Lecture 3 Good Triangulations

Jean-Daniel Boissonnat

Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017

Computational Geometry and Topology

Good Triangulations

Outline

Optimality of Delaunay triangulations

Thickness in higher dimensions

Definition

Let Ω be a bounded subset of \mathbb{R}^d and $\overline{\eta}$ a constant. A finite set of points *P* is called an $(\varepsilon, \overline{\eta})$ -net of Ω iff

Density : $\forall x \in \Omega, \exists p \in P : ||x - p|| \le \varepsilon$ **Separation :** $\forall p, q \in P : ||p - q|| \ge \overline{\eta} \varepsilon$

Lemma Ω admits an $(\varepsilon, 1)$ -net.

Proof. While there exists a point $p \in \Omega$, $d(p, P) \ge \varepsilon$, insert *p* in *P*

Size of a net

Lemma The number of points of an $(\varepsilon, \bar{\eta})$ -net is at most

$$n(\varepsilon,\bar{\eta}) \leq \frac{\operatorname{vol}_d(\Omega^{+\frac{\eta}{2}})}{\operatorname{vol}_d(B(\frac{\eta}{2}))} = O\left(\frac{1}{\varepsilon^d}\right)$$

where the constant in the *O* depends on the geometry of Ω and on $\bar{\eta}^d$.

Proof. Consider the balls $B(p, \frac{\eta}{2})$ of radius $\frac{\eta}{2}$ that are centered at the points $p \in P$. These balls are disjoint by definition of an $(\varepsilon, \overline{\eta})$ -sample and they are all contained in $\Omega^{+\frac{\eta}{2}}$

Computational Geometry and Topology

Delaunay complex of a net

Lemma Let Ω be a bounded subset of \mathbb{R}^d , P an $(\varepsilon, \overline{\eta})$ -net of Ω , and assume that d and $\overline{\eta}$ are positive constants. The restriction of the Delaunay triangulation of P to Ω has linear size O(n) where $n = |\mathsf{P}| = O(\frac{1}{\varepsilon^d})$

Proof

1. The number of neighbours of *p* is $n_p = O(1)$ using a volume argument

2. The number of simplices incident on a vertex is at most the number of faces of the convex hull of n_p points of \mathbb{R}^d

$$n_p^{\lfloor \frac{d}{2} \rfloor} = O(1)$$

3. For the construction, use a grid G_{ε} of resolution ε and compute, for each $p \in P$, the subset $N(p) \subset P$ of points that lie at distance at most 2ε from the cell that contains p. We have

$$|N(p)| = O(1)$$
 and $\operatorname{star}(p, \operatorname{Del}_{|\Omega}(\mathsf{P})) = \operatorname{star}(p, \operatorname{Del}_{|\Omega}(N(p)))$

Computational Geometry and Topology

Good Triangulations

Optimality of Delaunay triangulations

- 3 Delaunay refinement and angle bounds
- 4 Thickness in higher dimensions
- 5 The Local Lovasz Lemma and Thick Triangulations

Computational Geometry and Topology

Optimizing the angular vector (d = 2)

Angular vector of a triangulation $T(\mathcal{P})$

ang
$$(T(\mathcal{P})) = (\alpha_1, \ldots, \alpha_{3t}), \quad \alpha_1 \leq \ldots \leq \alpha_{3t}$$

Optimality Any triangulation of a given point set \mathcal{P} whose angular vector is maximal (for the lexicographic order) is a Delaunay triangulation of \mathcal{P}

Good for matrix conditioning in FE methods

Local characterization of Delaunay complexes

Pair of regular simplices

$$\sigma_2(q_1) \ge 0$$
 and $\sigma_1(q_2) \ge 0$

$$\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+$$
 and $\hat{c}_2 \in h_{\sigma_1}^+$

Theorem A triangulation T(P) such that all pairs of simplexes are regular is a Delaunay triangulation $Del_{(P)}$

Proof The PL function whose graph *G* is obtained by lifting the triangles is locally convex and has a convex support

$$\Rightarrow \quad G = \operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q) = \operatorname{Del}(Q)$$

Computational Geometry and Topology

Lawson's proof using flips

While \exists a non regular pair (t_3, t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

Regularize \Leftrightarrow improve ang $(T(\mathcal{P}))$ ang $(t_1, t_2) \ge$ ang (t_3, t_4) $a_1 = a_3 + a_4, d_2 = d_3 + d_4,$ $c_1 \ge d_3, b_1 \ge d_4, b_2 \ge a_4, c_2 \ge a_3$

- ► The algorithm terminates since the number of triangulations of P is finite and ang(T(P)) cannot decrease
- The obtained triangulation is a Delaunay triangulation of P since all its edges are regular

Some optimality properties of Delaunay triangulations

Among all possible triangulations of \mathcal{P} , $\text{Del}_{(\mathcal{P})}$)

- (2d) maximizes the smallest angle
 [Lawson]
- **2** (2d) Linear interpolation of $\{(p_i, f(p_i))\}$ that minimizes [Rippa]

$$R(T) = \sum_{i} \int_{T_{i}} \left(\left(\frac{\partial \phi_{i}}{\partial x} \right)^{2} + \left(\frac{\partial \phi_{i}}{\partial y} \right)^{2} \right) dx dy$$
(Dirichlet energy)
$$\phi_{i} = \text{linear interpolation of the } f(p_{j}) \text{ over triangle } T_{i} \in T$$

 (any d) minimizes the radius of the maximal smallest ball enclosing a simplex)

Oelaunay refinement and angle bounds

5 The Local Lovasz Lemma and Thick Triangulations

Computational Geometry and Topology

Triangle mesh generation by Delaunay refinement

[Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : $\Omega = \mathbb{R}^2/\mathbb{Z}^2$ (periodic plane) Sizing field : $\phi : \Omega \to \mathbb{R} = \alpha$ -Lipschitz function, $\alpha < 1$ $\forall x \in \Omega, \ 0 < \phi_0 \le \phi(x)$

Bad triangle t = pqr: $Vor(p,q,r) = c_t \in \Omega$ and $||c_t - p|| > \phi(c_t)$

Algorithm

INIT compute an initial (small) sample $\mathcal{P}_0 \subset \Omega$ REPEAT WHILE (\exists a bad triangle *t*) *insert_in_Del(c_t)*

UNTIL no bad element remains

A finite set of points $P \subset \Omega$ is a net of Ω wrt ϕ if there exists two constants c and c' such that

Density: $\forall x \in \Omega, \exists p \in P : ||x - p|| \le c \phi(x)$

Separation: $\forall p, q \in P$: $||p - q|| \ge c' \max(\phi(p), \phi(q))$

The algorithm outputs a net of Ω wrt ϕ

Separation : $\forall p, q \in P : ||p - q|| \ge \frac{1}{1+\alpha} \phi_0$

$$egin{aligned} & \forall p \in \mathcal{P}, d(p, \mathcal{P} \setminus \{p\}) = \|p - q\| \ & \geq \min(\phi(p), \phi(q)) \ & \geq \phi(p) - \alpha \|p - q\| \ & (\phi ext{ is } lpha ext{-Lipschitz}) \end{aligned}$$

 $\Rightarrow ||p-q|| \ge \frac{1}{1+\alpha} \phi(p) \ge \frac{1}{1+\alpha} \phi_0 > 0 \Rightarrow \text{the algorithm terminates}$

Density : $\forall x \in \Omega : d(x, P) \leq \frac{\phi(x)}{1-\alpha}$

Angle bound and density

 $||a - c|| \ge \phi(a)$ (*a* inserted after *c*)

$$R \le \phi(c_{abc})$$
 (c_{abc} not inserted)

$$\begin{split} \sin b &= \frac{\|a-c\|}{2R} \ge \frac{\phi(a)}{2\phi(c_{abc})} \\ \forall x \in [abc] : \phi(c_{abc}) \le \phi(x) + \alpha \, \|c_{abc} - x\| \le \phi(x) + \alpha \, \phi(c_{abc}) \\ &\Rightarrow \quad \phi(c_{abc}) \le \frac{\phi(x)}{1-\alpha} \quad \Rightarrow \quad \sin b \ge \frac{1-\alpha}{2} \\ &\Rightarrow \quad \text{for some } p \in \{a, b, c\} : \|x - p\| \le R \le \phi(c_t) \le \frac{\phi(x)}{1-\alpha} \end{split}$$

Size of the sample = $\Theta\left(\int_{\Omega} \frac{dx}{\phi^2(x)}\right)$

Upper bound

$$B_{p} = B(p, \frac{\phi(p)}{2(1+\alpha)}), p \in \mathcal{P}$$

$$\int_{\Omega} \frac{dx}{\phi^{2}(x)} \geq \sum_{p} \int_{B_{p}\cap\Omega} \frac{dx}{\phi^{2}(x)} \qquad \text{(the } B_{p} \text{ are disjoint)}$$

$$\geq \left(\frac{2+2\alpha}{2+3\alpha}\right)^{2} \sum_{p} \frac{\operatorname{area}(B_{p}\cap\Omega)}{\phi^{2}(p)} \qquad (\phi(x) \leq \phi(p) + \alpha ||p - x|| \\ \leq \phi(p) + \frac{\alpha\phi(p)}{2(1+\alpha)} = \frac{(2+3\alpha)\phi}{2+2\alpha}$$

$$\geq \left(\frac{2+2\alpha}{2+3\alpha}\right)^{2} \frac{\pi}{4(1+\alpha)^{2}} |\mathcal{P}|$$

$$= \frac{\pi}{4(2+3\alpha)^{2}} |\mathcal{P}|$$

Lower bound

- Observe that the balls $B'_p(p, \frac{\phi(p)}{1-\alpha})$ cover Ω
- Use a covering instead of a packing

Results

 $\phi(x) = \phi_0 + \alpha d(x, \partial \Omega)$

Good Triangulations

3 Delaunay refinement and angle bounds

5) The Local Lovasz Lemma and Thick Triangulations

3D Delaunay Triangulations are not thick even if the vertices are well-spaced

- Each square face can be circumscribed by an empty sphere
- This remains true if the grid points are slightly perturbed therefore creating thin simplices

The long quest for thick triangulations

Differential Topology

Differential Geometry

Geometric Function Theory

[Cairns], [Whitehead], [Whitney], [Munkres]

[Cheeger et al.]

[Peltonen], [Saucan]

Simplex quality

Altitudes

) If σ_q , the face opposite q in σ is protected, The *altitude* of q in σ is

$$D(q,\sigma) = d(q, \operatorname{aff}(\sigma_q)),$$

where σ_q is the face opposite q.

Definition (Thickness

[Cairns, Whitney, Whitehead et al.])

The *thickness* of a *j*-simplex σ with diameter $\Delta(\sigma)$ is

$$\Theta(\sigma) = \begin{cases} 1 & \text{if } j = 0 \\ \min_{p \in \sigma} \frac{D(p,\sigma)}{j\Delta(\sigma)} & \text{otherwise.} \end{cases}$$

Thickness and angle bounds for Delaunay triangles

$$h = |ab| \times sinb = \frac{|ab| \times |ac|}{2R}$$
$$\Theta(abc) = \frac{h}{2\Delta} \ge \frac{h}{4R}$$

If *P* is an $(\varepsilon, \overline{\eta})$ -net and σ a Delaunay triangle, then :

$$|ab|, |ac| \ge \frac{\bar{\eta}\varepsilon}{2}$$
 and $R \le \varepsilon$
 $\Rightarrow \Theta(abc) \ge \frac{\bar{\eta}^2}{32}$ and $\sin b \ge \frac{\bar{\eta}}{2}$

Computational Geometry and Topology

Good Triangulations

Protection

 δ -protection We say that a Delaunay simplex $\sigma \subset L$ is δ -protected if

$$||c_{\sigma} - q|| > ||c_{\sigma} - p|| + \delta \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma.$$

Computational Geometry and Topology

Protection implies separation and thickness

Let P be a $(\varepsilon, \overline{\eta})$ -net, i.e.

- $\forall x \in \Omega$, $d(x, P) \leq \varepsilon$
- $\forall p, q \in P$, $||p-q|| \ge \bar{\eta}\varepsilon$

if all *d*-simplices of $\mathrm{Del}(P)$ are $\bar{\delta}\varepsilon$ -protected, then

- Separation of $P: \bar{\eta} \geq \bar{\delta}$
- Thickness : $\forall \sigma \in \text{Del}(P), \quad \Theta(\sigma) \geq \frac{\overline{\delta}^2}{8d}$

3 Delaunay refinement and angle bounds

4) Thickness in higher dimensions

5 The Local Lovasz Lemma and Thick Triangulations

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le p < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1-p)^N > 0$$

What if we allow a limited amount of dependency among the events?

Computational Geometry and Topology

LLL : symmetric version [Lovász & Erdös 1975]

If, for i = 1, ..., N,

() A_i is independent of all other events except $\leq \Gamma$ ones

2 proba
$$(A_i) \le \frac{1}{e(\Gamma+1)}$$
 $e = 2.718...$

then

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) > 0$$

Moser and Tardos' constructive proof of the LLL [2010]

 $\ensuremath{\mathcal{P}}$ a finite set of mutually independent random variables

 ${\mathcal A}$ a finite set of events that are determined by the values of some variables of ${\mathcal P}$

Two events are independent iff they share no variable

Algorithm

for all $p \in \mathcal{P}$ do

 $v_p \leftarrow$ a random evaluation of p;

while some events in A occur when $(p = v_p, p \in P)$ do

pick an arbitrary such event $A \in A$;

for all $p \in variables(A)$ do

 $v_p \leftarrow$ a new random evaluation of p;

return $(v_p)_{p \in \mathcal{P}}$;

Moser and Tardos' theorem

if for all $i \in [1, N]$

Q A_i is independent of all other events except $\leq \Gamma$ other ones

2 proba
$$(A_i) \le \frac{1}{e(\Gamma+1)}$$
 $e = 2.718...$

then \exists an assignment of values to the variables \mathcal{P} such that there is no event in \mathcal{A} occurs

The randomized algorithm resamples an event $A \in A$ at most expected times before it finds such an evaluation

The expected total number of resampling steps is at most

 $\frac{1}{\Gamma}$

- Read the proof of Moser & Tardos (or Spencer's nice note)
- Listen to a talk by Aravind Srinivasan on further extensions https://video.ias.edu/csdm/2014/0407-AravindSrinivasan

Protecting Delaunay simplices via perturbation

P is an $(\varepsilon, \overline{\eta})$ -net

Picking regions : pick p' in $B(p, \rho)$ Hyp. $\rho \leq \frac{\eta}{4} \ (\leq \frac{\varepsilon}{2})$

Sampling parameters of a perturbed point set

 P' is an $(\varepsilon',\bar{\eta}')\text{-net},$ where

$$arepsilon' = arepsilon(1+ar
ho)$$
 and $ar\eta' = rac{ar\eta - 2ar
ho}{1+ar
ho} \geq rac{ar\eta}{3}$

Notation :
$$\bar{x} = \frac{x}{\varepsilon}$$

The LLL framework

Random variables : P' a set of random points $\{p', p' \in B(p, \rho), p \in \mathsf{P}\}$

Event: $\exists \phi' = (\sigma', p')$ (Bad configuration) σ' is a d simplex with $R_{\sigma'} \leq \varepsilon + \rho$ $p' \in Z_{\delta}(\sigma')$ $Z_{\delta}(\sigma') = B(c_{\sigma'}, R_{\sigma'} + \delta) \setminus B(c_{\sigma'}, R_{\sigma'})$

Algorithm

Input: P, ρ , δ

while a bad configration $\phi' = (\sigma', p')$ occurs **do**

resample the points of ϕ'

```
update Del(P')
```

Output: P' and Del(P')

Bounding Γ

Lemma : An event is independent of all but at most Γ other bad events where Γ depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and d

Proof :

• Let $\phi' = (\sigma', p')$ be a bad configuration.

$$\forall p' \in \phi', \quad \|p' - c_{\sigma'}\| \le R_{\sigma'} + \delta = R = \varepsilon + \rho + \delta = \varepsilon \left(1 + \bar{\rho} + \bar{\delta}\right)$$

- the number of events that may not be independent from an event (σ', p') is at most the number of subsets of (d+2) points in $B(c_{\sigma'}, 3R)$.
- Since P' is η' -sparse,

$$\Gamma = \left(\frac{3R + \frac{\eta'}{2}}{\frac{\eta'}{2}}\right)^{d(d+2)} = \left(1 + 6\frac{\left(1 + \bar{\rho} + \bar{\delta}\right)\left(1 + \bar{\rho}\right)}{\bar{\eta} - 2\bar{\rho}}\right)^{d(d+2)}$$

Bounding $proba(\sigma, p)$ be a bad configuration

S(c, R) a hypersphere of \mathbb{R}^d

$$T_{\delta} = B(c, R + \delta) \setminus B(c, R)$$

 B_{ρ} any *d*-ball of radius $\rho < R$

$$\operatorname{vol}_{d}(T_{\delta} \cap B_{\rho}) \leq U_{d-1} (R\theta)^{d-1} \delta,$$

$$\frac{2}{\pi}\theta \le \sin \theta \le \frac{\rho}{R} \qquad (\theta < \frac{\pi}{2} \Leftarrow \rho < R)$$
$$\Rightarrow R\theta \le \frac{\pi}{2}\rho$$

$$\operatorname{proba}(p' \in Z_{\delta}(\sigma')) \leq \varpi = \frac{U_{d-1}}{U_d} \left(\frac{\pi}{2}\right)^{d-1} \frac{\delta}{\rho} \leq \frac{C}{\sqrt{d}} \frac{\delta}{\rho}$$

Main result

Under the condition

$$\frac{eC}{\sqrt{d}}\left(\Gamma+1\right)\delta \le \rho \le \frac{\eta}{4}$$

the algorithm terminates.

Guarantees on the output

- $d_H(P, P') \leq \rho$
- the *d*-simplices of Del(P') are δ -protected
- and therefore have a positive thickness

Bound on the number of events

 $\Sigma(p')$: number of *d*-simplices that can possibly make a bad configuration with $p' \in P'$ for some perturbed set P'

 $\mathbf{R} = \varepsilon + \rho + \delta$

$$\sum_{p' \in P'} \Sigma(p') \leq n \times |P' \cap B(p', 2R)|^{d+1}$$
$$\leq n \left(\frac{2(1+\bar{\rho}+\bar{\delta}+\frac{\bar{\eta}'}{2})}{\frac{\bar{\eta}'}{2}}\right)^{d(d+1)}$$
$$= C' n$$

Complexity of the algorithm

The number of resamplings executed by the algorithm is at most

$$\frac{C'n}{\Gamma} \le C''n$$

where C'' depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and (exponentially) *d*

- Each resampling consists in perturbing O(1) points
- Updating the Delaunay triangulation after each resampling takes O(1) time
- The expected complexity is linear in the number of points

Thickness and stability of Delaunay triangulations

- If a simplex is thick, its circumcenter is not much affected by a small perturbation of the position of the points or of the metric
- Applications to the triangulation of manifolds