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Definition and existence of nets

Definition

Let Ω be a bounded subset of Rd and η̄ a constant. A finite set of
points P is called an (ε, η̄)-net of Ω iff

Density : ∀x ∈ Ω, ∃p ∈ P : ‖x− p‖ ≤ ε
Separation : ∀p, q ∈ P : ‖p− q‖ ≥ η̄ ε

Lemma Ω admits an (ε, 1)-net.

Proof. While there exists a point p ∈ Ω, d(p,P) ≥ ε, insert p in P

Computational Geometry and Topology Good Triangulations J-D. Boissonnat 3 / 37



Size of a net

Lemma The number of points of an (ε, η̄)-net is at most

n(ε, η̄) ≤ vold(Ω+ η
2 )

vold(B(η2 ))
= O

(
1
εd

)
where the constant in the O depends on the geometry of Ω and on η̄d.

Proof. Consider the balls B(p, η2 ) of radius η
2 that are centered at the

points p ∈ P. These balls are disjoint by definition of an (ε, η̄)-sample
and they are all contained in Ω+ η

2
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Delaunay complex of a net

Lemma Let Ω be a bounded subset of Rd, P an (ε, η̄)-net of Ω, and
assume that d and η̄ are positive constants. The restriction of the
Delaunay triangulation of P to Ω has linear size O(n) where
n = |P| = O( 1

εd )

Proof

1. The number of neighbours of p is np = O(1) using a volume argument

2. The number of simplices incident on a vertex is at most the number of
faces of the convex hull of np points of Rd

nb
d
2 c

p = O(1)

3. For the construction, use a grid Gε of resolution ε and compute, for each
p ∈ P, the subset N(p) ⊂ P of points that lie at distance at most 2ε from the
cell that contains p. We have

|N(p)| = O(1) and star(p,Del|Ω(P)) = star(p,Del|Ω(N(p))
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Optimizing the angular vector (d = 2)

Angular vector of a triangulation T(P)

ang (T(P)) = (α1, . . . , α3t), α1 ≤ . . . ≤ α3t

Optimality Any triangulation of a given point set P whose angular
vector is maximal (for the lexicographic order) is a Delaunay
triangulation of P

Good for matrix conditioning in FE methods
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Local characterization of Delaunay complexes

f
q1 q2

σ1

σ2

Pair of regular simplices

σ2(q1) ≥ 0 and σ1(q2) ≥ 0

⇔ ĉ1 ∈ h+
σ2

and ĉ2 ∈ h+
σ1

Theorem A triangulation T(P) such that all pairs of simplexes are regular
is a Delaunay triangulation Del((P))

Proof The PL function whose graph G is obtained by lifting the triangles
is locally convex and has a convex support

⇒ G = conv−(Q̂) ⇒ T(Q) = Del(Q)
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Lawson’s proof using flips

a

b

c

d

a

b

d

c

t3

t4

a4

c4
d4

a3

b3

d3

a1
t1

c1

b1

c2
d2

t2

b2

While ∃ a non regular pair (t3, t4)

/* t3 ∪ t4 is convex */

replace (t3, t4) by (t1, t2)

Regularize⇔ improve ang (T(P))

ang (t1, t2) ≥ ang (t3, t4)

a1 = a3 + a4, d2 = d3 + d4,
c1 ≥ d3, b1 ≥ d4, b2 ≥ a4, c2 ≥ a3

I The algorithm terminates since the number of triangulations of P is
finite and ang(T(P)) cannot decrease

I The obtained triangulation is a Delaunay triangulation of P since all
its edges are regular
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del((P))

1 (2d) maximizes the smallest angle [Lawson]

2 (2d) Linear interpolation of {(pi, f (pi))} that minimizes [Rippa]

R(T) =
∑

i

∫
Ti

((
∂φi
∂x

)2
+
(
∂φi
∂y

)2
)

dx dy (Dirichlet energy)

φi = linear interpolation of the f (pj) over triangle Ti ∈ T

3 (any d) minimizes the radius of the maximal smallest ball
enclosing a simplex ) [Rajan]

ct = c′t ct c′t

rt r′t
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Triangle mesh generation by Delaunay refinement
[Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : Ω = R2/Z2 (periodic plane)

Sizing field : φ : Ω→ R = α-Lipschitz function, α < 1

∀x ∈ Ω, 0 < φ0 ≤ φ(x)

Bad triangle t = pqr : Vor(p, q, r) = ct ∈ Ω and ‖ct − p‖ > φ(ct)

Algorithm
INIT compute an initial (small) sample P0 ⊂ Ω

REPEAT WHILE ( ∃ a bad triangle t)
insert in Del(ct)

UNTIL no bad element remains
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Non uniform nets

A finite set of points P ⊂ Ω is a net of Ω wrt φ if there exists two
constants c and c′ such that

Density: ∀x ∈ Ω,∃p ∈ P : ‖x− p‖ ≤ cφ(x)

Separation: ∀p, q ∈ P : ‖p− q‖ ≥ c′ max(φ(p), φ(q))
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The algorithm outputs a net of Ω wrt φ

Separation : ∀p, q ∈ P : ‖p− q‖ ≥ 1
1+α φ0

∀p ∈ P, d(p,P \ {p}) = ‖p− q‖
≥ min(φ(p), φ(q))
≥ φ(p)− α ‖p− q‖ (φ is α-Lipschitz)

⇒ ‖p− q‖ ≥ 1
1+α φ(p) ≥ 1

1+α φ0 > 0 ⇒ the algorithm terminates

Density : ∀x ∈ Ω : d(x,P) ≤ φ(x)
1−α
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Angle bound and density
Thickness and angle bounds for triangles

Good sampling implies angle and thickness bounds for
triangles

a

b

c

h

R

h = ab⇥ sin b = ab�ac
2R

⇥(abc) = h
2� � h

4R �
�2

8�2 = �̄2

8

sin b � �
2� = �̄

2

Computational Geometry Learning Manifold Reconstruction MPRI, Lecture 5 18 / 67
Algorithmic Geometry Mesh generation J-D. Boissonnat 17 / 28

‖a− c‖ ≥ φ(a) (a inserted after c)

R ≤ φ(cabc) (cabc not inserted)

sin b = ‖a−c‖
2R ≥ φ(a)

2φ(cabc)

∀x ∈ [abc] : φ(cabc) ≤ φ(x) + α ‖cabc − x‖ ≤ φ(x) + αφ(cabc)

⇒ φ(cabc) ≤ φ(x)
1−α

⇒ sin b ≥ 1−α
2

⇒ for some p ∈ {a, b, c} : ‖x− p‖ ≤ R ≤ φ(ct) ≤ φ(x)
1−α
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Size of the sample = Θ
(∫

Ω
dx
φ2(x)

)
Upper bound
Bp = B(p, φ(p)

2(1+α)
), p ∈ P∫
Ω

dx
φ2(x) ≥

∑
p

∫
Bp∩Ω

dx
φ2(x) (the Bp are disjoint)

≥
(

2+2α
2+3α

)2∑
p

area(Bp∩Ω)

φ2(p) (φ(x) ≤ φ(p) + α ‖p− x‖
≤ φ(p) + αφ(p)

2(1+α)
= (2+3α)φ(p)

2+2α )

≥
(

2+2α
2+3α

)2
π

4(1+α)2 |P|

= π
4(2+3α)2 |P|

Lower bound
I Observe that the balls B′p(p, φ(p)

1−α ) cover Ω

I Use a covering instead of a packing
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Results

φ(x) = φ0 + αd(x, ∂Ω)

2D Mesh Optimization

Application to 2D isotropic triangle mesh generation and

isotropic surface remeshing.

Mesh Generation
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

! !
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Each square face can be circumscribed by an empty sphere
This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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The long quest for thick triangulations

Differential Topology [Cairns], [Whitehead], [Whitney], [Munkres]

Differential Geometry [Cheeger et al.]

Geometric Function Theory [Peltonen], [Saucan]
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Simplex quality

Altitudes
D(q, σ)

σq

q If σq, the face opposite q in σ is
protected, The altitude of q in σ is

D(q, σ) = d(q, aff(σq)),

where σq is the face opposite q.

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex σ with diameter ∆(σ) is

Θ(σ) =

{
1 if j = 0
minp∈σ

D(p,σ)
j∆(σ) otherwise.
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Thickness and angle bounds for Delaunay trianglesThickness and angle bounds for triangles

Good sampling implies angle and thickness bounds for
triangles

a

b

c

h

R

h = ab⇥ sin b = ab�ac
2R

⇥(abc) = h
2� � h

4R �
�2

8�2 = �̄2

8

sin b � �
2� = �̄

2
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h = |ab| × sinb = |ab|×|ac|
2R

Θ(abc) = h
2∆ ≥ h

4R

If P is an (ε, η̄)-net and σ a Delaunay triangle, then :

|ab|, |ac| ≥ η̄ε
2 and R ≤ ε

⇒ Θ(abc) ≥ η̄2

32 and sin b ≥ η̄
2
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Protection

δ

cσ

δ-protection We say that a Delaunay simplex σ ⊂ L is δ-protected if

‖cσ − q‖ > ‖cσ − p‖+ δ ∀p ∈ σ and ∀q ∈ L \ σ.
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Protection implies separation and thickness

Let P be a (ε, η̄)-net, i.e.

∀x ∈ Ω, d(x,P) ≤ ε

∀p, q ∈ P, ‖p− q‖ ≥ η̄ε

if all d-simplices of Del(P) are δ̄ε-protected, then

Separation of P : η̄ ≥ δ̄

Thickness : ∀σ ∈ Del(P), Θ(σ) ≥ δ̄2

8d
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The Lovász Local Lemma
Motivation

Given: A set of (bad) events A1, ...,AN ,
each happens with proba(Ai) ≤ p < 1

Question : what is the probability that none of the events occur?

The case of independent events

proba(¬A1 ∧ ... ∧ ¬AN) ≥ (1− p)N > 0

What if we allow a limited amount of dependency among the
events?
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LLL : symmetric version [Lovász & Erdös 1975]

If, for i = 1, ...,N,

1 Ai is independent of all other events except ≤ Γ ones

2 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

then
proba(¬A1 ∧ ... ∧ ¬AN) > 0
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables

A a finite set of events that are determined by the values of some
variables of P
Two events are independent iff they share no variable

Algorithm

for all p ∈ P do
vp ← a random evaluation of p;

while some events in A occur when (p = vp, p ∈ P) do

pick an arbitrary such event A ∈ A;

for all p ∈ variables(A) do
vp ← a new random evaluation of p;

return (vp)p∈P ;
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Moser and Tardos’ theorem

if for all i ∈ [1,N]

1 Ai is independent of all other events except ≤ Γ other ones

2 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

then ∃ an assignment of values to the variables P such that there is no
event in A occurs

The randomized algorithm resamples an event A ∈ A at most 1
Γ

expected times before it finds such an evaluation

The expected total number of resampling steps is at most N
Γ

Computational Geometry and Topology Good Triangulations J-D. Boissonnat 29 / 37



Home work

Read the proof of Moser & Tardos (or Spencer’s nice note)

Listen to a talk by Aravind Srinivasan on further extensions
https://video.ias.edu/csdm/2014/0407-AravindSrinivasan
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Protecting Delaunay simplices via perturbation

P is an (ε, η̄)-net

Picking regions : pick p′ in B(p, ρ) Hyp. ρ ≤ η
4 (≤ ε

2)

Sampling parameters of a perturbed point set

P′ is an (ε′, η̄′)-net, where

ε′ = ε(1 + ρ̄) and η̄′ =
η̄ − 2ρ̄
1 + ρ̄

≥ η̄

3

Notation : x̄ = x
ε
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The LLL framework

Random variables : P′ a set of random points {p′, p′ ∈ B(p, ρ), p ∈ P}

Event: ∃φ′ = (σ′, p′) (Bad configuration)
σ′ is a d simplex with Rσ′ ≤ ε+ ρ
p′ ∈ Zδ(σ′) Zδ(σ′) = B(cσ′ ,Rσ′ + δ) \ B(cσ′ ,Rσ′)

Algorithm
Input: P, ρ, δ

while a bad configration φ′ = (σ′, p′) occurs do

resample the points of φ′

update Del(P′)

Output: P′ and Del(P′)
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Bounding Γ

Lemma : An event is independent of all but at most Γ other bad
events where Γ depends on η̄, ρ̄, δ̄ and d

Proof :

Let φ′ = (σ′, p′) be a bad configuration.

∀p′ ∈ φ′, ‖p′ − cσ′‖ ≤ Rσ′ + δ = R = ε+ ρ+ δ = ε (1 + ρ̄+ δ̄)

the number of events that may not be independent from an event (σ′, p′)
is at most the number of subsets of (d + 2) points in B(cσ′ , 3R).

Since P′ is η′-sparse,

Γ =

(
3R + η′

2
η′

2

)d(d+2)

=

(
1 + 6

(1 + ρ̄+ δ̄) (1 + ρ̄)

η̄ − 2ρ̄

)d(d+2)
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Bounding proba(σ, p) be a bad configuration

p

B(p, ρ)

2β

S(c, R)

S1

θ R

ρ

c

S(c,R) a hypersphere of Rd

Tδ = B(c,R + δ) \ B(c,R)

Bρ any d-ball of radius ρ < R

vold(Tδ ∩ Bρ) ≤ Ud−1 (Rθ)d−1
δ,

2
π θ ≤ sin θ ≤ ρ

R (θ < π
2 ⇐ ρ < R)

⇒ Rθ ≤ π
2 ρ

proba(p′ ∈ Zδ(σ′)) ≤ $ =
Ud−1

Ud

(
π
2

)d−1 δ
ρ ≤ C√

d
δ
ρ
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Main result

Under the condition

eC√
d

(Γ + 1) δ ≤ ρ ≤ η

4

the algorithm terminates.

Guarantees on the output
I dH(P,P′) ≤ ρ
I the d-simplices of Del(P′) are δ-protected

I and therefore have a positive thickness
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Bound on the number of events

Σ(p′) : number of d-simplices that can possibly make a bad
configuration with p′ ∈ P′ for some perturbed set P′

R = ε+ ρ+ δ

∑
p′∈P′

Σ(p′) ≤ n× |P′ ∩ B(p′, 2R)|d+1

≤ n

(
2 (1 + ρ̄+ δ̄ + η̄′

2
η̄′

2

)d(d+1)

= C′ n
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Complexity of the algorithm

The number of resamplings executed by the algorithm is at most

C′n
Γ
≤ C′′ n

where C′′ depends on η̄, ρ̄, δ̄ and (exponentially) d

Each resampling consists in perturbing O(1) points

Updating the Delaunay triangulation after each resampling takes
O(1) time

The expected complexity is linear in the number of points
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Thickness and stability of Delaunay triangulations

If a simplex is thick, its circumcenter is not much affected by a
small perturbation of the position of the points or of the metric

Applications to the triangulation of manifolds
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