
Lecture 4
Submanifold reconstruction

Jean-Daniel Boissonnat

Winter School on Computational Geometry and Topology
University of Nice Sophia Antipolis

January 23-27, 2017

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 1 / 54

Outline

1 The reconstruction problem

2 Distance functions and homotopy reconstruction

3 Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

4 Mesh generation of surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 2 / 54

1 The reconstruction problem

2 Distance functions and homotopy reconstruction

3 Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

4 Mesh generation of surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 3 / 54

Reconstructing surfaces from point clouds

One can reconstruct a surface from 106 points within 1mn [CGAL]

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 4 / 54

CGAL-mesh, Titane

GeometryFactory, Acute3D

CGALmesh Achievements

Meshing 3D multi-domains
Input from segmented 3D medical images [IRCAD]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 21 / 36

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 5 / 54

Geometric data analysis
Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 6 / 54

Dimensionality reductionIsomap results: hands

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 7 / 54

Conformation spaces of molecules e.g. C8H16

Figure 1. Conformation Space of Cyclo-Octane. The set of conformations of cyclo-octane can
be represented as a surface in a high dimensional space. On the left, we show various
conformations of cyclo-octane. In the center, these conformations are represented by the 3D
coordinates of their atoms. On the right, a dimension reduction algorithm is used to obtain a
lower dimensional visualization of the data.

Figure 2. Decomposing Cyclo-Octane. The cyclo-octane conformation space has an interesting
decomposition. The local geometry of a self-intersection consists of a cylinder (top left) and a
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object
(shown in red). Globally, cyclo-octane conformations can be separated into a sphere (bottom
left) and a Klein bottle (bottom right).

!"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$&9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&
?"+%.#"*&?)6*2"-&!26)-%+1&@$(%#%'+-"+%.#&)#$2-&6.#+-"6+&<=A@3BCADC@5EFBBBG&

Each conformation is represented as a point in R72 (R24 when
neglecting the H atoms)

The intrinsic dimension of the conformation space is 2

The geometry of C8H16 is highly nonlinear

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 8 / 54

Image manifolds

An image with 10 million pixels
→ a point in a space of 10 million dimensions!

camera : 3 dof
light : 2 dof

The image-points lie close to a structure of intrinsic dimension 5
embedded in this huge ambient space

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 9 / 54

Motion capture

Typically N = 100, D = 1003, d ≤ 15

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 10 / 54

1 The reconstruction problem

2 Distance functions and homotopy reconstruction

3 Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

4 Mesh generation of surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 11 / 54

Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : dK : x→ infp∈K ‖x− p‖

Geometric inference from noisy data
Pb: infering topological and geometric properties from point cloud data sets sampled
“around” unknown low-dimensional shapes.

Sc. challenges:
- dealing with noise
- well founded math. models
- algorithmic complexity issues
(curse of dimensionality)

The distance function framework:
When the data C are close (Hausdorff dist.) to the geometric structure K to infer...

• distance function dK : x → infp∈K �x − p�
• Replace K and C by dK and dC

• Stability results for the topology/geometry of the offsets
Kr = d−1

K ([0, r]) and Cr = d−1
C ([0, r])

Stability
If the data points C are ε-close (Hausdorff) to the geometric structure
K, the topology and the geometry of the offsets Kr = d−1

K ([0, r]) and
Cr = d−1

C ([0, r]) are close for r ∈ [Ω(ε),Reach(K)− Ω(ε)]

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 12 / 54

Local feature size and nets [Amenta & Bern 98]

The medial axis of K is the set of points of the complement of K with at
least two closest points on K

A finite point set P ⊆ K is an ε-net of K if

1 Covering: ∀x ∈ K, d(x,P) ≤ εlfs(x)

2 Packing: ∀p, q ∈ P, ‖p− q‖ ≥ η0εmax(lfs(p), lfs(q)) for some cst η0

lfs denotes the distance from x to the medial axis of M

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 13 / 54

Properties of lfs

lfs is 1-Lipschitz : |lfs(x)− lfs(y)| ≤ ‖x− y‖

lfs(x) is small where the curvature is large and where the
thickness of M is small

lfs > 0 if S is C1,1

i.e. normals exist everywhere and the normal field is Lipschitz

infx∈M lfs(x) is called the reach of M

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 14 / 54

Distance functions and simplicial complexes
Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) ⊆ VR�(P) ⊆ AČ2�(P)
for any �, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

�
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2

Nerve theorem (Leray)
The nerve of the balls (Cech complex) and the union of balls have the
same homotopy type

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 15 / 54

Some remarks and questions

From continuous to discrete and back:
Shape → Finite set of points → Union of balls → Simplicial complex

+ The topology of a compact set K can be computed from the Cech
complex of a sample P of K

– The Cech complex is huge (O(nd)) and very difficult to compute

– The Cech complex is in general not homeomorphic to K
(a triangulation of K)

– The Cech complex cannot be realized in general in the same
space as K

∼ Replace the α-Cech complex by the α-complex (less big and
embedded)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 16 / 54

Looking for small and faithful simplicial complexes

Need to compromise

Size of the complex

I can we capture the intrinsic dimensionality ?

Efficiency of the construction algorithms and of the
representations

I can we avoid the exponential dependence on d ?
I can we minimize the number of simplices ?

Quality of the approximation

I Homotopy type & homology (RIPS complex, persistence)
I Homeomorphism (Delaunay-type complexes)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 17 / 54

1 The reconstruction problem

2 Distance functions and homotopy reconstruction

3 Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

4 Mesh generation of surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 18 / 54

Submanifolds of Rd

A compact subset M ⊂ Rd is a submanifold without boundary of
intrinsic dimension k < d, if any p ∈M has an open (topological) k-ball
as a neighborhood in M

W

U
Rm

φ

RN

M

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 19 / 54

Voronoi diagram and Delaunay complex

Delaunay complex : Del(P) = nerve of Vor(P)

Equivalently, Del(P) is the collection of simplices with an empty
circumscribing ball

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 20 / 54

The curses of Delaunay triangulations in higher
dimensions

Restricted to Euclidean space (see otherwise Mael’s talk)

Computing DT is restricted to low dimensions

(The number of simplices grows exponentially with d even if the vertices lie on a
curve !)

3 and higher dimensional Delaunay triangulations are not thick
even if the vertices are well-spaced

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 21 / 54

3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

! !

!"#$%&"'(&")"&*+,-'".$",)+/,
0$"('12'3%,4$+/,'".$$+/,'

!"#$%"#&'"#!"#"$%&'()*!"+"(",-#()#&'"#*+,$&#-.#*/01"2

##

345$+6&*(+%7#%$8)06"#,0&6'"%#
####################5#()./0&(#9"&:""+#3#/0&"8*0;%

<45$+6&*(+%7#=*1*&0;#"=1"%
####################5#&"-0&(#9"&:""+#-#(8#/(8"#/0&"8*0;%

>45$+6&*(+%7#6(8+"8#?"8&*6"%
5#1,"-$0&(#9"&:""+#@#(8#/(8"#/0&"8*0;%#

Each square face can be circumscribed by an empty sphere
This remains true if the grid points are slightly perturbed
therefore creating thin simplices

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 22 / 54

Badly-shaped simplices
Badly-shaped simplices lead to bad geometric approximations

Bad consequences in rendering, numerical simulations, volume
calculation and more...

see also [Cairns], [Whitehead], [Munkres], [Whitney]

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 23 / 54

Simplex quality

Altitudes
D(q, σ)

σq

q If σq, the face opposite q in σ is
protected, The altitude of q in σ is

D(q, σ) = d(q, aff(σq)),

where σq is the face opposite q.

Definition (Thickness [Cairns, Whitney, Whitehead et al.])
The thickness of a j-simplex σ with diameter ∆(σ) is

Θ(σ) =

{
1 if j = 0
minp∈σ

D(p,σ)
j∆(σ) otherwise.

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 24 / 54

Tangent space approximation

Lemma [Whitney 1957]

If σ is a j-simplex whose vertices all lie within a distance h from a
hyperplane H ⊂ Rd, then

sin∠(aff (σ),H) ≤ 2j h
D(σ)

=
2h

Θ(σ) ∆(σ)

Corollary
If σ is a j-simplex, j ≤ k, vert (σ) ⊂M, ∆(σ) ≤ 2ε rch(M)

∀p ∈ σ, sin∠(aff(σ),Tp) ≤ 2ε
Θ(σ)

(h ≤ ∆(σ)2

2 rch(M)
by the Chord Lemma)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 25 / 54

Chord lemma

Let x and y be two points of M. We have

1 sin∠(xy,Tx) ≤ ‖x−y‖
2 rch(M) ;

2 the distance from y to Tx is at most ‖x−y‖2

2 rch(M) .

p

qD

q′′θ

Tp

M

2θ

q′

‖x− y‖ ≥ ‖x− y′′‖
= 2 rch(M) sin∠(xy,Tx)

‖y− y′‖ = ‖x− y‖ sin∠(xy,Tx)

≤ ‖x−y‖2

2 rch(M)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 26 / 54

The curses of Delaunay triangulations in higher
dimensions

Restricted to Euclidean space (see otherwise Mael’s talk)

⇒ Define local Euclidean triangulations

Computing DT is restricted to low dimensions

(The number of simplices grows exponentially with d even if the vertices lie on a
curve !)

⇒ Exploit the fact that M has an intrinsic dimension k� d?

3 and higher dimensional Delaunay triangulations are not thick
even if the vertices are well-spaced

⇒ Remove flat simplices

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 27 / 54

Towards Delaunay triangulation of manifolds

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

1 Construct local Delaunay triangulations

2 Ensure that the triangulations are stable under small perturbation

⇒ a simplex belongs to the stars of all its vertices

3 Glue all local triangulations into a single triangulated manifold

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 28 / 54

The assumptions

M is a differentiable submanifold of positive reach of Rd

The dimension k of M is small

P is an ε-net of M for a small enough ε

We assume that we know the tangent space Tp at each p ∈ P

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 29 / 54

Local triangulation : DelTp(P)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 30 / 54

Constructing DelTp(P)

Given a d-flat H ⊂ R, Vor(P) ∩ H is a weighted Voronoi diagram in H

pi

pj

x

p′i

p′j

H

‖x− pi‖2 ≤ ‖x− pj‖2

⇔ ‖x− p′
i‖2 − ‖pi − p′

i‖2 ≤ ‖x− p′
i‖2 − ‖pj − p′

j‖2

Corollary: construction of DelTp

ψp(pi) = (p′i,−‖pi − p′i‖2) (weighted point)

1 project P onto Tp which requires O(Dn) time

2 construct star(ψp(pi)) in Del(ψp(pi)) ⊂ Tpi

3 star(pi) ≈ star(ψp(pi)) (isomorphic)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 31 / 54

The tangential Delaunay complex
[Freedman 2002], [B.& Flottoto 2004], [B. Ghosh 2014]

1 Construct the star of p ∈ P in the Delaunay triangulation DelTp(P)
of P restricted to Tp

2 DelTM(P) =
⋃

p∈P star(p)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 32 / 54

+ DelTM(P) ⊂ Del(P)

+ star(p), DelTp(P) and therefore DelTM(P) can be computed without
computing Del(P)

– DelTM(P) is not necessarily a triangulated manifold

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 33 / 54

Inconsistent configurations

Inconsistent configurations

(a) DelTM(P) (b) C(P)

p

q

r

p
q

r

s
t

s

t

Definition
� = [p1, p2, . . . , pk+2]

⌧ = � \ {pl}
� is an inconsistent configuration witnessed by pi, pj, pl 2 � if

⌧ 2 star(pi) , Tpi \ Vor(⌧) 6= ;
⌧ 62 star(pj) , Tpj \ Vor(⌧) = ;
Vor(pl) is the first Voronoi cell whose interior is hit by
[cpi(⌧)! cpj(⌧)]

Computational Geometric learning () Manifold Reconstruction
Lectures at MPRINovember 2013 22 /

41

Definition

φ = [p1, p2, . . . , pk+2]

τ = φ \ {pl}
φ is an inconsistent configuration
witnessed by pi, pj, pl ∈ φ if

τ ∈ starpi ⇔ Tpi ∩ Vor(τ) 6= ∅
τ 6∈ starpj ⇔ Tpj ∩ Vor(τ) = ∅
Vor(pl) is the first Voronoi cell whose
interior is hit by [cpi(τ)→ cpj(τ)]

An IC is a (k + 1)-simplex of Del(M)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 34 / 54

Inconsistent configurations are not thick

1 τ ∈ star(pi)⇒ B(cpi(τ) ∩ P = ∅
2 τ 6∈ star(pj)⇒ B(cpi(τ) ∩ P 3 p

Inconsistent simplex

τ is said to be inconsistent iff
∃pi , pj ∈ τ s. t. Vor(τ) ∩ Tpi �= ∅ and Vor(τ) ∩ Tpj = ∅

pi

pj
τ

Bpj(τ)

Bpi(τ)

p

Tpi

∈ Vor(τ)

∈ aff(Vor(τ))

cpi(τ)

Tpj

cpj(τ)

M

iφ

Arijit Ghosh PhD defense
if τ is small and thick
⇒ ci and cj are close & aff(τ) ≈ Tpi ≈ Tpj

⇒ φ := τ ∗ p is not thick

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 35 / 54

Reconstruction of smooth submanifolds

1 For each vertex v, compute the star star(p) of p in Delp(P)

2 Remove inconsistencies among the stars by weighting the points
3 Glue the stars to obtain a triangulation of P

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 36 / 54

Manifold reconstruction algorithm

Algorithm 1 Manifold reconstruction(P = {p0, . . . , pn}, η0)

// Initialization
for i = 1 to n do

calculate the local neighborhood LN(pi)
for i = 1 to n do
ω(pi)← 0

Build the full unweighted complex Kω(P) = DelωTM(P)
⋃

IC

// Weight assignment to remove inconsistencies
for i = 1 to n do
ω(pi)← weight(pi, ω)
update Kω(P) // (locally in LN(pi)

output : M̂← DelωTM(P)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 37 / 54

Hypotheses

M is a differentiable submanifold of positive reach of dim. k ⊂ Rd

P is an ε-net of M for a small enough ε

Theorem
Under the Hypotheses, the algorithm terminates and M̂ contains no
inconsistent configurations

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 38 / 54

M̂ is a PL simplicial k-manifold

Lemma
Let P be an ε-sample of a manifold M and let p ∈ P. The link of any
vertex p in M̂ is a topological (k − 1)-sphere

Proof :

1. Since M̂ contains no inconsistencies, the star of any vertex p in M̂ is
identical to starp, the star of p in Delp(P)

2. Delp(P) ⊂ Rd ≈ Del(ψp(P)) ⊂ Tp ⇒ starp ≈ starp(p)

3. starp(p) is a k-dimensional triangulated topological ball (general position)

4. p cannot belong to the boundary of starp(p)

(the Voronoi cell of p = ψp(p) in Vor(ψp(P)) is bounded)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 39 / 54

Guarantees

Approximation guarantees

M̂ is a PL simplicial k-manifold
M̂ ⊂ tub(M,O(ε2)rch(M))

The angles between the facets and the tangent spaces of M are
O(ε)

M̂ is homeomorphic to M

Complexity of the algorithm

No d-dimensional data structure⇒ linear in d

exponential in k

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 40 / 54

Reconstructing a Riemannian surface in R8

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 41 / 54

1 The reconstruction problem

2 Distance functions and homotopy reconstruction

3 Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

4 Mesh generation of surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 42 / 54

Restricted Delaunay triangulation [Chew 93]

Definition
The restricted Delaunay
triangulation DelX(P) to
X ⊂ Rd is the nerve of
Vor(P) ∩ X

If P is an ε-sample, any ball centered on X that circumscribes a facet f of
DelX(P) has a radius ≤ ε lfs(cf)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 43 / 54

Restricted Delaunay triangulation [Chew 93]

Definition
The restricted Delaunay
triangulation DelX(P) to
X ⊂ Rd is the nerve of
Vor(P) ∩ X

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 44 / 54

Delaunay triang. restricted to surfaces

[Amenta et al. 1998-], [B. & Oudot 2005]

If
S ⊂ R3 is a compact surface of positive
reach without boundary
P is an ε-net, ε small enough

then
Del|S(S) provides good estimates of
normals
There exists a homeomorphism
φ : Del|S(P)→ S
supx(‖φ(x)− x‖) = O(ε2)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 45 / 54

Thickness and angle bounds are automatic for
trianglesThickness and angle bounds for triangles

Good sampling implies angle and thickness bounds for
triangles

a

b

c

h

R

h = ab⇥ sin b = ab�ac
2R

⇥(abc) = h
2� � h

4R �
�2

8�2 = �̄2

8

sin b � �
2� = �̄

2

Computational Geometry Learning Manifold Reconstruction MPRI, Lecture 5 18 / 67
Algorithmic Geometry Mesh generation J-D. Boissonnat 17 / 28

h = ab × sinb = ab×ac
2R

Θ(abc) = h
2∆ ≥ h

4R ≥
φ2

0
32R ≥

φ0
2

32ε rch(S)

sin b ≥ φ0
2ε rch(S)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 46 / 54

Surface mesh generation by Delaunay refinement
[Chew 1993, B. & Oudot 2003]

φ : S→ R = Lipschitz function
∀x ∈ S, 0 < φ0 = η̄0 ε rch(S) ≤ φ(x) <

ε lfs(x)

ORACLE : For a facet f of Del|S(P),
return cf , rf and φ(cf)

A facet f is bad if rf > φ(cf)

Context and Motivation

Delaunay refinement meshing engine

The algorithms refines:

Bad facets: f ∈ Del|S(P)
– oversized (sizing field)
– badly shaped (min angle bound)
– inaccurate (distance bound)

Bad Tetrahedra : t ∈ Del|O(P)
– oversized (sizing field)
– badly-shaped (radius-egde ratio)

Required oracle on domain to be meshed
• point location in domain and subdomains
• intersection detection/computation between boundary surfaces

and segments (Delaunay edges)

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 9 / 36

Algorithm
INIT compute an initial (small) sample P0 ⊂ S

REPEAT IF f is a bad facet
insert in Del3D(cf) ,
update P and Del|S(P)

UNTIL no bad facet remains

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 47 / 54

The meshing algorithm in action

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 48 / 54

Applications

Implicit surfaces f (x, y, z) = 0

Isosurfaces in a 3d image (Medical images)
Triangulated surfaces (Remeshing)
Point sets (Surface reconstruction)

see cgal.org, CGALmesh project

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 49 / 54

Results on smooth implicit surfaces

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 50 / 54

CGALmesh Achievements

Meshing 3D domains
Input from segmented 3D medical images

[INSERM] [SIEMENS]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 22 / 36

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 51 / 54

Comparison with the Marching Cube algorithm

Delaunay refinement Marching cube

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 52 / 54

CGALmesh Achievements

Meshing with sharp features
A polyhedral example

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 30 / 36

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 53 / 54

CGALmesh Achievements

Meshing 3D multi-domains
Input from segmented 3D medical images [IRCAD]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 21 / 36

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 54 / 54

Surface reconstruction from unorganized point sets

Courtesy of P. Alliez
Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 55 / 54

	The reconstruction problem
	Distance functions and homotopy reconstruction
	Delaunay-type simplicial complexes and homeomorphic submanifold reconstruction

