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Definition and existence of nets

Definition

Let © be a bounded subset of R¢ and 7 a constant. A finite set of
points P is called an (e, 7)-net of 2 iff

Density : Vxc Q,FpeP: |x—p| <e
Separation : Vp,q € P: |p —q|| > ¢

Lemma Q admits an (e, 1)-net.

Proof. While there exists a pointp € Q, d(p,P) > ¢, insertpin P
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Size of a net

Lemma The number of points of an (e, 7)-net is at most

o volg(Qt) B 1
nE ) S o) (d)

where the constant in the O depends on the geometry of Q and on 7.

Proof. Consider the balls B(p, Z) of radius % that are centered at the
points p € P. These balls are disjoint by definition of an (e, 77)-sample
and they are all contained in Q2
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Delaunay complex of a net

Lemma Let 2 be a bounded subset of R, P an (e, 7)-net of 2, and
assume that d and 7 are positive constants. The restriction of the
Delaunay triangulation of P to Q has linear size O(n) where
n=IP|=0(z)

Ed
Proof

1. The number of neighbours of p is n, = O(1) using a volume argument

2. The number of simplices incident on a vertex is at most the number of
faces of the convex hull of n, points of R?

nt = o(1)

3. For the construction, use a grid G. of resolution ¢ and compute, for each
p € P, the subset N(p) C P of points that lie at distance at most 2 from the
cell that contains p. We have
IN(p)| = O(1) and star(p, Del|o(P)) = star(p, Deljo(N(p))
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9 Optimality of Delaunay triangulations
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Optimizing the angular vector (d = 2)

Angular vector of a triangulation 7(P)

ang(T(,P)):(al""?O@t): ar < .. < az

Optimality Any triangulation of a given point set P whose angular
vector is maximal (for the lexicographic order) is a Delaunay
triangulation of P

Good for matrix conditioning in FE methods
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Local characterization of Delaunay complexes

Pair of regular simplices
a Q2

02(q1) >0 and o(q2) >0

” & ¢ ehfand ¢ € hf

o1

Theorem A triangulation T(P) such that all pairs of simplexes are regular
is a Delaunay triangulation Del((P))

Proof The PL function whose graph G is obtained by lifting the triangles
is locally convex and has a convex support

= G=conv (Q) = T(Q)=Del(Q)
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Lawson’s proof using flips

. ' z While 3 a non regular pair (13, 1)
‘ [* t3 U 4 is convex */
replace (13,t4) by (1, 1)
Regularize < improve ang (T(P))
ang (t,1,) > ang (3, 14)
a) = az +as, dr = dz + dy,
c1 2dy, by >dy, by >as, 2203

» The algorithm terminates since the number of triangulations of P is
finite and ang(7(P)) cannot decrease

» The obtained triangulation is a Delaunay triangulation of P since all
its edges are regular
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del((P))

@ (2d) maximizes the smallest angle [Lawson]

© (2d) Linear interpolation of {(p;,f(p;))} that minimizes [Rippa]
2 2

R(T)=>", fTi ((%ﬁ’) + (%ﬁ’) ) dx dy (Dirichlet energy)

¢; = linear interpolation of the f(p;) over triangle 7; € T

© (any d) minimizes the radius of the maximal smallest ball
enclosing a simplex ) [Rajan]

= (@
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© Delaunay refinement and angle bounds
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Triangle mesh generation by Delaunay refinement
[Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : Q = R?/Z* (periodic plane)
Sizing field : ¢ : © — R = a-Lipschitz function, a < 1
Vx € Q, 0< ¢o < p(x)

Bad triangle t=pgr:  Vor(p,q,r) =c¢, € Q and |¢; —p|l > é(cr)

Algorithm

INIT compute an initial (small) sample Py C Q

REPEAT WHILE ( 3 a bad triangle ¢)
insert_in_Del(c;)

UNTIL no bad element remains
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Non uniform nets

A finite set of points P C Q2 is a net of Q wrt ¢ if there exists two
constants ¢ and ¢’ such that

Density: VxeQ,IpeP: |x—p| <colx)

Separation:  Vp,g e P: lp — qll > ¢ max(¢(p), #(q))
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The algorithm outputs a net of Q2 wrt ¢

. X
Separation : Vp,qg € P: [|p — ql| > 135 %o

lp — 4l
min(¢(p), #(q))
(p) —allp—qll  (sis a-Lipschitz)

Vp € P,d(p, P\ {p})

(AVAAVAN|

= |p—dql = 35 ¢(p) > 5 ¢0 >0 = the algorithm terminates

(x)

—Q

=S

Density : Vx € Q : d(x,P) <
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Angle bound and density

lla —cll = ¢(a)

(a inserted after c)

R < ¢(carc)  (cape NOt inserted)

sinp = lazel ~ _¢@

2R = 2¢(canc)

Vx € [abc] : P(care) < P(x) + [|cane — x| < (x) + o p(cane)
= ¢(Cabc) < ?(X)

= sinb> =2
— 2

forsome p € {a,b,c} : ||x —pl]| <R < ¢p(er) <

Computational Geometry and Topology

= o (x)

1—a
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Size of the sample = © (fQ ¢§l_fcx))

Upper bound
P - B@: 2(?521)) p € P
dx dx PPN
Jo 75 25 Jore 7 (the B, are disjoint)
2 area(s,nQ
> (32) ¥, TR (60 < 6(p) +allp -1l
ap 243a) ¢
< $lp) + 5Ly = G2

2
242«
(2+3a) 4(1+a)2 ‘P|

= @rsay P

Lower bound
> Observe that the balls B (p, 22 cover Q

» Use a covering instead of a packing
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Results

d(x) = ¢ + ad(x,00)
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e Thickness in higher dimensions
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

Ier
ARsazead!
R

@ Each square face can be circumscribed by an empty sphere

@ This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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The long quest for thick triangulations

Differential Topology [Cairns], [Whitehead], [Whitney], [Munkres]
Differential Geometry [Cheeger et al ]
Geometric Function Theory [Peltonen], [Saucan]
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Simplex quality

Altitudes
4 (¢,0) If o4, the face opposite g in o is

D
h / protected, The altitude of g in o is

D(q,0) = d(q; aff(0,)),

/ where o, is the face opposite g.

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex o with diameter A(o) is

o) {! itj =0
= min,c, ?A(”(ﬁ)) otherwise.

v
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Thickness and angle bounds for Delaunay triangles

_ p  lab|x]ac|
h = |ab| x sinb = =55—

If Pis an (e,7)-net and o a Delaunay triangle, then :
|ab|, |ac| > and R<e¢

=) .
= Ofabc) > L and sinb >
32
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Protection

o-protection We say that a Delaunay simplex o C L is §-protected if

llco — gl > |lco —p|| +0 Vp€o and Vge L\ o.

Computational Geometry and Topology Good Triangulations J-D. Boissonnat 23/37



Protection implies separation and thickness

Let P be a (¢,7)-net, i.e.
@ Vxe, dxP)<e

@ Vp,geP, |p—gqll=ne

if all d-simplices of Del(P) are je-protected, then

@ Separationof P: 7> 6

e Thickness : Vo € Del(P), ©O(0) > &

Computational Geometry and Topology Good Triangulations J-D. Boissonnat

24 /37



e The Local Lovasz Lemma and Thick Triangulations
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The Lovasz Local Lemma

Motivation

Given: A set of (bad) events Ay, ..., Ay,
each happens with proba(A;) < p <1

Question : what is the probability that none of the events occur?

The case of independent events

proba(—A; A ... A—Ay) > (1 —p)VN >0

What if we allow a limited amount of dependency among the
events?
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LLL : symmetric version [Lovasz & Erdds 1975]

If, fori=1,...,N,
@ A; is independent of all other events except < I' ones
© proba(4;) < ﬁ e=2718...

then
proba(—A; A ... A =Ay) >0
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables

A afinite set of events that are determined by the values of some
variables of P

Two events are independent iff they share no variable

Algorithm

forallp € P do
v, < a random evaluation of p;

while some events in A occur when (p = v,,p € P) do
pick an arbitrary such event A € A;

for all p € variables(A) do
v, < a new random evaluation of p;

return (v,),cp;
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Moser and Tardos’ theorem

if for all i € [1,N]
@ A; is independent of all other events except < I' other ones

© proba(4;) < ﬁ e=2718...

then 3 an assignment of values to the variables P such that there is no
event in A occurs

The randomized algorithm resamples an event A € A at most !
expected times before it finds such an evaluation

The expected total number of resampling steps is at most N
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Home work

@ Read the proof of Moser & Tardos (or Spencer’s nice note)

@ Listen to a talk by Aravind Srinivasan on further extensions

https://video.ias.edu/csdm/2014/0407-AravindSrinivasan
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Protecting Delaunay simplices via perturbation

Pis an (g,7)-net

Picking regions : pick p" in B(p,p) Hyp. p<7 (<5)

Sampling parameters of a perturbed point set

P"is an (¢/,77')-net, where

Bl
|
I %‘?
vV
W33

"=¢(1+p) and 7 =
e'=¢(l+p) m=T7

X

Notation : x = :
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The LLL framework

Random variables : P’ a set of random points {p’, p’ € B(p,p),p € P}

Event: 3¢’ = (d',p') (Bad configuration)
o’ is a d simplex with R,s < e+ p
p, S Z(;(O'/) Zg(o‘l) = B(CJ/,RU/ + 5) \B(CUI,RJ/)

Algorithm
Input: P,p,d

while a bad configration ¢’ = (¢’, p’) occurs do
resample the points of ¢’
update Del(P’)

Output: P’ and Del(P’)

v
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Bounding I'

Lemma : Aneventis independent of all but at most I" other bad
events where I' depends on 73, p, d and d

Proof :

@ Let ¢’ = (¢’,p’) be a bad configuration.
Vp'ed, |Ip—co| <Ry +6=R=c+p+5=c(l+p+9)

@ the number of events that may not be independent from an event (¢/,p’)
is at most the number of subsets of (d + 2) points in B(c,, 3R).

@ Since P’ is n’-sparse,

3R+ 2\ 1+5+8)(1
T‘( n/2> —<1+6( oo Ut
¥

el

d(d+2
)>( )
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Bounding proba(o, p) be a bad configuration
S(c,R) a hypersphere of R¢

Ts = B(c,R+0) \ B(c,R)

B, any d-ball of radius p < R
voly(Ts NB,) < Uy (RO~ 5,

(0<% < p<R)

ST =i
=

proba(p’ € Zs(o')) < w = Uiljzl (%)dﬁ]
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Main result

Under the condition
«
Vd

the algorithm terminates.

r+ns<p<?

Guarantees on the output
> dH(Pa P/) < P
» the d-simplices of Del(P’) are §-protected

» and therefore have a positive thickness
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Bound on the number of events

Y (p') : number of d-simplices that can possibly make a bad
configuration with p’ € P’ for some perturbed set P’/

R=c+p+6

() < nx|PaBE 2R

pIEP/
(2 ( 4 g )d(d—i-l)
n —
il
2

= C'n

IN
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Complexity of the algorithm

@ The number of resamplings executed by the algorithm is at most

)
where C” depends on 7, p, 4 and (exponentially) d
@ Each resampling consists in perturbing O(1) points

@ Updating the Delaunay triangulation after each resampling takes
O(1) time

@ The expected complexity is linear in the number of points
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Thickness and stability of Delaunay triangulations

@ If a simplex is thick, its circumcenter is not much affected by a
small perturbation of the position of the points or of the metric

@ Applications to the triangulation of manifolds
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