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Outline

@ The reconstruction problem
9 Distance functions and homotopy reconstruction

Q Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction

© Mesh generation of surfaces
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o The reconstruction problem
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Reconstructing surfaces from point clouds

One can reconstruct a surface from 10° points within 1mn [CGAL]
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CGAL-mesh, Titane
GeometryFactory, Acute3D
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Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
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Dimensionality reduction
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Conformation spaces of molecules e.g. CsHyg
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@ Each conformation is represented as a point in R’ (R** when
neglecting the H atoms)

@ The intrinsic dimension of the conformation space is 2

@ The geometry of CgHjg is highly nonlinear
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Image manifolds

An image with 10 million pixels
— a point in a space of 10 million dimensions!

camera : 3 dof
light : 2 dof

The image-points lie close to a structure of intrinsic dimension 5
embedded in this huge ambient space
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Motion capture

Typically N = 100, D = 1003, d < 15
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Q Distance functions and homotopy reconstruction
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Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : di : x — infeg [|x — p|

Stability
If the data points C are e¢-close (Hausdorff) to the geometric structure

K, the topology and the geometry of the offsets K, = di.' ([0, 7]) and
C, = d.'([0,r]) are close for r € [Q(e), Reach(K) — Q(e)]
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Local feature size and nets [Amenta & Bern 98]

The medial axis of K is the set of points of the complement of K with at
least two closest points on K

A finite point set P C K is an e-net of K if

@ Covering: Vx € K, d(x, P) < elfs(x)

@ Packing: Vp,q € P, |lp — q|| > noe max(Ifs(p), Ifs(¢)) for some cst 7
Ifs denotes the distance from x to the medial axis of M
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Properties of Ifs

e Ifsis 1-Lipschitz :  |Ifs(x) — Ifs(y)| < |lx — ¥

@ Ifs(x) is small where the curvature is large and where the
thickness of M is small

e Ifs > 0if Sis C1!
i.e. normals exist everywhere and the normal field is Lipschitz

inf e 1fs(x) is called the reach of M
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Distance functions and simplicial complexes

Nerve theorem (Leray)

The nerve of the balls (Cech complex) and the union of balls have the
same homotopy type
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Some remarks and questions

From continuous to discrete and back:
‘Shape‘—>‘ Finite set of points‘—> Union of balls | — ’ Simplicial complex‘

+ The topology of a compact set K can be computed from the Cech
complex of a sample P of K

— The Cech complex is huge (O(n?)) and very difficult to compute

— The Cech complex is in general not homeomorphic to K
(a triangulation of K)

— The Cech complex cannot be realized in general in the same
space as K

~ Replace the a-Cech complex by the a-complex (less big and
embedded)

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 16 /54



Looking for small and faithful simplicial complexes

Need to compromise

@ Size of the complex

» can we capture the intrinsic dimensionality ?

@ Efficiency of the construction algorithms and of the
representations

» can we avoid the exponential dependence ond ?
» can we minimize the number of simplices ?

@ Quality of the approximation

» Homotopy type & homology (RIPS complex, persistence)
» Homeomorphism (Delaunay-type complexes)
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e Delaunay-type simplicial complexes and homeomorphic
submanifold reconstruction
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Submanifolds of R4

A compact subset M c R¢ is a submanifold without boundary of

intrinsic dimension k < d, if any p € M has an open (topological) k-ball
as a neighborhood in M

RN

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold
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Voronoi diagram and Delaunay complex

Delaunay complex : Del(P) = nerve of Vor(P)

Equivalently, Del(P) is the collection of simplices with an empty
circumscribing ball
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The curses of Delaunay triangulations in higher
dimensions

@ Restricted to Euclidean space (see otherwise Mael’s talk)

@ Computing DT is restricted to low dimensions

(The number of simplices grows exponentially with d even if the vertices lie on a
curve )

@ 3 and higher dimensional Delaunay triangulations are not thick
even if the vertices are well-spaced
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

Ier
ARsazead!
R

@ Each square face can be circumscribed by an empty sphere

@ This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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Badly-shaped simplices

Badly-shaped simplices lead to bad geometric approximations

Bad consequences in rendering, numerical simulations, volume
calculation and more...

see also [Cairns], [Whitehead], [Munkres], [Whitney]
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Simplex quality

Altitudes
4 (¢,0) If o4, the face opposite g in o is

D
h / protected, The altitude of g in o is

D(q,0) = d(q; aff(0,)),

/ where o, is the face opposite g.

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex o with diameter A(o) is

o) {! itj =0
= min,c, ?A(”(ﬁ)) otherwise.

v
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Tangent space approximation

Lemma [Whitney 1957]

If o is a j-simplex whose vertices all lie within a distance & from a
hyperplane H c R?, then

sin Z(aff (o), H) < szj) - @(g)zhA(U)

Corollary
If ois aj-simplex,j <k, vert(oc)CM, A(o)<2erch(M)

2e

Vpeo, sin/(aff(0),T,) < 80)

(h < ﬁch&) by the Chord Lemma)
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Chord lemma

Let x and y be two points of M. We have

Q sinL(xy, T,) < 2“&1{\%);

© the distance from y to T, is at most 2“;;;{1'\‘;).

/I||

# [l =yl = flx =
= 2rch(M) sin Z(xy, Ty)

D ¢y =Yl = lx =y sin Z(xy, T2)
) [lx—=yll
M 0 < Z:Ch()M)
1) p q
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The curses of Delaunay triangulations in higher
dimensions

@ Restricted to Euclidean space (see otherwise Mael’s talk)
= Define local Euclidean triangulations

@ Computing DT is restricted to low dimensions

(The number of simplices grows exponentially with d even if the vertices lie on a
curve !)

= Exploit the fact that M has an intrinsic dimension k < d?

@ 3 and higher dimensional Delaunay triangulations are not thick
even if the vertices are well-spaced

= Remove flat simplices
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Towards Delaunay triangulation of manifolds

Y¥ony »
*&2}9

@ Construct local Delaunay triangulations

© Ensure that the triangulations are stable under small perturbation

= a simplex belongs to the stars of all its vertices

© Gilue all local triangulations into a single triangulated manifold
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The assumptions

@ M is a differentiable submanifold of positive reach of R?
@ The dimension k of M is small

@ P is an e-net of M for a small enough ¢

@ We assume that we know the tangent space 7, at each p € P
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Local triangulation : Del (P)

A
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Constructing Dely (P)

Given a d-flat H C R, Vor(P) N H is a weighted Voronoi diagram in H

llx = pill> < [lx = pilI®
=il = lpi =PI < llx = pilI*> = llps — PiIIP
< x=pill” = lpi = pill” < i i — D]

Corollary: construction of Dely,
Uo(pi) = (P, —llpi = pilI?) (weighted point)
@ project P onto T, which requires O(Dn) time
@ construct star(y,(p;)) in Del(¢y,(pi)) C T),

© star(p;) ~ star(¢y,(p;))  (isomorphic )

v
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The tangential Delaunay complex

[Freedman 2002], [B.& Flottoto 2004], [B. Ghosh 2014]

@ Construct the star of p € P in the Delaunay triangulation Dely),(P)
of P restricted to T,

@ Delryi(P) = U,ep star(p)
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+ Delry(P) C Del(P)

+ star(p), Delr,(P) and therefore Delry(P) can be computed without
computing Del(P)

— Delmy(P) is not necessarily a triangulated manifold
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Inconsistent configurations

Definition

Qb: [P17P27-~7pk+2]
T=¢\{p}

¢ is an inconsistent configuration
witnessed by p;, pj, pi € ¢ if

@ T € starp; & T, N Vor(1) # 0

P . ® T ¢ starp; & Tp, N Vor(7) = ()
@ Vor(p;) is the first Voronoi cell whose
5 interior is hit by [c,, () — ¢,,(T)]
t
T An IC is a (k + 1)-simplex of Del(M)
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Inconsistent configurations are not thick

€ aff(Vor(r))

M

Q@ 7 cstar(p;) = B(c,, (1) NP =10
©Q 7 &star(p;) = B(c,,(T) NP >p

if 7 is small and thick
=c;andc areclose & aff(r)~T, ~T,
= ¢ := 7 % p is not thick
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Reconstruction of smooth submanifolds

@ For each vertex v, compute the star star(p) of p in Del,(P)
© Remove inconsistencies among the stars by weighting the points
© Gilue the stars to obtain a triangulation of P
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Manifold reconstruction algorithm

Algorithm 1 Manifold_reconstruction(P = {po, ..., p.}, 70)
/I Initialization
fori=1tondo
calculate the local neighborhood LN (p;)
fori=1tondo
w(pl-) +~0
Build the full unweighted complex K“(P) = Del3,(P) JIC

// Weight assignment to remove inconsistencies
fori=1tondo

w(p;) < weight(p;, w)

update K“(P) // (locally in LN (p;)

output : M « Del%,,(P)
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Hypotheses

@ M is a differentiable submanifold of positive reach of dim. k ¢ R?

@ Pis an e-net of M for a small enough ¢

Theorem

Under the Hypotheses, the algorithm terminates and M contains no
inconsistent configurations
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M is a PL simplicial k~-manifold

Lemma

Let P be an e-sample of a manifold M and let p € P. The link of any
vertex p in M is a topological (k — 1)-sphere

Proof :

1. Since M contains no inconsistencies, the star of any vertex p in M is
identical to starp, the star of p in Del,(P)

2. Del,(P) c R? ~ Del(y,(P)) C T, = starp = star,(p)
3. star,(p) is a k-dimensional triangulated topological ball (general position)

4. p cannot belong to the boundary of star, (p)
(the Voronoi cell of p = 1, (p) in Vor(¢,(P)) is bounded)
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Guarantees

Approximation guarantees

@ M is a PL simplicial k~-manifold

@ M C tub(M, O(¢?)rch(M))

@ The angles between the facets and the tangent spaces of M are
O(¢)

@ M is homeomorphic to M

Compilexity of the algorithm

@ No d-dimensional data structure = linear in d
@ exponential in k
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Reconstructing a Riemannian surface in R3
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© Mesh generation of surfaces
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Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Delx(P) to
X c R is the nerve of
Vor(P) n X

If P is an e-sample, any ball centered on X that circumscribes a facet f of

Delx(P) has a radius < ¢ 1fs(cy)
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Restricted Delaunay triangulation [Chew 93]

Definition

The restricted Delaunay
triangulation Delx(P) to
X c R? is the nerve of
Vor(P) N X
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Delaunay triang. restricted to surfaces

[Amenta et al. 1998-], [B. & Oudot 2005]

If

@ S C R? is a compact surface of positive
reach without boundary

@ P is an e-net, e small enough
then

@ Del(s(S) provides good estimates of
normals

@ There exists a homeomorphism
(Z) : Dellg(P) — S

@ sup,(lo(x) — ) = O(?)
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Thickness and angle bounds are automatic for
triangles

— inh — abxac
h=ab x sinb = T

— 2A 4R 32 32erch(S)
%o
sinb > 2erch(S)
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Surface mesh generation by Delaunay refinement
[Chew 1993, B. & Oudot 2003]

¢ : S — R = Lipschitz function
Vx €S, 0< ¢o=roerch(S) < ¢(x) <
e Ifs(x)

ORACLE : For a facet f of Del|s(P),
return ¢, ry and ¢(cy)

A facet f is bad if rr > ¢(cy)

Algorithm

INIT compute an initial (small) sample Py C S

REPEAT |IF f is a bad facet
insert.in_Del3D(cy) ,

update P and Del;s(P)
UNTIL no bad facet remains
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The meshing algorithm in action
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Applications

@ Implicit surfaces f(x,y,z) =0

@ Isosurfaces in a 3d image (Medical images)
@ Triangulated surfaces (Remeshing)

@ Point sets (Surface reconstruction)

see cgal.org, CGALmesh project

Computational Geometry and Topology Submanifold Reconstruction J-D. Boissonnat 49 /54



Results on smooth implicit surfaces
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Meshing 3D domains

Input from segmented 3D medical images

[INSERM] [SIEMENS]
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Comparison with the Marching Cube algorithm
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Meshing with sharp features
A polyhedral example
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Meshing 3D multi-domains
Input from segmented 3D medical images [IRCAD]

Size bound (mm) | vertices nb | facets nb | tetrahedra nb || CPU Time (s) \
16 3,743 3,735 19,886 0.880

8 27459 19,109 159,120 6.97

4 199,328 76,341 1,209,720 54.1

2 1,533,660 | 311,420 | 9,542,295 431
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Surface reconstruction from unorganized point sets
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Courtesy of P. Alliez
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