

$$
\begin{aligned}
& \boldsymbol{f}(\boldsymbol{q}+\partial \boldsymbol{q}, \dot{\boldsymbol{q}}+\partial \dot{\boldsymbol{q}}) \approx \\
& \boldsymbol{f}(\boldsymbol{q}, \dot{\boldsymbol{q}})+\boldsymbol{K}(\boldsymbol{q}) \partial \boldsymbol{q}+\boldsymbol{B}(\boldsymbol{q}) \partial \dot{\boldsymbol{q}}
\end{aligned}
$$

Updated linearization (at each simulation step)

Multi-Models Mechanics

- Interaction between modalc

FEM Model
DOFs: positions of nodes (Vec3 types in SOFA)

Rigid Model
DOFs: positions and orientation of gravity center
(Rigid types in SOFA)

Configuration space / kinematic links

- Lagrangian Mechanics:
- State variables: (q, q') [Generalized coordinates] + t [effort same space]
- Kinematic relation: $x=g(q)$
- Kinetic relation: $x^{\prime}=d g / d q q^{\prime}=>J q^{\prime}$
- Virtual work principle => $\mathrm{t}=\mathrm{Jt} \mathrm{f}$ (to develop)
- In SOFA,
- Mappings= [Kinematic / Kinetic / Force transfer]
- $q, q^{\prime}=$ parent models
- $\mathbf{x}, \mathbf{x}^{\prime}=$ child models
- position and velocity imposed by the mapping of a parent MechanicalObject
- force can be applied on slave models and transmitted to the parent

Main principles of SOFA :: main components

- Mapped Mechanical objects: slave models

Rigid Model

DOFs: positions and orientation of gravity center (Rigid)

Collision Model
Mapped DOFs: positions of points (Vec3)
RigidMapping

Main principles of SOFA :: main components

- Mapping
- Allow to transfer the motion (pos, vel) to a « slave» model
- Allow to transfer back to the « parent» model some Forces

Main principles of SOFA :: main components

- Mapping
- Allow to transfer the motion (pos, vel) to a « slave » model
- Allow to transfer back to the « parent» model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Collision Model
Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Main principles of SOFA :: main components

- Mapping
- Allow to transfer the motion (pos, vel) to a « slave » model
- Allow to transfer back to the « parent» model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Collision Model

Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Main principles of SOFA :: main components

- Mapping
- Allow to transfer the motion (pos, vel) to a « slave » model
- Allow to transfer back to the « parent» model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Mapped DOFs: positions of points (Vec3)
BarycentricMapping

Main principles of SOFA :: main components

- Mapping
- Allow to transfer the motion (pos, vel) to a « slave» model
- Allow to transfer back to the « parent» model some Forces

FEM Model
DOFs: positions of nodes (Vec3)

Deformable-rigid coupling

Why composite mechanics ?

- Soft robot can be composed of rigid sections (backbones)
- Importance of computing the coupling between rigid parts and deformable parts.

Deformable-rigid coupling

Rigid Frame
Hierarchical representation

Slave nodes

Rigid
in sofa => (Mapping)

Deformable-rigid coupling

Rigid Frame
Hierarchical representation
remaining FEM nodes

Deformable-rigid coupling

Deformable-rigid coupling

Hierarchical representation
Multi-Mapping Concept

Slave nodes

Rigid Mapping

SubsetMultiMapping FEM ForceField

Deformable-rigid coupling

Rigid Frame

Hierarchical representation
Multi-Mapping Concept
internal
Forces

Slave nodes
Rigid Mapping

SubsetMultiMapping

 FEM ForceField
Solver (size $3 n+6$)

Deformable-rigid coupling

Hierarchical representation
Multi-Mapping Concept
Common solver

$$
\mathrm{n} \text { remaining FEM nodes }
$$

internal Forces

Slave nodes Forces

Deformable-rigid coupling

Hierarchical representation
Multi-Mapping Concept
Common solver

with jacobian of the Rigid Mapping

Session 1

Step1: Mesh loader, visual model, and DOFs

We are introducing:

- Basic mechanical modeling
- Time integration and a mechanical object to the scene
- Visual model

Step1: Mesh loader, visual model, and DOFs

We are introducing:

- Basic mechanical modeling
- Time integration and a mechanical object to the scene
- Visual model

```
def createScene(rootNode):
    # Tool to load the mesh file of the silicone piece.
    It will be used for both the mechanical and the
    visual models.
    # Visual object
    visual = rootNode.addChild("Visual")
    visual.addObject("MeshSTLLoader", name="loader2",
                            filename="data/mesh/tripod_mid.stl")
    visual.addObject("OglModel", name="renderer",
                                    src='@../loader2',
                                color=[1.0, 1.0, 1.0, 0.5])
```


Step2: Mechanical model

Introducing elastic material modelling:

- Volumetric mesh
- Solver
- Force field

Step2: Mechanical model

Introducing elastic material modelling:

- Volumetric mesh
- Solver
- Force field

What's new in the scene:

```
# Tetrahedric mesh
body.addObject('GIDMeshLoader', name='loader',
    filename="data/mesh/tripod_high.gidmsh")
body.addObject('TetrahedronSetTopologyContainer',
        src='@loader', name='container')
body.addObject("MechanicalObject", name="dofs",
    position=elasticbody.loader.position)
body.addObject("UniformMass", totalMass=0.032)
# Solver components
body.addObject("EulerImplicitSolver")
body.addObject("SparseLDLSolver")
# ForceField components
body.addObject("TetrahedronFEMForceField",
    youngModulus=800, poissonRatio=0.45)
```


Step3: Fixed constraint

In this step:

- Add a box to select points
- Fix the select points with a constraint

Step3: Fixed constraint

In this step:

- Add a box to select points
- Fix the select points with a constraint

What's new in the scene:

```
# Instanciating the FixingBox prefab into the graph,
constraining the mechanical object of the ElasticBody.
fix = FixingBox(rootNode, body.ElasticMaterialObject,
    translation=[0.0, 0.0, 0.0],
    scale=[30., 30., 30.])
# Changing the property of the Box ROI so that the
constraint area appears on screen.
fix.boxroi.drawBoxes = True
```


Prefabs: ServoMotor

This prefab is implementing a S90 servo motor.

Call to prefab:

from s90servo import ServoMotor
def createScene(rootNode):
ServoMotor(rootNode)

Run result:
runSofa details/s90servo.py

Prefabs: ActuatedArm

This prefab is implementing a S90 servo motor with the tripod actuation arm.

Call to prefab:
from actuatedarm import ActuatedArm
def createScene(rootNode):
ActuatedArm(rootNode)

Run result:
runSofa details/actuatedarm.py

Step4: Tripod assembly

Define the tripod prefab in three steps:

1. Add the ActuatedArm prefab
2. Rigidify part to attach to the arms
3. Constraint the deformable object to follow the arms

Step4-1: Add actuated arms

First step is to:

- Add the three actuated arms
- Correctly place them

Step4-2: Rigidification

Second step is:

- Deformable part should be attached at each extremity
- So each extremity is rigidified

Step4-1: Add actuated arms

First step is to:

- Add the three actuated arms
- Correctly place them

Arms not attached to the deformable part yet

What's new in the scene:

```
from actuatedarm import ActuatedArm
```

for i in range(0, nummotors):
name = "ActuatedArm"+str(i)
... compute correct translation and rotation ...
ActuatedArm(self.node, name=name,
translation=translation,
eulerRotation=eulerRotation)
\# Add limits to angle that correspond to
limits on real robot
arm.ServoMotor.minAngle $=-2.0225$
arm. ServoMotor.maxAngle $=-0.0255$

Step4-2: Rigidification

Second step is:

- Deformable part should be attached at each extremity
- So each extremity is rigidified

Now three frames are attached to the deformable part

What's new in the scene:
from stlib.physics.mixedmaterial import Rigidify ...
\# Rigidify the deformable part in each extremity rigidified = Rigidify(self.node, deformableObject, groupIndices=groupIndices, frames=frames, name="RigidifiedStructure")
\# The prefab gives access to two nodes
rigidifiedstruct.DeformableParts...
rigidifiedstruct.RigidParts...

Step4-3: Attach parts

Last step of assembly:

- Link rigidified parts with actuated arms
- Use springs to attached the frames

Step4-3: Attach parts

Last step of assembly:

- Link rigidified parts with actuated arms
- Use springs to attached the frames

What's new in the scene:

```
# Attach arms
rigidParts.addObject('SubsetMultiMapping',
input=[self.actuatedarms[0].ServoMotor..., self.actuatedarms[1].ServoMotor..., self.actuatedarms[2].ServoMotor...]
output="@./", indexPairs=[[0,1,1,1,2,1,3,0])
```


Prefabs: Tripod

This prefab is implementing the tripod, with three S 90 servo motors and actuation arm.

Call to prefab:
from tripod import Tripod
def createScene(rootNode):
Tripod(rootNode)

Run result:
runSofa details/tripod.py

Step5: Controller

Here you will learn how to:

- Add a controller
- The controller will connect user actions to the simulated behaviour
- We will animate the tripod to put it in the right position

Step5: Controller

Here you will learn how to:

- Add a controller
- The controller will connect user actions to the simulated behaviour
- We will animate the tripod to put it in the right position

What's new in the scene:
from tripodcontroller import TripodController

```
tripod = Tripod(model)
```

TripodController(rootNode, tripod.actuatedarms)

Plug the robot

11:00-12:30: Session 2

- 11:00am: Presentation of the SOFA community and consortium
- 11:15am: Tripod Tutorial (part 2) :
- Inverse modeling
- Maze motion planning
- Test on the digital twin
- Test on the robot (for people on site)

- 12:15am: Conclusion and ongoing work

Todo : show what we will have at the end of the tutorial ?

Session 2

Presentation of the SOFA community

Session 2

Tripod Tutorial (part 2)

Inverse Kinematics

Time-stepping:

$$
\begin{aligned}
M a_{i+1} & =f\left(\mathbf{x}_{i+1}, v_{i+1}\right)+f_{e x t} \\
v_{i+1} & =v_{i}+h a_{i+1} \\
x_{i+1} & =x_{i}+h v_{i+1}
\end{aligned}
$$

Internal forces linearization :

$$
f\left(\mathrm{x}_{i+1}, v_{i+1}\right)=f\left(\mathrm{x}_{i}, v_{i}\right)+K d x+D d v
$$

(at each time step)

Matrix system to solve:

$$
\begin{aligned}
\underbrace{\left(M-h D-h^{2} K\right)}_{A} d v & =\underbrace{\boldsymbol{h f _ { e x t } + h f (\mathrm { x } _ { t } , v _ { t }) + h ^ { 2 } K v _ { t }}}_{\boldsymbol{b}} \\
\underbrace{-K}_{\boldsymbol{B}} d x & =\underbrace{f\left(x_{i-1}\right)+f_{\text {ext }}}_{\boldsymbol{b}} \text { (quasi static) }
\end{aligned}
$$

Inverse Kinematics

Problem statement:

- Control the end effector position and orientation
- By finding the right angle for each actuated arm

Inverse Kinematics

For actuator and contact we use Lagrange multipliers:

Inverse Kinematics

$$
\left(\begin{array}{ccc}
\boldsymbol{A} & \boldsymbol{H}_{e}^{T} & \boldsymbol{H}_{a}^{T} \\
\boldsymbol{H}_{e} & 0 & 0 \\
\boldsymbol{H}_{a} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
d x \\
-\lambda_{e} \\
-\lambda_{a}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b} \\
\delta_{e} \\
\delta_{a}
\end{array}\right)
$$

Optimization in motion space: computationally expensive
\rightarrow Projection in space of actuation variables using Schur complement: $W_{j k}=\boldsymbol{H}_{j} A^{-1} \boldsymbol{H}_{\boldsymbol{k}}{ }^{T}$, with $\boldsymbol{j}, \boldsymbol{k} \in\{e, a\}$
$\rightarrow W_{j k}$: mechanical coupling between effector points and actuators.

$$
\begin{aligned}
& \delta_{e}=W_{e a} \lambda_{a}+\delta_{e}^{\text {free }} \\
& \delta_{a}=W_{a a} \lambda_{a}+\delta_{a}^{\text {free }}
\end{aligned}
$$

with $\quad \delta^{\text {free }}=H_{e} d x^{\text {free }}+\delta\left(x_{i}\right)$

$$
d x^{\text {free }}=A^{-1} b
$$

Inverse Kinematics

$$
\left(\begin{array}{ccc}
A & H_{e}^{T} & H_{a}^{T} \\
H_{e} & 0 & 0 \\
H_{a} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
d x \\
-\lambda_{e} \\
-\lambda_{a}
\end{array}\right)=\left(\begin{array}{c}
b \\
\delta_{e} \\
\delta_{a}
\end{array}\right)
$$

Optimization in motion space: computationally expensive
\rightarrow Projection in space of actuation variables using Schur complement: $W_{j k}=H_{j} A^{-1} H_{k}{ }^{T}$, with $j, k \in\{e, a\}$
$\rightarrow W_{j k}$: mechanical coupling between effector points and actuators.

$$
\begin{aligned}
& \delta_{e}=\boldsymbol{W}_{e a} \lambda_{a}+\delta_{e}^{\text {free }} \\
& \delta_{a}=W_{a a} \lambda_{a}+\delta_{a}^{\text {free }}
\end{aligned}
$$

$$
\begin{aligned}
\text { with } \quad \delta^{\text {frre }} & =\boldsymbol{H}_{e} d x^{\text {free }}+\delta\left(x_{i}\right) \\
d x^{\text {free }} & =A^{-1} b
\end{aligned}
$$

Inverse Kinematics

Formulation of Quadratic Program (QP) with linear constraints:

$$
\begin{aligned}
& \min _{\lambda_{a}}\left\|\delta_{e}=W_{e a} \lambda_{a}+\delta_{e}^{\text {free }}\right\|^{2} \\
& \text { s.t : (1) } \delta_{\max } \geq \delta_{a}=W_{a a} \lambda_{a}+\delta_{a}^{\text {free }} \geq \delta_{\min }
\end{aligned}
$$

(1) Constraints on actuators (e.g limit on cable displacement)

$$
\begin{aligned}
& d x=A^{-1} H_{a}{ }^{T} \lambda_{a}+d x^{\text {free }} \\
& x_{i+1}=x_{i}+d x
\end{aligned}
$$

Inverse Kinematics with Contacts

- Signorini's condition for contact
- QP with linear complementarity constraints
- Specific solver
E. Coevoet - RA-Letter 2017

New actuation that moves the trunk forward and backward

Step8: Inverse model

In this step we solve the inverse kinematics:

- add effector position
- add effector target
- add joint actuator (to optimize angle)
- add inverse solver

Run examples: Tripod

2 possibilities:

- Control the 3 absolute positions of the effector (x, y, z)
- Control angle x and z and position y

Maze orientation planning

run Maze.py

Create trajectory using control points over time
open mazeplanning.json

Add new points.... And to ctrl+r (reload)

Verify in simulation that it is working
Tips: To make the trajectory work well on the robot, try to emphasize the movements. Sometimes the ball rolls better in the simulation than in reality

Control with a digital twin

1. run step8-maze.py
2. press $\mathrm{Ctrl}+\mathrm{a}$ and then $\mathrm{Ctrl}+\mathrm{i}$

- Is the desired orientation applied ?
- Can we control the translations of the maze ? which one ? why?
- In MazeController.py, change: working_y = 40 (this is the working height of the maze in the planning). Redo step 1 and step 2. What do you observe ? How would you explain?

Servo I

Control the real robot

Plug the robot and place the maze
Run step8-maze.py
press Ctrl+a then Ctrl+b then Ctrl+i
What difference do you observe between simulation and reality? Why?

What do you propose to correct the error and better control the small ball inside the maze?

Thanks!

